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Abstract

An integrated approach between a method of steepest ascent and Simulated Annealing is set up to
find optimum settings when the process yield is simulated by the surface of a continuously stirred tank
reactor (CSTR) with different levels of random variation (noise) added. The effects of different
choices of parameters for the integrated approach, on different performance measures, are
investigated. These performance achievements consist of Taguchi ’s the larger the better, minimax and
mean squared error measures. The approach did not seem sensitive to the parameter choices, within
reasonable limits. This approach with the preferable levels of parameters is then compared with the
conventional method of steepest ascent. The results suggest that the method of steepest ascent seems
to be the most efficient on the CSTR surface at the lower levels of noise. However, the integrated
approach with the Simulated Annealing element works well when the standard deviation of the noise
is at higher levels. On the average, the standard deviation of the greatest actual concentration of the
product and percentage of sequences ended at the optimum from the integrated algorithm. However, it
needs more runs, on average, to converge to the optimum.
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1. Introduction deviations from the optimum can have serious
The steepest ascent procedure, proposed by financial consequences. In many cases the
Box and Wilson [1], has been widely used in the optimum changes with time and there is a need
area of Response Surface Methodology (RSM). for a routine mode of operation to ensure that
The objective of the RSM is to describe how the the process atways operates at optimal or near-
response of a process varies with changes in k& optimal conditions.
process variables [2]. The process variables On the theory and practice of RSM, it is
determined will depend on the specific field of assumed that the mean response (7) is related to
the application. Most industrial processes have values of the process variables (&, &, ..., &) by
some process variables. For example, a response an unknown function f. The functional
in a chemical reactor might be concentration of relationship between the mean response and &
product and the process variables affecting this process variables can be written as 1= (&), if §
concentration might be temperature and denotes a column vector with elements &, &,
pressure of a chemical plant [3]. The process ..., &. Estimation of such surfaces, and hence
variables such as speed of lathe and advance of —identification of near optimal settings for
cutting tool in machining can be adjusted by process variables is an important practical issue
plant operators or by automatic control with interesting theoretical aspects. The
mechanisms to enhance the efficiency of the procedure begins with a factorial experiment
machine. Care must be taken to operate  around the prevailing operating conditions. A
industrial processes within safe limits, but sequence of first order models and line searches
optimal conditions are rarely attained and are justified on the basis that such a plane would
increased international competition means that be fitted well as a local approximation to the

40



Thammasat Int. J. Sc. Tech., Vol. 8, No. 3, July-September 2003

true response [4]. The estimated coefficients for
the first order model are determined using the
principles of least squares. A sequence of runs is
carried out by moving in the direction of
steepest ascent. When curvature is detected,
another factorial experiment is conducted. This
is used either to estimate the position of the
optimum or to specify a new direction of
steepest ascent.

There is much current interest in
optimisation methods with a stochastic element,
such as Genetic Algorithms (GA) and Simulated
Annealing (SA). Holland [5] introduced the
genetic algorithm for finding the global
maximum on a hypersurface [6]. The genetic
algorithm (GA) is a set of rules for searching
large solution spaces in a manner similar to
natural selection in biological evolution.
Solutions with desirable characteristics are given
a higher probability of being parents for the next
generation and will cross their components to
offspring, with a possible chance of mutation
[7]. The essential parameters are: the number of
design points tried initially (population size);
length of chromosome, used to code the
coordinates of the point, which corresponds to
the resolution; probability of crossover;
probability of mutation.

A recent study by Luangpaiboon et al. [8]
compared a modified simplex method (MSM)
by Nelder and Mead [9] and a genetic algorithm
for a variety of response surfaces and levels of
measurement noise. The former is more efficient
if the process noise is negligible but the GA is
more robust to process noise. The GA appears to
work well in the area of the RSM. However,
high variability of the GA when applied to on-
line optimisation could be a serious
disadvantage [10]. This paper proposes a
preliminary study of an application of an
integrated approach, Simulated Annealing, on a
path of steepest ascent. Simulated Annealing has
been used in an interesting analogy between
problems in statistical mechanics and
optimisation. Its properties expose useful
information and overcome the large and noisy
systems [11].

The aim of this paper is to investigate the
performance of the integrated approach for the
process optimisation, and how it depends on the
parameter choices. A simulation study is based
on the function of three process variables with
different levels of noise. The functions represent

41

response surfaces of yields of the continuous
stirred tank reactor. The objective of using the
integrated approach is to find the values of the
process variables which give the greatest yield,
and to find these values with a minimum
number of process runs at sub-optimal
conditions. The integrated approach parameters
are varied according to a factorial design. The

dependent variable is some measure of
performance of replicate trials of the integrated
approach. The measures considered are:

minimum of the maximum yields of all the
trials; Taguchi’s ‘the larger the better’ signal to
noise ratio calculated from the maximum yields
of all the trials and the mean squared of error
(MSE). Conclusions are drawn, and practical
recommendations are made.

