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Abstract

In this paper, we propose a new non-separable two-dimensional (2D) Lossless Wavelet Transform
(LWT) for an image compression. Filter characteristics of our proposed 2D LWT are the same as those
of 2D LWT based on applying two kinds of the conventional 1D LWT in horizontal and in vertical
dimensions separately. However, coding performance of the proposed 2D LWT is better due to
reduction of rounding effects. We theoretically analyze error in decoded image based on both 2D
LWT to confirm an effectiveness of the proposed method. Both theoretical analysis and simulation
results confirm the effectiveness of our proposed LWT in not only lossy coding but also lossless

coding.
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1. Introduction

Many researchers have been paying
attention to image compression techniques [1] to
reduce the number of bits required to represent
image data. So far, we can generally classify
image compression techniques into two types-
lossy coding and lossless coding. These have
been developed for a high compression ratio and
a high quality of a decoded image, respectively.

Up to now, there have been many well-
known coding standards introduced from the
Joint Photographic Experts Group (JPEG) [2],
JPEG, based on Discrete Cosine Transform
(DCT) ( [3], [4] ), is the first standard for still
image coding. This algorithm can provide high
compression ratios; however, it is limited to
only lossy coding. Then the lossless JPEG
(L-JPEG) based on Differential Pulse Code
Modulation (DPCM) [3] was proposed. The next
standard was called JPEG-LS [5] based on a
context-based modeling and a non-linear
adaptive predictor referred to as Median Edge
Detector (MED) in LOCO [6]. The compression
ratio of JPEG-LS is better than the compression
ration of L-JPEG since its filter coefficients are
adaptive based on locally varying statistics from
the image data. Unfortunately, both L-JPEG and
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JPEG-LS are not suitable for progressive
resolution transmission because of the absence
of the anti-aliasing filter, which can prevent
aliasing occurring in low-resolution images.

Recently, JPEG-2000 [7] has been discussed
as a new international compression standard that
represents advances in image compression
technique where the image coding system is
optimized not only for efficiency, but also for
scalability and interoperability in network and
mobile environments. The Lossless Wavelet
Transform (LWT) [7-9], constructed from lifting
structures (LS) and rounding operations [10,
11], is selected as a key transform in JPEG-
2000. However, the error generated from
rounding operation [I11] causes PSNR
degradation in lossy coding when quantization is
applied. Notice that the conventional LWT is a
one-dimensional (ID) filter bank (FB)
constructed from double LS. To perform 2D FB
for image application, the 1D LWT is applied
twice in horizontal and vertical dimensions,
successively. Namely, it is “A Separable 2D
LWT”.

In this paper, we propose a non-separable
two-dimensional (2D) LWT for an image
compression. The number of rounding
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operations of our proposed LWT is less than that
of conventional 2D LWT, whereas filter
characteristics of our proposed LWT are the
same as those of conventional 2D LWT when
error generated by the rounding operation is
negligible. Coding performance of our proposed
LWT is better than that of the conventional 2D
LWT in lossy coding, especially at high bit rates
when quantization errors are relatively small
compared to the rounding errors.

This paper is organized as follows. We
review signal processing of the conventional 2D
LWT based on applying two kinds of the
conventional 1D LWT in horizontal and vertical
directions independently in section 2. Then, we
propose a signal processing of a new non-
separable 2D LWT for image compression in
section 3. Theoretical analysis confirms
advantages of our proposed 2D LWT in section
4. Simulation results confirm the effectiveness
of our proposed method in both lossless coding
and lossy coding in section 5. Finally, we
summarize our proposed method in section 6.

