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Abstract
An integrated approach between a method of steepest ascent and Simulated Annealing is set up to

find optimum settings when the process yield is simulated by the surface of a continuously stirred tank

reactor (CSTR) with different levels of random variation (noise) added. The effects of different

choices of parameters for the integrated approach. on different performance measures. are

investigated. These performance achievements consist of Taguchi 's the larger the better, minimax and

mean squared error measures. The approach did not seem sensitive to the parameter choices. within

reasonable l imits. This approach with the preferable levels of parameters is then compared with the

conventional method of steepest ascent. The results suggest that the method of steepest ascent seems

to be the most efficient on the CSTR surface at the lower levels of noise. However, the integrated

approach with the Simulated Annealing element works well rvhen the standard deviation of the noise

is at higher levels. On the average, the standard deviation ofthe greatest actual concentration ofthe

product and percentage of sequences ended at the optimum from the integrated algorithm. However, it

needs more runs, on average, to converge to the optimum.
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1. Introduction
The steepest ascent procedure, proposed by

Box and Wi lson [1] ,  has been widely used in the
area of Response Surface Methodology (RSM).
The objective of the RSM is to describe how the
response of a process varies with changes in k
process variables [2]. The process variables
determined wil l depend on the specific f ield of
the application. Most industrial processes have
some process var iables.  For  exarnple,  a response
in a chemical reactor rnight be concenlration of
product and the process variables affecting this

concentration might be temperature and
pressure of a chemical plant [3]. The process

variables such as speed of lathe and advance of
cutting tool in machining can be adjusted by
plant operators or by automatic control
mechanisms to enhance the elfciency of the
machine. Care must be taken to operate
industrial processes r.vithin safe l imits, but
optirnal conditions are rarely attained and
increased international competition means that

deviations from the optimum can have serious
f inancia l  consequences.  In  many cases the
optimum changes rvith time and there is a need
for a routine rnode of operation to ensure that
the process always operates at optimal or near-
opt imal  condi t ions.

On the theory and practice of RSM, it is

assumed that the mean response (7) is related to
values of the process variables (6t, 12,. ., 6r.) bV
an unknown function -f The functional
relationship between the mean response and ft

process variables can be written as ? : f(e), if E
denotes a column vector with elements f1, f i,
..., f i . Estimation of such surfaces, and hence
identification of near optimal settings for
process variables is an important practical issue
with interesting theoretical aspects. The
procedure begins with a factorial experiment
around the prevail ing operating conditions. A
sequence of f irst order models and line searches
are justif ied on the basis that such a plane would
be fitted well as a local approximation to the
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true response [a]. The estimated coefficients for
the first order model are determined using the
principles ofleast squares. A sequence ofruns is
carried out by moving in the direction of
steepest ascent. When curvature is detected,
another factorial experiment is conducted. This
is used either to estimate the position of the
optimum or to specifu a new direction of
steepest ascent.

There is much current interest in
optimisation methods with a stochastic element,
such as Genetic Algorithms (GA) and Simulated
Annealing (SA). Holland [5] introduced the
genetic algorithm for finding the global
maximum on a hypersurface [6]. The genetic
algorithm (GA) is a set of rules for searching
large solution spaces in a manner similar to
natural selection in biological evolution.
Solutions with desirable characteristics are given
a higher probability of being parents for the next
generation and will cross their components to
offspring, with a possible chance of mutation
[7]. The essential parameters are: the number of
design points tried initially (population size);
length of chromosome, used to code the
coordinates of the point, which corresponds to
the resolution; probability of crossover;
probability of mutation.

A recent study by Luangpaiboon et al. [8]
compared a modified simplex method (MSM)
by Nelder and Mead [9] and a genetic algorithm
for a variety of response surfaces and levels of
measurement noise. The former is more efficient
if the process noise is negligible but the GA is
more robust to process noise. The GA appears to
work well in the area of the RSM. Flowever,
high variability of the GA when applied to on-
line optimisation could be a serious
disadvantage [0]. This paper proposes a
preliminary study of an application of an
integrated approach, Simulated Annealing, on a
path of steepest ascent. Simulated Annealing has
been used in an interesting analogy between
problems in statistical mechanics and
optimisation. Its properties expose useful
information and overcome the large and noisy
systems I l].