2. Related Methods
2.1 Method of Steepest Ascent

The procedure of steepest ascent is that a
hyperplane is fitted to the results from the initial
2% designs. The direction of steepest ascent on
the hyperplane is then determined by using
principles of least squares and experimental
designs. The next run is carried out at a point
which is some fixed distance in this direction
and further runs are carried out by continuing in
this direction until no further increase in yield is
noted. When the response first decreases another
2* design is carried out, centred on the preceding
design point. A new direction of steepest ascent
is estimated from this latest experiment.
Provided at least one of the coefficients of the
hyperplane is statistically significantly different
from zero, the search continues in this direction.
More details are referred to in many statistical
texts, for example [12] and [2]. Once the first
order model is determined to be inadequate, the
area of optimum is identified via a finishing
strategy [13].

2.2 Simulated Annealing

Simulated Annealing has been derived from
an interesting analogy between problems in
statistical mechanics and multivariate or
combinatorial optimisation [11]. This algorithm
is a set of rules for searching large solution
spaces in a manner that mimics the annealing
process of metals. The algorithm simulates the
behaviour of an ensemble of atoms in
equilibrium at a given finite temperature [14]
and its original framework can be traced to
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Metropolis et al. [15]. This algorithm has been
regularly used in global function optimisation
and statistical applications.

In case of maximisation the procedures of
this algorithm start at a corresponding initial
value of the objective function, y;. The new
objective value, yi, will be then determined. The
new solution will be unconditionally accepted if
its objective value is improved and the process
regularly continues. Otherwise the difference or
size of increment in objective values, Ay, is
calculated and with an auxiliary experiment the
new solution (y;) would be accepted with

probability P(Ay) given by:

P(Ay) =1,ifAy=y;-yo=0or

P(Ay) =EXP(cyfAy) if Ay <0,

where ¢ and g are an arbitrary positive number
and a negative number respectively. A random
number, x, is generated from the uniform
distribution on (0, 1) and is compared to
EXP(cyfAy). If x < EXP(cy®Ay), then the new
solution is accepted. Otherwise it is rejected.
This stochastic element is from Monte Carlo
sampling. It occasionally allows the algorithm to
accept a new solutions to the problems, which
deteriorate rather than improve the objective
function value. However, Simulated Annealing
includes a number of parameters including g and
¢, which have been claimed to affect the
efficiency of the algorithm.

3. Continuous Stirred Tank Reactor

A diagrammatic representation of a single
continuous stirred tank reactor (CSTR) is shown
in Figure 1. A stream rich in chemical A of feed
concentration Cyyy is flowing into a reactor at a
feed flow rate of Fy,,, and a feed temperature of
Ty FIC is a flow indicator controller, TIC is a
temperature indicator controller, Tcun 1s the
temperature of the coolant to the heat exchanger,
Fc is the flow of cooling water and Tc is the
temperature of coolant. S is a controlled switch.
LI and FI are level and flow indicators
respectively [10]. The reaction in the CSTR is an
irreversible, first order exothermic reaction. The
proportion of chemical A is converted to a
desired product B, which, in turn, at high
temperature undergoes further reaction and is
decomposed to form an undesired by-product C:
A to B to C. The stated objective is to explore
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the operating conditions corresponding to higher
concentration of product.

It is also assumed that the level is perfectly
controlled, so the volume of material in the tank
is constant. This implies that the flow out equals
the flow in. The temperature in the reactor may
be regulated by manipulating the flow rate of the
cooling water (Fc) in the heat exchanger. A
mechanistic model adequately -accounting for
the system under study is suggested purely by
physical consideration and the dynamics of the
system can then be described by the following
set of ordinary, non-linear differential equations.

dC
D = K@t ICY 4 Fo(Caiy = C)
’dq E L IRT 7 E4/R 4
V o =K, @-ERDC Y = K e £ RDCV + F (—C)

dr
pcPV?jtv = (~AH K, e P ADC Y + (—AH gy ) K pge 5 ' RDC Y +
pCpF(m)(T(ln) - T) + pc,.FR(TR - T)

dr,
szchR(T—TR)+UA(T( -Ty)

. dr. 3
pe,Ve T; = p¢ , Fo (T, = Te ) + UA(T, = T¢)

The flow of cooling water, F, is
manipulated by the following control algorithm:
F. = Tyus - K. (T, -T). The five process state
variables, which depend on time t, are the
concentration of reactant C,, the concentration
of product Cg, the reactor temperature T, the
temperature of the recycled flow Ty and the
temperature of the coolant leaving the heat
exchanger (T¢). Initial conditions of process
state variables, values of the parameters of the
process and parameters of controller are given in
Tables 1-3 respectively. The time constant of the
system is such that equilibrium is attained after
approximately ten minutes.