2. The Conventional Two-Dimensional
(2D) LWT

So far, many kinds of LWT have been
proposed. Most of the LWT are one-dimensional
(1ID) LWT constructed from double lifting
structures and rounding operations. In this
paper, We renamed eight kinds of the LWT
according to the numbers of taps in low-pass
and high-pass filters as indicated in Table 1. The
parameters P(z) in i" lifting structure of each
LWT as shown in Table 1 are:

3
P(2)= Y ayz
k=-3

The conventional 2D LWT is constructed by
applying two kinds of the conventional 1D LWT
in  horizontal and  vertical  directions
independently as illustrated in figure 1. Input
signal (X) is decomposed into 4 subbands (YL,
Yin, Yu, Yun). For example, Y.y indicates
horizontally low-passed and vertically high-
passed subband. The 1z, and 2z, denotes
horizontal and vertical dimension, respectively.
The Qu1, Quu, Qur, Quu denote quantization in
subband LL, LH, HL, and HH, respectively. The
LS denotes lifting structure. The ® and “}2”
denote the rounding operation and the down-
sampler by two [12]. As shown in Fig. 1, six
rounding operations are required to perform the

ey
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conventional 2D LWT. We theoretically analyze

errors in decoded image based on the
conventional 2D LWT in section 4.
Table 1. Parameters of LWT [9].
LWTH| ay, | ay an Aoi an ;i a-3
5301 - - G2 | R - - -
o[ - - - 1/4 /4 -
13/11(1]-3/256125/256]150/256F 150/256] 25/256 | -3/256
e - - 1/4 1/4 -
13/7-1 1716 | -9/16 | -9/16 | 1/16 -
T P - | <132 | 932 | 9/32 | 1732
331 - - 12 | 1R B - -
7 17128 | -5/128 | 9/32 | 9/32 | -5/128 | 1/128
9/3-K|1 - 12 | 1R - - -
o[ - - | 17256 | 63/256 | 63/256 | 17256
9/3-S[1] - - 2 | -1n - - -
o[ - T | -3/64 | 19/64 | 19/64 | -3/64
70 - | 116 | -9/16 | -9716 | 1/16 - s
c ol - ~ [ -1/16 | S/t6 | 5716 | -1/16
9/7-1] - | 116 | -9/16 | -9/16 | 1/16 - -
M Pl - - - 174 1/4 - -

The conventional 1D LWT The conventional 1D LWT

applied in horizontal dimension applied in vertical dimension

~
LS Al LSA2
=

AL

~
The conventional 1D LWT
applied in horizontal dimension

~
The conventional 1D LWT
applied in vertical dimension

(b) Synthesis part of the conventional 2D LWT.

Fig.1 Signal processing of the conventional 2D
LWT.
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3. The proposed non-separable 2D LWT

In this paper, we propose the non-separable
2D LWT based on an objective to reduce
numbers of rounding operations required in our
proposed 2D LWT. Its filter characteristics are
the same as those of the conventional 2D LWT.
The signal processing of new non-separable 2D
LWT is newly designed by applying two types
of the conventional 1D LWT: LWT type 1 for a
horizontal dimension and LWT type 2 for a
vertical dimension. Notice that we have a
freedom to select LWT type 1 and LWT type 2.
They can be the same or different LWT.

As shown in figure 2, signal processing of
our proposed 2D LWT requires only four
rounding operations. The number of rounding
operations required in our proposed 2D LWT is
less because parameters in different LS of
conventional 2D LWT can be combined. For an
example, parameters of LS Al and LS AS in
figure 1 are combined into those of LS Al” in
figure 2. Parameters of LS A2 and LS A6 in
figure 1 are combined into those of LS A2’
Therefore, the number of rounding operations
required to perform the 2D LWT is reduced to
four rounding operations.
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(a) Analysis part of the proposed 2D LWT.
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(b) Synthesis part of the proposed 2D LWT.

Fig. 2 Signal processing of the proposed
non-separable 2D LWT

4. Theoretical Analysis

In this section, we theoretically illustrate
advantages of the proposed non-separable 2D
LWT. Theoretical analysis of the conventional
2D LWT and the proposed 2D LWT are
illustrated in section 4.1 and section 4.2,
respectively.

We analyze all signal processing in this
paper based on the following assumptions. (1)
All filters in this paper are linear and time-
invariant filters, and (2) Correlations between
each of the errors and the signals are zero
(statistical independence). In this paper, we use
z-transform expression defined by:

K-1
X(2)=3 x(k)z* ©))

k=0

where x(k) denotes signal’s intensity. Value of
x(k) for image signal is given as an “integer”

4.1 Theoretical analysis on the conventional
2DLWT

4.1.1 An equivalent expression of the
conventional 2D LWT

’ﬁ
NRALL
NRALH
NR
[Qua -

AHL

Y
L
NRAHH

(a) An equivalent expression of analysis part of
the 2D LWT.