The aim of this paper is to investigate the
performance of the integrated approach for the
process optimisation, and how it depends on the
parameter choices. A simulation study is based
on the function of three process variables with
different levels ofnoise. The functions represent
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response surfaces of yields of the continuous
stirred tank reactor. The objective of using the
integrated approach is to find the values of the
process variables which give the greatest yield,
and to find these values with a minimum
number of process runs at sub-optimal
conditions. The integrated approach parameters
are varied according to a factorial design. The
dependent variable is some measure of
performance of replicate trials of the integrated
approach. The measures considered are:
minimum of the maximum yields of all the
trials; Taguchi's'the larger the better' signalto
noise ratio calculated from the maximum yields
of all the trials and the mean squared of error
(MSE). Conclusions are drawn, and practical
recommendations are made.

2. Related Methods
2.1 Method of Steepest Ascent

The procedure of steepest ascent is that a
hyperplane is fitted to the results from the initial
2' designs. The direction of steepest ascent on
the hyperplane is then determined by using
principles of least squares and experimental
designs. The next run is carried out at a point
which is some fixed distance in this direction
and further runs are carried out by continuing in
this direction until no further increase in yield is
noted. When the response first decreases another
2'design is carried out, centred on the preceding
design point. A new direction ofsteepest ascent
is estimated from this latest experiment.
Provided at least one of the coefficients of the
hyperplane is statistical ly signifi cantly different
from zero, the search continues in this direction.
More details are referred to in many statistical
texts, for example fl21 and [2]. Once the first
order model is determined to be inadequate, the
area of optimum is identified via a finishing
strategy [3].

2.2 Simulated Annealing
Simulated Annealing has been derived from

an interesting analogy between problems in
statistical mechanics and multivariate or
combinatorial optimisation [1 I ]. This algorithm
is a set of rules for searching large solution
spaces in a manner that mimics the annealing
process of metals. The algorithm simulates the
behaviour of an ensemble of atoms in
equilibrium at a given finite temperature [4]
and its original framework can be traced to



Metropolis et al. [15]. This algorithm has been
regularly used in global function optimisation
and statistical applications.

ln case of maximisation the procedures of
this algorithm start at a corresponding init ial
value of the objective function, y6. The new
objective value, y1, wil l be then determined. The
new solution wil l be unconditionally accepted if
its objective value is improved and the process
regularly continues. Otherwise the difference or

size of increment in objective values, Ay, is
calculated and with an auxil iary experiment the
new solution (y1) would be accepted with

probabil ify P(Ay) given by:

P(Av)  :  1 ,  i f  Ay:  ]1- !e> 0 or

P(Ay) : EXP(cy6sAY) if AY < 0,

where c and g are an arbitrary positive number
and a negative number respectively. A random
number, x, is generated from the uniform
distribution on (0, I ) and is compared to

EXP(cy68Ay). If x < EXP(cyOsAy), then the new

solution is accepted. Otherwise it is rejected.
This stochastic element is from Monte Carlo

sampl ing.  l t  occasional ly  a l lows the a lgor i thm to

accept a new solutions to the problems, which

deteriorate rather than improve the objective
function value. However, Simulated Annealing
includes a number of parameters including g and

c, which have been claimed to affect the

efficiency of the algorithm.

3. Continuous Stirred Tank Reactor
A diagrammatic representation of a single

continuous stirred tank reactor (CSTR) is shown

in Figure L A stream rich in chemical A of feed

concentration C11-1 is flowing into a reactor at a

feed flow rale of F,,,,,. and a feed temperature of

Tp,,1. FIC is a flow indicator controller, TIC is a

temperature indicator controller, T6iin;1 is the

temperature ofthe coolant to the heat exchanger,

F6 is the flow of cooling water and T6 is the

temperature of coolant. S is a controlled switch.

LI and FI are level and flow indicators

respectively [ 0]. The reaction in the CSTR is an

irreversible, f irst order exothermic reaction. The
proportion of chemical A is converted to a

desired product B, which, in turn, at high

temperature undergoes further reaction and is

decomposed to form an undesired by-product C:
A to B to C. The stated objective is to explore
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the operating conditions corresponding to higher
concentration of product.

