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Abstract

The lattice Boltzmann method (LBM) based on the D2Q9 model and a single relaxation time method
called the lattice-BGK method are described. Numerical results for a discrete microscopic description of a
low Reynolds number flow in a two-dimensional channel flow are reported and its practical relevance
was investigated by comparing it with the analytical results. It is found that this approach improves the
understanding of the flow pattern in highly complex geometries and to obtain a reliable model for its
operating behaviour and design.
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1. Introduction
Recently, lattice gas automata (LGA) and

lattice Boltzmann automata approaches (Frich et
al. [1] and Frich et al. l2l) have been shown to
be attractive alternatives to classical methods in
CFD, e.g., finite volume methods and Finite
element methods for the solution of the partial
differential equations (PDE), i.e, Navier-Stokes
equations (Noble et al. [3] and Noble et al. [4]).
Panial differential equations (PDE) have been
the only and most tractable way to describe
dynamical and spatially extended system, for a
long time.

However, as more difficult problems are
considered, PDE may be less adequate and
cannot always be formulated when complicated
local dynamics involving thresholds or
discontinuity are studied. Finally, the
sophisticated numerical schemes used to solve
PDE often screen out the nature of the process
being analyzed and prevent their generalization
to new phenomena. In these situations, a
description based on a simple model of reality,
instead of an exact equation, is quite powerful.
The solution procedure is replaced by a direct
computer simulation of the model, from which
predictions can be made, as in a laboratory

experiment. The crucial justification of this
methodology is the observation that in many
fields of sciences, there are several levels of
reality.

The LBM is a derivative of the lattice gas
automata method which was first proposed
about a dozen years ago by a number of
physicists. Nowadays, the method has quickly
found its way in dealing with a number of
engineering flow problems. Unlike classical
methods which solve the discretized
macroscopic Navier-Stokes equations, the LBM
is based on microscopic particle models and
mesoscopic kinetic equations. The fundamental
concept of the LBM is to "construct simplified
kinetic models that incorporate the essential
physics of microscopic or mesoscopic processes
so that the macroscopic averaged properties
obey the desired macroscopic equations".

The LBM is especially useful for modeling
interfacial dynamics, flows over porous media,
flow problems in highly complex geometries
and various thermodynamic properties of a fluid
system, such as the multiphase flows problem
(Ratanadecho et al., [5]-[7] and Ratanadecho

[8]-[9] and Bernsdorfet al. [10]), in a relatively
straightforward way. In addition, the LBM
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algorithm tends to be very simple, allowing
parallelism in a straightforward manner.

The objective of the study is to develop an
algorithm based on lattice- Boltzmann (BGK)
automata (Qian et al. I l]) to investigate a two-
dimension flow around an arbitrary obstacle
mounted in a channel for a range of Reynolds
numbers between 80 and 300 as well as flow
around a highly complex obstacle. In order to
check the accuracy, the calculations from the
present LBM model are compared with the
theoretical result for the single phase channel
flow problem.

2. Description of Numerical Method
The concept of LBM treats the fluid on a

statistical level, simulating the movement and
interaction of single particles or ensemble-
averaged particle density distributions by
solving a velocity discrete Boltzmann-type
equation. The lattice-Boltzmann method has
been shown to be a very efficient tool for flow
simulation in highly complex geometries
discretized by up to several mil l ion grid points.

2.1 Numerical schemes
All numerical simulations presented in this

paper wil l be briefly described here. For
simplicity, an equidistant orthogonal lattice is
chosen for common LBM computation. This

could be done without a significant loss of
memory and performance, since the LBM
requires rnuch less memory and CPU time than

classical methods. On every laftice node r- , a

set of i real numbers, the particle density

distributions / , is stored. The updating of the

f attice basically consists of two steps: a

streaming process, where the particle densities
are shifted in discrete time steps d through the

lattice along the connection l ines in direction c, ,

to their next neighboring nodes /, +c, - and a

relaxation step, where locally a new particle

distribution is computed by evaluating an

equivalent to the Boltzmann coll ision integrals
( 4,o""'). For every time step, all quantit ies

appearing in the Navier-Stokes equations
(density, velocity, pressure gradient and

viscosity) can locally be computed in terms of

simple functions of this density distribution and

(for the viscosity) of the relaxation parameter o.
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For the present computation, a 2D nine-
speed (D2Q9) lattice-Boltzmann automata with
single time Bhatnagar-Gross-Krook (Bhatnagar
et al. [12]) relaxation coll ision operator A;Boi' '
proposed by Qain et  a l .  [11]  is  used:

Ll""' =r(f"" -.f,) Q)

with a local equil ibrium distribution function

1y'i"q :