X
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.
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(b) An equivalent expression of Synthesis part
of the 2D LWT.

Fig. 3. Equivalent expressions of the 2D LWTs.
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Based on mentioned assumptions, signal
processing in figure 1 can be replaced by its
equivalent expression in figure 3 where its filter
characteristics (Hc and Gc) are:

—HLLC(ZI’ZZ)_ I
Hyye(z,52,) z
“T *T. *T. *T.*
H,,(7,,2;) c e e |, 21
| Hime(z52,) Z-,lz;l €Y
_GLLC(ZI 'Zy )] Z-lI Zj
GLHc(zl yZy) z!
=Tl *T! *T! *Tl * 2
Gunrc(#r2,) c1 ez e s Z_Il
_GHHC(ZI ’zz)_ 1

where transform matrix (T and T, are based
on parameters of the conventional 2D LWT in
figure 1 as:

10 00 I 0 00
L 0 v 0o o100 Q)
“TpE) 0 1 0[ TR 0 10
0 P(Z) 01 0 -P(Z) 01
horz o] [Lo-p@) o0
01 0 P&, (01 O -P(2) 5
00 1 0 =50 0
oo o 1] [00 o 1
1 0 0 01 [t 0 0 0
RZ)1 0 o , [-RAH 1 o o (6
T o 0 1 o 0 o 1 o0
Lo or@ 1] | 0 0-R@)
ie@ o o) [r-r@o o]
o1 0 0,0 1 0 0 ™)
L= o 1 p@) 0 0 1@
oo oo 1] oo o 1

According to Reichel’s paper [11], non-
linearity of rounding operation generates
additive noise and then the noise is propagated
through FB to the reconstructed image.
Therefore, rounding errors in its equivalent
expression are:

NR““_ (21922) NRM(ZVZZ) 0
NM_Hc (21322) _ 0 " " NRM(ZHZZ)
Ne,,, @2)| (N @z | 0 ®)
N, (%:2,) 0 Ne, (@:2)
N, (%:2,) 0
N, (:25)
+ Ty * Ty * RMO ? Ty * Ty * 1oy ™ N, (2.2,)
Ry 72
0 N (7.2,)
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NRSLLA- (3.2, 0 N, (2:2,)
NRSLHL- (2,2,) _ 0 14 NRSI(ZuZz)
Ni,,, (@:2) | Ny (2.7) | 0 9
Ne,  (z:2)| | Ny (z,2) 0
0 NR“(ZI,ZZ)
N ,Z 0
L i B <E =R A N
Rsy >
Ng,(4,2,) 0

where rounding errors Nra and Ngs; denote
additive errors generated from rounding
operation in lifting structure i™ in figure 1 (a)
and in figure 1 (b), respectively. ’

4.1.2 Error analysis in decoded image based
on the conventional 2D LWT

o 2D 2D
Original -l [&oded
1
image i Rl LWI image
- AN ~ )
Analysis part Synthesis part

(a) The LWT-based coding system.

Analysis part Synthesis part

(b) An equivalent expression of the LWT-based
coding system.

Fig. 4. The LWT-based coding system and its
equivalent expression.

In this section, we theoretically analyze
errors in decoded image of the conventional
LWT-based coding systems as illustrated in
figure 4. Errors in decoded image mainly
generated from two sources: quantization and
rounding operation. We can rewrite total error in
each subband (Ng) from as:
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N Euc N Qu. 0 0
N Epwe | _ N Quu + 0 + 0
Neoo | [ Naw Ru | | Neg,
NEmc NQHHA NRAI NRsn (10)
NRAZ FNR” 0 0
N N N N,
+T2 8“ + Rl T S” + 3“
(. 0 N RA5 RSS
Ne, | [ Nag,
-l -l -l % 0 0
+T * T * T N + N
Rae Rg
0 0