The integrated approach was determined
for the case of the response surface of the
simulated continuous stirred tank reactor. There
are three process variables which can be set to
any chosen values within safe limits. These
process variables related to the feed flow are
shown in Table 4. This choice of relative ranges
for the process variables was based on the
chemist’s fundamental investigations. The
response variable of the process is defined to be
the concentration of the desired product B, Cj.
The typical three-dimensional response surfaces,
with Cyu,y fixed at 1 and 15, are shown in
Figures 2(a), (b).
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4. Details of the Integrated Approach
Parameters of Method of Steepest Ascent:. 8
unit’ of the volume of the factorial design; 1 unit
of the step length; 10% of the significance level
for tests of significance of slopes

Parameters of Simulated Annealing: g; ¢

Step I: Perform a 2’ design at a random centre
point.

Step 2: Fit a regression plane to the data so that
the fitted model! has the form

y=L o+ L 1T+ B 2Fum + B 3Cam.

Step 3: Test whether there is evidence that either
B, P.or fsis different from zero at the

s,

JC, MSE
exceed £, o057, where v is the number of degree
of freedom, one for the first experiment
increasing by eight for each replicated
experiment.
Step 4a: If the result is significant, move one
step along the path of steepest ascent, that is
along the line whose formula in parametric form
is

10% level of significance, i.e. does |

(f,é 1 f,é ) fﬁ 3), (ro<f<e0),
and determine the yield. The step length is

[ & A& A 1
BB B BB BB B

Otherwise go to Step 4b.

Step 4b: Test whether there is evidence that the
interaction or curvature check is significant. If
the check is significant, go to Step 6. Otherwise,
replicate the design and return to Step 2.

Step 3a: If the current yield (yi) is greater than
the previous yield (yo) or the stochastic element
meets the requirement of acceptance, continue
by moving another step in the same direction.
Step 5b: If the yield is not greater than the
previous one, test the element as follows:

Randomly generate a random variable,
x, ~ Uniform (0, 1).

If x < P(Ay) = EXP(cy*Ay), where Ay =
y1-Yo. then go to Step 5a. Otherwise return to the
preceding point then carry out another 2" design
and return to Step 2. If the first step leads to a
yield less than the yields obtained in the
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preceding 2° designs then replicate the design
and go to Step 2.

Step 6: Implement the finishing strategy (see
below).

Finishing Strategy

If there is no justification for any
assumptions about the shape of the response
surface, the use of the finishing strategy based
on a hexagon design is recommended [13].
However, if a response surface can reasonably
be assumed to be a curved ridge (from the
earlier phase of study), the finishing strategy
based on a hexagon design is preferable. The
central composite design (CCD) is centred on
the point (Tyip, Finps Cagnyp), and consists of 14

design points at (x1, +1, +1), (V23 , 0, 0), (0,

+4/23 0), (0, 0, +3/23 ) plus six replicates at
(0, 0, 0); where (0, 0, 0) now corresponds to the
point (Tpup, Finp, Cagnp)- Fit a quadratic surface

y=Lot 1 Tim+ BoFumt B3Caam™ B Ty
+ B sFu+ B 6Cutin)+ B 7T i F iy

+ B 8T Cagmt B oF (i) Cafing )

Find the maximum as the solution of

OV OTuy =0, OV OFpy =0, Oy OCym =0
and call this (T Funps Cagmp)e I (Timps Finps

Cumyp) is within the cube with vertices =*¥23,

ii/2-3, i@)a then (T(m)p, F(m)p: CA(m)p) is
taken as the optimum operating condition. If
(Trimgps Frimps Cagmp) 1s not within this volume,
another CCD is carried out, centred on the point
from the first CCD with greatest yield. A
quadratic surface is now fitted to all the data. If
the maximum is outside the volume of the union
of the two containing cubes, the ridge is
searched for the greatest value of the function,
using a step length of 0.05 (from additional
experiments by using fewer runs).