[  " , ,  u u l "  "  r l
f ; q  t , o ] t ' # - : : l # - u " , ) l  ( 3 )

t  ' ,  - ' ,  \  . - \  / t

This local equil ibrium distribution function

.f,"' has to be computed every time step for

every node from the components of the local

flow velocities uo and up, the fluid density p , a

lattice geometry weighting factor /, and the

speed of sound c,, which we chose to recover

the incompressible time-dependent Navier-
Stokes equat ions (Qian et  a l .  [1  1] ) :

A,p+6"4* " )=0  (4 )

a , (p r "y+a r (ou "uu )=  
(5 )

-au, + pa 1t(a or. + 0"u,,)

In addition, the left side of Eq. (l) is

analogous to the "translation" stage in LBM, and

the right to the "coll ision" stage. For example, in

the two-dimensional "D2Q9" model, there are 9

velocities 1 i, ; on a square lattice: one has

speed:O and corresponds to a "rest" particle;

four  have speed- l  and are at  0,90,  180 and 270

degrees; and four have speed: Ji at 45, 135,

225 and 315 degrees, as shown in Fig. l.

f , ( t .  * t ,7 .  + i )=  . f , ( t . , i )+  g ' "  ( r )
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Fig.l Schematic 2D lattice Boltzmann
calculation on a square lattice, after the
translation step. Shown are 6 fluid sites and 3
wall sites (the wall is shown with a brick
pattern).

Through careful choice of the equilibrium
distribution, the macroscopic quantities (density,
velocity, pressure gradient and viscosity)
fulfilling the Navier-Stokes equation can be
obtained in terms of the moments of the particle

dis t r ibut ion funct ion " f , ( t . r )  a t  each s i te .  e.g.

for the D2Q9 model:

Densify: y = )  l , ( r . t l  ( 6 )
/ - / J  t  \  /

F l o w v e f o c i t y '  u = )  f , ( r - t ) c , l  p  ( 7 )
l

Pressure: p = pc:

1 ( )  \
Viscosity: ,=i l ; -r)  (e)

2.2 Boundary conditions

Llall boundary conditions
There is a long and sti l l  ongoing discussion

on the proper use of boundary conditions within
the framework of LBM. Although it is known
that simple bounce-back wall boundary
conditions are of first-order accuracy whereas
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the lattice-Boltzmann equation is of second
order, these bounce-back conditions are the most
efficient ones for arbitrary complex geometries.
Furthermore, previous investigations showed
that the error produced by the bounce-back
boundary conditions is sufficiently small if the
relaxation parameter ar is close enough to 2.
Therefore, we believe that the bounce-back
conditions can still be used without any
influence on the order of the LBM scheme, if at
is chosen within a suitable range. Furtherrnore,
the bounce-back boundary conditions are the
most efficient ones for arbitrary complex
geometries, which are most typical for the
application of LBM.

Inlet and outlet boundary conditions
In order to simulate a fully developed

laminar channel flow, a parabolic velocity
profile with a maximum velocity u_ is

prescribed at the channel inlet whereas fixed
pressure outlet boundary conditions are chosen.

Inilial boundary conditions
For the validation test cases, the equilibrium

distribution function f,"q was computed from

given velocity fields for uniform pressure
distribution and taken as the initial solirtion for
the density distribution function I . The flow

field for the arbitrary obstacle is initialized with

the equilibrium distribution function f,"q for

zero velocity and uniform pressure, and the inlet
velocity had slowly been increased during the
first few thousand iterations, to avoid the
generation of pressure waves.

3. Result and Discussion
In order to check the accuracy, the

calculations from present LBM model are
compared with the theoretical result for the
single phase channel flow problem. Comparison
of the velocity profile in Fig. 2 shows the same
trend although the spatial variation of the
velocity profile near the center of channel
predicted by our model is slightly higher than
the theoretical result. This might be due to the
init ialization of the densities with equil ibrium

distribution f,"q because of lower iteration

numbers.

(8)
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Fig.2 Single phase channel flow

The good results for the above test case
clearly show the possibility of performing
accurate numerical simulation for various single
phase channel flow problem with the present
implementation of the lattice Boltzmann
method. Especially, as is already known from
the lattice Boltzmann theory, where this quantity

could be taken into account for a proper

definition of viscosity, no problems with the
numerical dissipation have been observed.

3.1 Flow around a square obstacle
The flow around a square obstacle

positioned inside a channel was simulated for a
range of Reynolds number Re between 80 and

300, defined by the length ofthe obstacle d,the

maximum flow velocity lt-*of the parabolic

inflow profile and the dynamic viscosity v as:

F(e=u^*d
v

In this region, it is known from experiments

and other numerical studies that vortex shedding

is observed and a two-dimensional time

dependent flow evolves. At a Reynolds number

Re above approximately 300, the flow might
become three-dimensional, and two-dimensional
computations will therefore not produce
physical results.