We can approximate that both errors are
independent, so the variance of errors (o7) in

decoded image can be calculated from a

variance of quantization error ( o ) and a
variance of rounding error (o] ) as:
R
2_ 2 2
Og =0y, + 0y, (11)

A variance of quantization error ( g} ) is
Q

calculated from:

1 A?
o, =o'+

—*;‘ll%!ﬁ

where A denotes quantization step size and the

Binfo,, [+ ik,
2 LH 12 HL

(12)

norm ”G“2 is defined as:

IGI =Y g*k) for G(z)=3 glh)z™*

Next, we approximate a variance of
rounding errors under assumption that if
quantization is applied, the rounding errors in
both analysis and synthesis part are independent.
Therefore, a variance of rounding operation
(o ) of the conventional 2D LWT based

coding system is approximately calculated from:

(13)

1 !
Te =5 O + Oy )+ 5O R I|I-RE
1, ., ) 2
7@, o I-RED]
1
G R (14)

4

4300, 0, II-RERERE]

+§(a§w o, =R PR +RERE]
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where 52 and o  denote variances of
Ra Rg

rounding error in analysis part and in synthesis
part, respectively. If we assume that power
spectrum of all errors are flat, we can
approximately calculate variance of rounding
error from:

2 2 2 2_1

(o2 = =0 = = =
Nrai Nk Ng Nese

(15)
12

A variance of error generated from both
quantization and rounding operations is
theoretically calculated for eight kinds of LWT
and compared to simulation results in the next
section.
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4.2 Theoretical analysis of the proposed non-
separable 2D LWT

42.1 An equivalent expression of the
proposed non-separable 2D LWT

Similarly, signal processing in figure 2 can
be replaced by its equivalent expression in
figure 3 where its filter characteristics (Hp and
Gp) are:

HLLP(ZI’ZZ)- 1
Hypp(2,52,) ST *T. *T. *T. * 2
H =dpy " gy T gy T 1py
HLP(ZI’ZZ) Z,
Hyp (2,,2,) z'z/| (16)
GLLP(ZHZZ)- z'z
Grup(252,) '
Guip(z,52,)

 Grnp(2152,) | 1

el %l el x
—Tm TPZ TP3 TP4

where transform matrix (T; and T'pi)) are based
on parameters of non-separable 2D LWT in
figure 2 as:

i 1 0 0 0
- 0 1 0 0
o 0 0 1 of an
|[Pz)P(z3) P(z]) P(2z)) 1
i 1 0 0
y 0 1 0 0
T = 0 0 1 o}
|-Pz)P(z;) -P(z) -P(z;) 1
1 00 © 1 00 0
Lo 0 1o 0l 10 10 0 (18)
"TIR@) 01 B@)[ " |-R@) 0 1 -BEZ)
0 00 1 0 00 1
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1 00 0 1 00 o0
_|R@) 10 B@) . -R(@) 1 0 -B@)|(19)

T.=
10 01 of™ 0 01 0
0 00 1 0 00 1
1 P(z3) P(z}) -P(z))P(Z})
0 1 0 0
T, =
Moo 1 0
) 0 1 (20)
(1 -P@) -P@) PEIP()
0 1 0 0
T;! =
o o ] 0
K 0 0 ]

Eq. (3), and Eq. (16) confirm that filter
characteristics of our proposed non-separable
2D LWT are the same as those of the
conventional 2D LWT as:

—HLL,P(ZI’ZZ)-
Hyp (z,52,)
Hpyr @52,) ’
| Hynp(z52,) |
—GLL,P(ZHZZ)—
Giue(52,)
Gue(zys2,)

_GHH,P(ZI’ZZ)_

-HLL.C(ZI’ZZ)_
H 4 (z52,) _
Hyc(z52,) -
| Hync(z452,) |
—GLL,C(ZI’ZZ)—
Giuc(zisz,)
Gurc(®52,)

_G anc(Zis zz)J

@

Rounding errors in its equivalent expression
are:

NR\qu (Zl’zl) NIRAI (ZI,ZZ) 0
Ney, @z |0 N @)
NRAHLP (Z]’ Zz) 0 " 0 (22)
N, .. (@:2) 0 0
0 0
* O * 0
+ T * Ty Ny (70,2, + T, * Ty * T, 0
0 Ny, (2,2)
N, (222) 0 0
Ny, (7,2,) 0 0
Rsiw 4% - +'I;}* '
NRSHLP (7,2,) 0 Ny, (7,2,) (23)
NRﬂmu» (z.2,) N’Rx, (%,2,) 0
0 Ny, (z.2,)
N 0
T R R o I
0 0

where rounding errors N’gra; and N’gg; denote
errors generated from rounding operation in
lifting the i"" structure in figure 2.
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4.2.2 Error analysis in decoded image based
on the proposed 2D LWT

Similarly, we analyze errors in decoded image
of the conventional LWT-based coding systems
as illustrated in figure 4. We can rewrite total
error in each subband (Ng) as:

Neg, ., N, 0 0
N, N, 0 0
= + +
NEmp NQm 0 0
N, N, "R N'g,
0 0
0 0 24
+ T ) , (24)
N R A N' ¢
0 0
0 0
N' N
ST eT ot * Ra | 4 Ry,
Pl P2 0 0
0 0
N'RA Ry
+ T *T, *1, > 0 + 0
Pl (23 P3 0 O
0 0

Similarly, if quantization is applied for all sub-
bands, we can calculate a variance of errors of
the proposed LWT-based coding system from:

O':JR" = %(O’:‘RAI P + o}iﬂsw ) +% (O{l"“" * o}i“szr )”1 - P' (212 )"z

o e5)

1, Jra,ikm)||1—P1(zf)||2

i R p-ref

1 2
+_(O-N“44.P + NRsA.

4

We can approximately calculate a variance
of the errors by applying a variance of each
rounding error in eq. (15). Table 2 theoretically
confirms that a variance of rounding errors of
the proposed 2D LWT less than that of the
conventional 2D LWT.

Table 2. A variance of rounding error of the
proposed 2D LWT and conventional 2D LWT.

LWT of,“ a,i”
5/3 0.439453 | 0.260417
13/11 | 0.491928 | 0.305102
13/7-T | 0472612 | 0.290532
13/3 | 0.438315 | 0.260417
9/3-K | 0.439665 | 0.260417
9/3-S | 0.438271 | 0.260417
13/7-C | 0.471948 | 0.290532
9/7-M | 0.474646 | 0.290532
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S. Simulation results

In this section, we apply five standard
images as input signals to illustrate effectiveness
of our proposed method. Eight different kinds of
the LWT [1] are applied as the conventional 1D
LWT where their parameters are summarized in
Table 1. Therefore, there are sixty-four possible
kinds of proposed 2D LWT based on
combination of eight kinds of the conventional
1D LWT. However, simulation results in this
paper are based on the same LWT in both
horizontal and vertical dimensions. Section 5.1
and Section 5.2 illustrate effectiveness of the
proposed method in lossless coding and that in
lossy coding, respectively. In this paper, the
proposed 2D LWT and the conventional 2D
LWT are applied only to one stage to confirm
effectiveness of our proposed method.

5.1 An effectiveness in lossless coding

Table 3 and Table 4 illustrate lossless coding
performance of both LWT in term of the entropy
rate calculated by:

H=-» P log, P, (26)
3 2 Ly

where P; indicates probability of a symbol “s”.
Table 3 and Table 4 indicate that entropy rates
of the proposed method are slightly less than
those of the conventional one.

Table 3. Entropy rate in lossless coding of the
proposed LWT.

Girl | Chest
5.1415|6.4012
5.1389|6.4483
5.1257] 6.424
5.145216.4007
5.1431(6.4026
5.147316.4026
5.126416.4245
5.127916.4295

Barbara
5.5288
5.3844
5.4077
5.5285

5.532
5.5302

5.408
54139

Mobile
5.3538
5.3863
5.3678
5.3581
5.3538
5.3608
5.37
5.3706

LWT
5/3
13/11
13/7-T
13/3
9/3-K
9/3-S
13/7-C
9/7-M

Table

Aerial
5.9455
5.9197
5.9134
5.9606
5.946
5.9654
59216
5.9085

4. Entropy rate in lossless coding of the
conventional LWT.

Girl | Chest {Mobile
5.144716.4008|5.3544
5.1401]6.4484|5.3873
5.1288(6.4244|5.3688
5.1475|6.40075.3583
5.144316.4022|5.3537
5.1501]6.4013]5.3602
5.1311]6.4248] 5.371
5.1315]6.4306|5.3716