It is also assumed that the level is perfectly
controlled, so the volume of material in the tank
is constant. This implies that the flow out equals
the flow in. The temperature in the reactor may
be regulated by manipulating the flow rate of the
cooling water (F6) in the heat exchanger. A
mechanistic model adequately accounting for
the system under study is suggested purely by
physical consideration and the dynamics of the
system can then be described by the following
set of ordinary, non-linear differential equations.

,+ =-Kone' ,  L , IRr)Cr l t  + F, , , r (cn, , , . , -Cu)

rff = x"put, R.)Cl, - Kol E"/Rncav + Ft,,t(In)

O r, # 
= ( Ni o) K,,,er F 1 | RrtC.[ + (- N ! an) Koae\ t,' R7 )C uV +

p c  , F r - t ( T , . ,  
-  T )  +  P c  , F ^ ( T n  

-  T )

. ,  dTu
p ,  , l ' *  a i  

. =  p c  r F a t T  
-  T R  )  +  U A I T ,  -  T n )

. .  d l "
p , , I - ,  

i ,  
=  p c , 1 , 1 T . , , , , - T ,  t + U A ( T n  - T ,  )

The flow of cooling water, F,, is
manipulated by the following control algorithm:
F, : TsLas - K, (7, -I). The five process state
variables, which depend on time t, are the

concentration of reactant Ce, the concentratlon
of product Cs, the reactor temperature T, the
temperature of the recycled flow Tp and the
temperature of the coolant leaving the heat
exchanger (T6). Init ial conditions of process

state variables, values of the parameters of the
process and parameters of controller are given in

Tables l-3 respectively. The time constant of the

system is such that equil ibrium is attained after
approximately ten minutes.

The integrated approach was determined
for the case of the response surface of the
simulated continuous stirred tank reactor. There

are three process variables which can be set to

any chosen values within safe l imits. These

process variables related to the feed flow are

shown in Table 4. This choice of relative ranges

for the process variables was based on the
chemist's fundamental investigations. The
response variable ofthe process is defined to be
the concentration of the desired product B, C3.
The typical three-dimensional response surfaces,
with C,a11n1 fixed at I and 15, are shown in
Figures 2(a), (b).



4. Details of the Integrated Approach
Parameters of Method of Steepest Ascent: 8
unit3 of the volume of the factorial design; 1 unit
ofthe step lenglh; l0% ofthe significance level
for tests of significance of slopes
Parameters of Simulated Annealing: g; c
Step I; Perform a 2'design at a random centre
point.
Step 2'. Fit a regression plane to the data so that
the fitted model has the form

i : p, * p,76, + F rFr,,t + p 3Ce61.

Step 3: Test whether there is evidence that either

F ,, F z or f 3 is different from zero at the

l0% level  of  s igni f icance.  r .e

exceed t". 0 05? , where v is the number of degree
of freedom, one for the first experiment
increasing by eight for each replicated
experiment.
Step 4a: If the result is significant, move one
step along the path of steepest ascent, that is
along the line whose formula in parametric form
is

( t i  , , tF  r f  F  ) , ( - co< fcoo ) ,
and determine the yield. The step length is

A ]
+ A  t A  + 1 1  + A

Otherwise go to Step 4b
Step 4b: Test whether there is evidence that the
interaction or curvature check is significant, If
the check is significant, go to Step 6. Otherwise,
replicate the design and return to Step 2.
Step 5a; lfthe current yield (y1) is greater than
the previous yield (ys) or the stochastic element
meets the requirement of acceptance, continue
by moving another step in the same direction.
Step 5b: If the yield is not greater than the
previous one, test the element as follows;

Randomly generate a random variable,
x, - Uniform (0, I ).

If x < P(AY) = EXP(cYosAY), where AY:
yr-yo, then go to Step 54. Otherwise return to the
preceding point then carry out another 2' design
and return to Step 2. If the first step leads to a
yield less than the yields obtained in the
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preceding 2' designs then replicate the design
and go to Step 2.
Step 6:Implement the finishing strategy (see

below).