According to the computational domain as

shown in Fig. 3, obstacles of sizes ranging from

d x d : l0 x 10 up to dx d = 40 x40 lattice units
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are positioned vertically centered in the first
third section of the computational domain with
sizes between I x h = 500 x 80 and / x h = 2000
x 320 lattice units.

Fig. 3 Obstacle of size d x x in channel of size

l x h

For the wall, a no-slip boundary condition is
realized by particle density bounce-back. A
parabolic velocity inflow profile is applied, and
the outlet pressure is fixed.

The only quantity taken into account in the
present analysis is the Strouhal number St,
computed from the obstacle diameter d , the
measured frequency of the wakes / and the

maximum velocity umd, as defined in Eq. (l l):

( 1 1 )

(  1 0 )

All computations are done on one processor
of the Pentium III. Starting with zero flow
velocity and uniform pressure, after a sufficient
number of iterations, time-dependent flow

evolves with a fixed frequencyl This frequency

;f was determined by spectral analysis of the

temporal evolution of the v-component of the
flow velocity at several points in the wake
behind the obstacle.

For this quantity, the numerical convergence
of the scheme with respect to grid resolution was

investigated first. What is known from fluid

mechanics, and can be reproduced very well by

our simulations (see Fig.4), is the fact that the

topology ofthe vortex shedding behind a square
obstacle changes significantly with the Reynolds
number. For a Reynolds number of 80 the

separation point of the vortices is observed to be

the rear edge of the obstacle, whereas it moves

from the rear to the front edge ofthe obstacle for

higher Reynolds numbers. At Re = 266, small
secondary vortices can be found at the top and

st= fd
u^o
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bottom ofthe obstacle. A sufficient resolution o1
this secondary vortex appears to be crucial for
the development ofa correct shedding frequency
f, which results in the necessity for finer grids

for higher Reynolds numbers.
The dependence of the Strouhal number St

on grid resolution can be seen for Reynolds
numbers between 80 and 266 in Fig.5. The
values indicate second-order convergence of the
scheme, and lattice sizes of I x h : 2000 x 320
for obstacles of dimension d : 40 product
results with good accuracy for Reynolds
numbers up to 300. For Reynolds numbers <

100, near dependence of Strouhal number on
grid resolution can be observed, which is in
accordance with our observations concerning
secondary vortices.

Fig.4 Flow around a square obstacle at (a)

Re=80 and (b) Re=266, for the higher Reynolds
number, secondary vortices above and below the
square obstacle are displayed
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For one full period, the streamlines of a
shedding vortex are shown in Fig.6 at Re : 80.
One can see a small vortex developing at the
rear top edge of the square obstacle, which is
moving downwards while growing, and moves
upwards while growing, to separate finally from
the top rear edge ofthe obstacle.
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Fig.5 Strouhal number St as a function of linear
lattice dimension I for different Reynolds
Number Re

3.2 Flow around a highly complex obstacle
For practical applications, this simple

procedure as explained in the previous section
allows for an easy implementation of arbitrary
complex. structures (e.g. the flow simulation
through a porous structure as presented in Fig.
7).or to change the obstacle structure during the
computation, which is necessary for problems
with time varying flow geometry. To illustrate
the capabilities of LBM, the flow contours and
velocity vector fields during fluid flow through a
highly complex porous structure are presented in
Fig. 8. It is evident from the figure thal
regardless of the complexity of the pores, the
flow features expected are well captured by
using LBM simulation.

4. Conclusion
With two classical flow studies, this paper is

able to show that our implementation of the
lattice BGK automata yields reliable results for
time-dependent flows. Strouhal numbers St for
two-dimensional channel flows around a square
obstacle with a blockage ratio of b = 0.125 and
Reynolds numbers between 80 and 300 are
measured numerically. It is shown that for a
correct evaluation ofthe Strouhal number higher

(a)

(b)
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grid resolutions are necessary for higher
Reynolds numbers owing to the generation of
small secondary vortices below and above the
obstacle, which have to be resolved numerically.

In addition, concerning complex geometries,
the CPU time for the LBM first decreased with
increasing complexity of the obstacle structure
(e.g. the flow simulation through a porous
structure as presented in Fig. 8) and become
almost independent from it for highly complex

h)
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structures. In summary, the LBM method
strengthens the often stressed opinion that this
method is competitive with respect to the
application of CFD especially for problems
involving complex geometries such as porous
media.

The next step in research in this area is to
measure the performance of LBM model against
exoeriment.

{e)
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Fig.6 One period of vortex shedding behind a square obstacle at R*80
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Fig. 7 Obstacle structure with increasing complexity
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Fig. 8 Flow through 2D porous media
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