Barbara
5.5302
5.3882
5.4138
5.5291
5.5318
5.5298
5.4143
5.4179

Aerial
5.9457
5.921
5.9145
5.9571
5.9435
5.9619
5.9231
5.9105

LWT
5/3
13/11
13/7-T
13/3
9/3-K
9/3-S
13/7-C
9/7-M
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5.2 An effectiveness in lossy coding

Table 5-12 illustrate lossy coding performance
of both methods in term of PSNR (Peak Signal
to Noise Ratio) defined as

2
PSNR = 10log,, (Z—Sf—) [dB]
O,

E

e4))

where 2 denotes variance of error signal

between original signal and decoded signal. The
“proposed” and  “conventional”  indicate
“proposed non-separable 2D LWT” and “the
conventional 2D LWT”, respectively. To be
comparable to a conventional quantization,
quantization step size for all is set in the same
value. Table 5-12 practically confirms that
coding performance of the proposed 2D LWT is
better than that of the conventional 2D LWT.
Moreover, Table 5-12 confirms that theoretical
analysis is accurate to predict PSNR of the
decoded image. Fig. 5 illustrates rate distortion
curve of “Barbara” based on the “5/3”. Fig. 5
also confirms that coding performance of the
proposed 2D LWT is always better than that of
the conventional 2D LWT; especially in high bit
rates. Notice that coding performance of the
proposed one is slightly better than that of the
conventional one at a low bit rate. Fig. 6
illustrates an original image “Barbara”. Fig. 7
and Fig. 8 illustrate decoded images at total bit
rate = 5 bpp generated from our proposed 2D
LWT and that from the conventional one,
respectively.

Table 5. PSNR of decoded image based on the
“5/3” LWT (simulation/theoretical).

Image Conventional Proposed
Name | Sbpp. | 4bpp. | 5bpp. | 4 bpp.

Acrial 48.2/48.444.6/44.8/49.0/49.3|144.9/45.2

Girl  149.8/49.7147.7/47.8/49.8/50.9148.4/48.6

Chest 46.3/46.2/42.5/42.8/46.6/46.7/42.7/43.0

Mobile [48.5/49.3146.9/47.2|148.7/50.4/47.2/47.9

Barbara [48.3/49.4/46.0/46.4/48.7/50.5/46.4/47.0

Table 6. PSNR of decoded image based on the
“13/11” LWT (simulation/theoretical).
Image Conventional Proposed
Name | 5bpp. | 4bpp. | 5bpp. | 4 bpp.
Aerial [47.8/47.944.4/44.2|148.2/48.7/44.6/44.6

Girl  149.0/49.2/47.2/47.3/49.2/50.3|47.5/48.0

Chest 45.2/45.7/41.8/42.2/45.5/46.2/42.0/42.5

Mobile [47.6/48.7/45.9/46.7/48.1/49.846.4/47.3

Barbara [48.4/48.8/45.8/45.9/48.7/49.9/46.4/46 .4
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Table 7. PSNR of decoded image based on the
“13/7-T” LWT (simulation/theoretical).

Table 12. PSNR of decoded image based on the
“9/7-M” LWT (simulation/theoretical).

Image Conventional Proposed Image Conventional Proposed
Name | 5bpp. | 4bpp. | 5Sbpp. | 4bpp. Name | Sbpp. | 4bpp. | 5bpp. | 4bpp.
Aerial 147.8/48.1/44.5/44.5/48.3/49.044.8/44.8 Aerial |48.0/48.1/44.5/44.4148.3/48.9/44.8/44.8

Girl 49.1/49.4{47.2/47.549.4/50.6/47.7/48.2 Girl 49.2/49.3|47.3/47.4)49.4/50.5/47.7/48.2
Chest [45.6/45.9/42.0/42.5/46.0/46.4/42.2/42.7 Chest |45.5/45.9/42.0/42.4/45.9/46.4142.1/42.6
Mobile [47.8/48.9/46.1/46.9/48.3/50.0/46.6/47.5 Mobile 47.9/48.9146.1/46.8/48.4/50.0146.5/47.5
Barbara [48.5/49.1]45.9/46.148.8/50.2/46.3/46.6 Barbara |48.5/49.0/45.9/46.0/48.8/50.1{46.2/46.6
Table 8. PSNR of decoded image based on the

“13/3” LWT (simulation/theoretical).