Finishing Strotegy
If there is no justification for any

assumptions about the shape of the response
surface, the use of the finishing strategy based
on a hexagon design is recommended [13].
However, if a response surface can reasonably
be assumed to be a curved ridge (from the
earlier phase of study), the finishing strategy
based on a hexagon design is preferable. The
central composite design (CCD) is centred on
the point (71^1p, F14p, Cor,,t), and consists of l4

des ign  po in t s  a t  ( t l ,  t l ,  t l ) ,  ( tY23 ,0 ,0 ) ,  ( 0 ,

46 ,0), (0, 0, *try ) plus six replicates at
(0, 0, 0); where (0, 0, 0) now corresponds to the
point (T1,np, F1.1r, C4,1p).Fit a quadratic surface

y = 
F o+ F 1T1in1+ p zF1,,f B tC,t,i,,+ B +Tri,t2

+ p 5F 1i,,2+ p oC,,t(in)2* F tTr,,tF,,nt
+ F sTriaCeri,t+ B tF14C4*1 (l)

Find the maximum as the solution of
dyldT1,,1 :0, )yldF1,,1: 0, )yldCor*) -- 0
and calf this (71i,1p, F1*1p, C,t6,1). lf (T(*)e,.F!!!!,

C11,an) is within the cube with vertices (|y23 ,

*lz, , r{T ), then (71,,1n, F61n, C4.1n) is
taken as the optimum operating condition. If
(T1iar, F1,,1p, C4a) is not within this volume'
another CCD is carried out, centred on the point
from the first CCD with greatest yield. A
quadratic surface is now fitted to all the data. If
the maximum is outside the volume of the union
of the two containing cubes, the ridge is
searched for the greatest value of the function,
using a step length of 0.05 (from additional
experiments by using fewer runs).

4.1 Statistical Experimental Design
The two parameters, g and c, of the

integrated approach are varied in a factoria,
design. Bohachevsky et al. discussed the proper
levels of g and c on various functions [4]. In
this paper we selected the levels based on these
tested functions and they also covered the range
of values commonly found in the literature: [-
0 . 5 ,  - 1 ,  - 1 . 5 1  a n d  [ 4 . 5 , 6 . 5 ]  f o r  g  a n d  c

t n R
L t a n

; )  ; 2  ; )  ^ )  ; )
, b + a + E , u + t \

4 J



respectively. Two replicates were performed for
each ofthe 6 sets ofparameter values. Each trial
used the random init ial design points, evenly
distributed about edges. furthest from the
optimum, of the safe region of operation. The
comparisons were made for four different levels
of measurement noise added to the response:
independent and normally distributed with mean
of zero and standard deviations (S.D.) of 0.5,
1.0, 2.0 and 3.0 respectively. The following
performance measures were considered.

4.2 Performance Measures
The three performance measures depend

only on the yield at the end ofeach trial.

4.2.1 Taguchi's Measure of Performance
(Yrt\

Taguchi t l6l proposed 'the larger the
belter' measure'.

{ -  . ,  , ,
f  | :  - l U  l o g (  L (  t / y 1 - ) / n ) .

in which y; represents the highest yield at the
end of trial i, and n is the number of trials.

4.2.2 Minimax Performance Measure
(Yn)

Another measure of the performance of the
integrated approach is the minimum of the
highest yields at the end of the trials. In the case
of ten trials, for example,

I12 : Min (yt, lz, ..., yrc).

)27-2. is to be maximized.

4.2.3 Mean Squared Error Performance
Measure (Yr.:)

It is natural to consider combining bias and
variance through the mean squared error (MSE)
criterion [7]. In this case, for example,

Yt-. : l(ulu- T)2 + too2l

in which rlls represents the average of actual
responses, T represents the target value of
response and coo is the standard deviation of
actual responses. 16 to be maximized.
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4.3 Preferred Levels of Parameters of the
Integrated Approach

A typical table of results is given in Table 5
and the analysis of variance and the main effect
plots with the error standard deviation of 1.0 for
Yn is shown in Table 6 and Figure 3,
respectively.