4.1 Statistical Experimental Design

The two parameters, g and ¢, of the
integrated approach are varied in a factorial
design. Bohachevsky et al. discussed the proper
levels of g and ¢ on various functions [14]. In
this paper we selected the levels based on these
tested functions and they also covered the range
of values commonly found in the literature: [-
0.5, -1, -1.5] and [4.5, 6.5] for g and ¢
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respectively. Two replicates were performed for
each of the 6 sets of parameter values. Each trial
used the random initial design points, evenly
distributed about edges, furthest from the
optimum, of the safe region of operation. The
comparisons were made for four different levels
of measurement noise added to the response:
independent and normally distributed with mean
of zero and standard deviations (5.D.) of 0.5,
1.0, 2.0 and 3.0 respectively. The following
performance measures were considered.

4.2 Performance Measures
The three performance measures depend
only on the yield at the end of each trial.

4.2.1 Taguchi’s Measure of Performance

(Yr)
Taguchi [16] proposed
better’ measure:

Y =-10 log (O (13))/n),

=l

‘the larger the

in which y, represents the highest yield at the
end of trial i, and # is the number of trials.

4.2.2 Minimax Performance Measure

(Yr)

Another measure of the performance of the
integrated approach is the minimum of the
highest yields at the end of the trials. In the case
of ten trials, for example,

YFZ = Mln ()/1,)/2, "'9y|0)'

Yi. is to be maximized.

4,2.3 Mean Squared Error Performance
Measure (Yg3)

It is natural to consider combining bias and
variance through the mean squared error (MSE)
criterion [17]. In this case, for example,

YI—3 = [((Du' T)z + C‘)cz]
in which o, represents the average of actual
responses, T represents the target value of

response and o, is the standard deviation of
actual responses. Yr3 to be maximized.
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4.3 Preferred Levels of Parameters of the
Integrated Approach

A typical table of results is given in Table 5
and the analysis of variance and the main effect
plots with the error standard deviation of 1.0 for
Y, is shown in Table 6 and Figure 3,
respectively.

On the early phase of the parameter study,
the main finding was that the probability of g for
Yy, and Yg should be high (-0.5). This leads to
higher average and lower level of variance of
actual responses. No other statistically
significant results were found. The preferred
levels of g and ¢ could be high (-0.5 or -1.0) and
low (4.5), respectively. Results are included for
all cases in which the ANOVA p-values, for
main effects and interaction, are less than 0.1 in
Table 7.

of the
the

5. Results and Discussions
Integrated Approach and
Conventional Method

The comparison between the integrated
approach, with the preferred levels of the
parameters, and the conventional method of
steepest ascent is made with the measurement
noise on the concentration of the desired product
B (normal and independent with zero mean and
standard deviation of 0.5, 1, 2 and 3). There are
four performance measures over 100 runs in this
study. The first and second measures are an
average and a standard deviation of greatest
actual concentration of the desired product B
from the finishing strategy respectively. The
third is an average number of runs until the
algorithms converge. Finally, the percentage of
sequences that ended at the optimum is shown.

The process settings for all the scenarios are
given in Table 8. The performance of the
method of steepest ascent and the integrated
approach can be explained by the box plots in
Figure 4 when the error standard deviation was
2.0 and 3.0. The values of average actual
concentrations for both noise levels of the
integrated approach seem to be better when
compared in this manner. Note that since the
efficiency of these algorithms is related to their
initial points, it would be helpful to set random
starting points for all algorithms. These results
show that the performance of the integrated
approach under the stochastic element of
Simulated Annealing seems superior to the
algorithm based on the method of steepest
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ascent at the higher levels of error standard
deviations [18].

Moreover, the percentage of sequences
ended at the optimum or near optimum of radius
equalling two from the integrated approach is
better at higher levels of error standard deviation
although a greater number of runs were required
to converge to the optimum. As stated earlier,
the function of this research was restricted to
three process variables.  Consequently,
comparisons and conclusions between the two
algorithms may not be valid for other families of
functions. Other stochastic approaches could be
extended to the method based on conventional
factorial designs to increase its performance,
especially in terms of speed of convergence,
when the error standard deviation is at higher
levels. Moreover, further research will look at
the effect of the ranges of parameters of
Simulated Annealing. This may enhance the
performance of the proposed integrated
algorithm.
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o |

Steepest Ascent Integrated Approach Steepest Ascent Integrated Approach

Figure 4 Two Independent Box Plot Comparisons Showing the Performance (Product Concentration)

of the Method of Steepest Ascent and the Integrated Approach when the Error Standard Deviation was
2.0 and 3.0 Respectively.