Image
Name

Conventional

Proposed

S bpp.

4 bpp.

5 bpp.

4 bpp.

Aerial

48.0/48.4

44.6/44.8

48.5/49.4

44.8/45.2

Girl

49.6/49.7

47.6/47.8

49.8/51.0

47.9/48.6

Chest

46.4/46.2

42.5/42.8

46.6/46.8

42.7/43.0

Mobile

48.3/49.3

46.8/47.2

48.7/50.4

47.2/147.9

Barbara

48.3/49.4

46.0/46.4

48.7/50.6

46.2/47.0

Table 9.

“9/3-

PSNR of decoded i
K” LWT (simulation/theoretical).

mage based on the

Image
Name

Conve

ntional

Proposed

5 bpp.

4 bpp.

5 bpp.

4 bpp.

Aerial

48.3/48.4

44.6/44.8

48.7/49.3

44.8/45.1

Girl

49.8/49.7

47.5/47.8

49.7/50.9

48.0/48.6

Chest

46.3/46.2

42.5/42.8

46.6/46.7

42.6/43.0

Mobile

48.4/49.3

46.8/47.2

48.7/50.4

47.2/47.9

Barbara

48.2/49.4

45.9/46.4

48.6/50.5

46.1/46.9

Table 10.
-S” LWT (simulation/theoretical).

“9/3

PSNR of decoded

image based on the

Image
Name

Conventional

Proposed

5 bpp.

4 bpp.

5 bpp.

4 bpp.

Aerial

48.0/48.4

44.6/44.8

48.5/49.4

44.9/45.2

Girl

49.7/49.7

47.6/47.8

49.8/51.0

48.1/48.6

Chest

46.4/46.2

42.5/42.8

46.7/46.8

42.7/43.1

Mobile

48.2/49.3

46.9/47.2

48.6/50.4

47.3/47.9

Barbara

48.3/49.4

46.0/46.4

48.7/50.6

46.1/47.0

Table 11. PSNR of decoded image based on the
“13/7-C” LWT (simulation/theoretical).

Image
Name

Conventional

Proposed

5 bpp.

4 bpp.

5 bpp.

4 bpp.

Aerial

47.8/48.1

44.6/44.5

48.4/49.0

44.9/44.9

Girl

49.0/49.4

47.2/47.5

49.3/50.3

47.7/48.2

Chest

45.5/45.9

42.0/42.5

46.0/46.4

42.2/42.7

Mobile

47.8/49.0

46.2/46.9

48.4/50.0

46.6/47.5

Barbara

48.4/49.1

45.9/46.1

48.9/50.2

46.3/46.6
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Fig. 5 Rate distortion curve of “Barbara” based
on “5/3”.

Fig. 6 An original image “Barbara”.
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Fig. 7 A decoded image “Barbara” based on our
proposed 2D *“5/3” at total bit rate = 5 bpp.,
PSNR = 48.7 dB.

Fig. 8 A decoded ima Barbara” based on the
conventional 2D “5/3” at total bit rate = 5 bpp.,
PSNR = 48. 3 dB.

6. Conclusion

In this paper, we proposed a new non-
separable 2D LWT with fewer rounding
operations. The coding performance of our
proposed method is better than that of the
conventional 2D LWT because the proposed
LWT has less number of rounding operations
required in 2D filter bank, however filter
characteristics of both methods are exactly the
same. Simulation results confirm effectiveness
of our proposed method in lossy coding at high
bit-rates, additionally in lossless coding.

Computational load of the proposed non-
separable 2D LWT is increased, compared to
that of the conventional one.
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