On the early phase of the parameter study,
the main finding was that the probability of g for
Y11 and )'6 should be high (-0.5). This leads to
higher average and lower level of variance of
actual responses. No other statistically
significant results were found. The preferred
levels of g and c could be high (-0.5 or -1.0) and
low (4.5), respectively. Results are included for
all cases in which the ANOVA p-values, for
main effects and interaction. are less than 0.1 in
Table 7.

5. Results and Discussions of the
Integrated Approach and the
Conventional Method

The comparison between the integrated
approach, with the preferred levels of the
parameters, and the conventional method of
steepest ascent is made with the measurement
noise on the concentration ofthe desired product
B (normal and independent with zero mean and
standard deviation of 0.5, 1,2 and 3). There are
four performance measures over 100 runs in this
study. The first and second measures are an
average and a standard deviation of greatest
actual concentration of the desired product B
from the finishing strategy respectively. The
third is an average number of runs until the
algorithms converge. Finally, the percentage of
sequences that ended at the optimum is shown.

The process settings for all the scenarios are
given in Table 8. The performance of the
method of steepest ascent and the integrated
approach can be explained by the box plots in
Figure 4 when the error standard deviation was
2.0 and 3.0. The values of average actual
concentrations for both noise levels of the
integrated approach seem to be better when
compared in this manner. Note that since the
efficiency of these algorithms is related to their
initial points, it would be helpful to set random
starting points for all algorithms. These results
show that the performance of the integrated
approach under the stochastic element of
Simulated Annealing seems superior to the
algorithm based on the method of steepest



ascent at the higher levels of error standard
deviations I I 8].

Moreover, the percentage of sequences
ended at the optimum or near optimum of radius
equall ing two from the integrated approach is
better at higher levels oferror standard deviation
al though a Brealcr  nrrmber of  r rurs u ere requi red
to converge to the optimum. As stated earlier,
the function of this research was restricted to
three process variables Consequently,

comparisons and conclusions between the two
algorithms may not be valid for other families of
functions. Other stochastic approaches could be
extended to the method based on conventional
factorial designs to increase its performance,
especially in terms of speed of convergence,
when the error standard deviation is at higher
levels. Moreover, further research wil l look at
the effect of the ranges of parameters of
Simulated Annealing. This may enhance the
performance of the proposed integrated
algorithrn.
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Figure 4 Two Independent Box Plot Comparisons Showing the Performance (Product Concentration)
of the Method of Steepest Ascent and the Integrated Approach when the Error Standard Deviation was
2.0 and 3.0 Respectively.

Table 2 Parameters of the Process

Table 3 Parameters of Controller

Table 1 Process State Variables and their Initial Conditions

Variables Description Unit Value
Cr
Cs
T
Tp
Tc

Concentration of reactant A
Concentration of product B

Reactor temperature
Temperature of the recycled flow

Tempelature of the coolant

mole/m'
mole/m3

K
K
K

741.9
1609
341.4
J J J . J

330.5

Parameters Description Unit Value
V

Koe
En
R

Koe
Ee

Y

c"
-AHn,q
-AHns

Fn
U
A
V6
Vn

T",,.,

Volume of the CSTR
Rate coefficient (A to B)

Activation energy (A to B)
Gas constant

Rate coefficient (B to C)
Activation energy (B to C)

Process fluid density
Process fluid heat capacity
Heat of reaction (A to B)
Heat of reaction (B to C)

Feed flow rate of recycled stream
Heat transfer coefficient

Area, heat exchanger(HX)
Volume, cooling water in HX
Volume, process stream in HX

Feed temperature of cooling stream

m-t

mole/s
J

J/mole/K
mole/s

J
kg/m3
Ilkg/K
J/mole
J/mole
mt/s

Wm2K
m'

1m
Im

K

3
7 . l 0 r r
90000
8.3  l4
g . l 0 r r
100000
1000
4180
80000
40000
0.025
3000
r00
0.2
0.2
293

Parameters Description Unit
T.
Kc

Tnras

Required temperature
Controller gain

Offset

K
mt/sK
mt/s
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Process Variables Descript ion Uni t Feasible Resion
I (,r)

C,,,,

Feed temperature of reactant A
Feed flow rate ofreactant A
Concentration of reactant A

,  ce ls ius
litre/minute
mole/l itre

60- r 00
l - 1 0
l - 1 5
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Table 4 Process Variables of Feed Flow and their Safe Limits