Table 1 Process State Variables and their Initial Conditions

Variables Description Unit Value
Ca Concentration of reactant A mole/m* 747.9
Cs Concentration of product B mole/m’ 1609
T Reactor temperature K 3414
Tr Temperature of the recycled flow K 3333
Tc Temperature of the coolant K 330.5

Table 2 Parameters of the Process

Parameters Description Unit Value
v Volume of the CSTR m’ 3
Koa Rate coefficient (A to B) mole/s 7.10"
Ea Activation energy (A to B) J 90000
R Gas constant J/mole/K 8.314
Kos Rate coefficient (B to C) mole/s 9.10"
Es Activation energy (B to C) J 100000
p Process fluid density kg/m’ 1000
Cp Process fluid heat capacity Jkg/K 4180
-AHga Heat of reaction (A to B) J/mole 80000
-AHgg Heat of reaction (B to C) J/mole 40000
Fr Feed flow rate of recycled stream m’/s 0.025
U Heat transfer coefficient W/m’K 3000
A Area, heat exchanger(HX) m’ 100
Ve Volume, cooling water in HX m’ 0.2
Vr Volume, process stream in HX m? 0.2
Ten) Feed temperature of cooling stream K 293

Table 3 Parameters of Controller

Parameters Description Unit
T, Required temperature K
K¢ Controller gain m’/sK
TBIAS Offset m3/s
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Table 4 Process Variables of Feed Flow and their Safe Limits

Process Variables Description Unit Feasible Region
T Feed temperature of reactant A celstus 60-100
Fpw Feed flow rate of reactant A litre/minute 1-10
Capmy Concentration of reactant A mole/litre 1-15

Table 5 Results for the Integrated Approach with the Error Standard Deviation of 1.0

Thammasat Int. J. Sc. Tech., Vol. 8, No. 3, July-September 2003

g | ¢ Highest actual yields calculated by performance measures (Replicate 1) Yio I Yio | Yia
Highest actual yields calculated by performance measures (Replicate 2)

-1.5(4.5| 63.7 532 676 594 679 52,6 645 451 559 61.1 |352|45.1]26]
606 588 563 605 561 591 575 626 583 662 |355]56.1]|240

-1.516.5| 47 50 56.8 557 687 53.1 541 60 572 568 |34.8] 47 {370
509 651 587 671 742 555 69.1 534 579 587 [35.5]50.9]202

-1 1457 606 71.1 707 636 651 595 632 609 657 53.1 |359153.1]141

62 58.8 60 633 665 581 622 726 615 626 {359]58.1|154

-1 16.5] 56 71.6 60 457 702 564 556 555 542 587 |35.1|45.7|283

658 558 444 574 554 514 636 504 552 58 |34.8|44.4|377

-0.514.5| 59.1 73.6 579 684 621 60 56 594 568 559 |35.6|559]|204
59 647 634 625 556 593 621 575 613 505 [354]505]242

-0.516.5) 72.6 602 562 536 579 598 616 697 497 527 |353]49.7|251
555 554 628 55 71.7 53.1 424 622 664 592 [35.1]|424]285

Table 6 ANOVA for Y of the Integrated Approach with the Error Standard Deviation of 1.0

Source Seq SS DF Adj SS Adj MS F p-value
g 0.05786 2 0.05786 | 0.02893 0.44 0.665
¢ 0.71612 1 0.71612 | 0.71612 10.81 0.017
g¥c 0.36672 2 0.36672 | 0.18336 | 0.06628 0.141
Error 0.39766 6 0.39766 | 0.06628
Total 1.53836 11

Table 7 The Preferred Levels of the Parameters of the Integrated Approach

S.D. Preferred Level Over all F-significant and p-Value
4 < Ye Yia Vi3
0.5 -0.5 - 0.081 - 0.077
1.0 -1.0 4.5 0.017 - -
- 4.5 - 0.048 -
-1,-0.5 4.5 - - 0.040
2.0 - - - - -
3.0 - - - - -
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Table 8 Four The measurements over 100 runs

S.D. Algorithm Average S.D. of Average Percentage
of Greatest Actual | Greatest Actual | Number of (ending at
Noise Concentration | Concentration Runs optimum)
0.5 Steepest Ascent 59.2011 7.6823 333 0.85
Integrated 56.7053 10.2178 38.17 0.85
1.0 Steepest Ascent 57.4528 7.3680 33.75 0.90
Integrated 57.0683 6.8899 34.9 0.90
2.0 Steepest Ascent 59.3067 9.5568 32,6 0.85
Integrated 61.1069 7.7166 34.75 0.90
3.0 Steepest Ascent 60.0803 7.7723 31.35 0.80
Integrated 61.2676 6.3431 333 0.95
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