Table 6 ANOVA for )'71 of the Integrated Approach with the Error Standard Deviation of 1.0

Source Seo SS DF Adi SS Adi  MS F o-value
g

c

Error
Total

0
0

0s786
I  \ 6 1 2
36672
39766
5 3 8 3 6

0
0
I

2
I
2
6
il

0.05786
0 . 7  r 6 t 2
0.36672
0.39166

0.02893
0 . t  t 6 t 2
0 .  I  8336
0.06628

0.44
r  0 . 8 1

0.06628

0.665
0 . 0 r 7
0 . 1 4 1

Table 7 The Preferred Levels of the Parameters of the Integrated Approach

S.D Preferred Level Over all F-sisnificant and o-Value
q c Yr.z r 1 4

0.5 -0 .5 0 .081 0.017
1 . 0 1 . 0 4 .5 0 .0 r7

4.5 0 .048
r .  - 0 .5 4 .5 0.040

) n

J . ( '

Table 5 Results for the Integrated Approach with the Error Standard Deviation of 1.0

g c Hiehest actual vields calculated bv performance measures (Replicate I f t.t Yt.z Y, "

Hiehest actual yields calculated by performance measures (Replicate 2)

1 . 5 63.7 53.2 61 .6 59.4 6t  .9

60.6 58.8 56.3 60.5 56.1

5 2 . 6 ' 6 4 . 5  4 5 . 1  5 5 . 9  6 1 . t

59 .1  57 .5  62 .6  58 .3  66 .2

3 ) . 1

3  5 . 5
45 .1

5 6 . 1

2 6 1

240

t . 5 6.5 41  50  56 .8

5 0.9 6s .1 58.1

55.7 68.1 53.1 54.1
67.1  74 .2  55 .5  69 .1

60 51  .2  56 .8
53.4 51.9 58.7

34.8

3 5 . 5

41
50.9

370
202

I 4 . 5 60 .6  11 .1  10 .1

62 58.8 60

6 3 . 6  6 5 . 1  5 9 . 5
63.3  66 .5  58 .1

63 .2 60.9 65 .7 53 .  1
62.2  72 .6  6 r .5  62 .6

35.9
35.9

53. r
5 8 .  I

141

t54

I 6.5 56  11  .6  60

65 .8  55 .8  44 .4

45.1 10.2 56.4 55.6 5s.s 54.2 58.7
51.4  55 .4  5 t .4  63 .6  50 .4  55 .2  58

3 5 . 1
34.8

45.7
44.4

283
371

-0.5 4 .5 5 9 . 1  1 3 . 6  5 7  . 9

s9 64.7 63.4

68.4 62.1 60 56

62.s 55.6 59.3 62.1

59 .4  56 .8  55 .9

5 7  . 5  6 t . 3  5 0 . 5

35.6

35.4

5 5 . 9

50 .5

204
a  A a

-0 .56 .5 72.6

5  5 . 5

60.2
55.4

56.2 53.6 51.9

62 .8  55  71  .7

59 .8  61 .6

53 .1  42 .4

69.t  49.7 52.1
62.2 66.4 59.2

3  5 . 3
3 5 . 1

49.1

42.4

251

285

4 8
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Table 8 Four The measurements over 100 runs

S .D .
of

Noise

Algorithm Average
Greatest Actual
Concentration

S .D .  o f
Greatest Actual
Concentration

Average
Number of

" -B"ru-r"""""
J - l . l

3 8 . t 1
33.15
34.9
32.6
34.15
3 1 . 3 5
J  J . J

Percentage
(ending at

eP-!!,nryD
0.85
0.85
0.90
0.90
0.85
0.90
0.80
0.95

0.5

1 . 0

2 .0

3 . 0

Steepest Ascenl
Integrated

Steepest Ascent
Integrated

Steepest Ascent
Integrated

Steepest Ascent
Integrated

59.2011
56.1053
51.4528
5  7 .0683
59.3067
6 r . 1 0 6 9
60.0803
61.2616

1.6823
10.2118
7 .3680
6 .8899
9 .5  5  68
7 . 1 1 6 6
7.7723
6.3431


