
Thammasat lnt. J. Sc. Tech., Vol.7, No.3, September-December 2002

An Extension to DREAM Model
Based Dvnamic Schema for

Semi-structured Data
Mitsuru Nakata, Qi-Wei Ge

Faculty of Education, Yamaguchi University, Japan
1677- l Yoshida, Yamaguchi-Shi Yamaguchi 753-8513, Japan

Teruhisa Hochin and Tatsuo Tsuji
Dept. of Information Science, Faculty of Engineering, Fukui University, Japan

3-9-1, Bunkyo, Fukui-Shi Fukui 910-8507, Japan

Abstract
Although database technologies have been used widely, they sti l l carl not be simply used to con-

struct such complicated database like classical literature database or archaeological relics' database.
This is because these kinds ofdata are semi-structured data that do not have regular structures, so that
their database schema can't be defined before storing data. We have proposed DREAM model for
semi-structured databases. In this model, a database consists of five elements and its operations are
similar to that of set theory. And furthennore we have introduced dynamic schema "shape" showing
structure of each element. Based on this model, we have realized a protofype of database management
system, called DREAM DBMS, including the function of constructing shapes, called shape-function.
However, shape is insufficient to describe database structures because it can't explain nested structures
ofelements. In this paper, we refine the concept "shape" by introducing a new concept "shape-graph"

that is also a dynamic schema showing database structures more exactly. Then we describe the imple-
mentation of DREAM DBMS. Finally. we evaluate the performance of constructing shape and
shape-graph in order to reveal the efficiency of DREAM DBMS.

Keywords: Database management system, Semi-structured data, Dynamic schema, Data model

I Introduction theory and has the operations similar to set op-

Although database technologies have been erations. A database management system adopt-

used widely, they sti l l can not be simply used to ing DREAM model is called DREAM DBMS'

construct such complicated database like classi- Although we can store semi-structured data

cal l i terature database or archaeological relics' by using these data models without defining

database.This isbecausethesekindsofdataare schema, searching for the data f rom a large

not only modified frequently but also amount of semi-structured data does need their

semi-structured data that do not have regular data structure' To solve this problem, Data

structures, so that their database schema can't be Guides [9] and shape [10,1 1,12] have been pro-

defined before storing data. Therefore, develop- posed to represent the structure of the stored

ing new database te-hnologies to handle such semi-structured database. Data Guides and shape

kinds of data becomes iirportant. Recently, only represent the stored data but do not have any

studies on handling various iypes of data have information about deleted or non-existent data- In

been extensively investigatea i i]-tSl. In all these this meaning, the defined structures of stored

studies, the data structure handled cannot be de- data can be called dynrtmic 'tchema'

cided beforehand. For such semi-structured data, In DREAM model, there exist f ive kinds of

some data models have been proposed [2]-[6] elements, data element, named element, per-

inc luding our rnodel , DREAM rnodel [10,] 1 ,12] , spect ive, objects and bundle, and these e lements

in each of which the data is stored without de- are called database elements. These elements wil l

f ining schema. DREAM model is based on set be explained in detail in the next section. Shape ts

40

the concept proposed trying to represent the form
of database elements, but it cannot represent
nested structure of database elements. For ex-
ample, even if one object consists of several
perspectives, a shape ofthis object cannot show
which perspectives it is composed of. Thus, the
user of our database couldn't grasp the whole
structure ofthe database elements. Therefore, we
need to refine the concept of shape to propose a
new concept in order to improve our model.

In this paper, we are to refine the concept
"shape" by introducing a new concept
"shape-graph", trying to provide a more powerful
representation for database structures. Further,
we describe the implementation of DREAM
DBMS and show the evaluation result on effi-
ciency of constructing dynamic schema. Section
2 shows an outline of DREAM model and defi-
nitions ofshape and shape-graph. Section 3 gives
the description of the implementation of
DREAM DBMS. Section 4 gives the evaluation
result.

2 DREAM Model

2.1 Database elements

DREAM model is a data model that sup-
ports semi-structured database management
system. A database designed by DREAM model
consists of 5 kinds of database elements, "data

element", "named element", "perspective", "ob-

ject" and "bundle". For the operations of
DREAM model, refer to [11,12]. Database ele-
ments are defined in the following Definition L

Definition 1. A data element represents a databy
a triplet (id, type, @, where id is an identifier,
type is data type of the data and d is a set of
values of the data, where d includes only one
element ldl:1.

A named element is to give a name to a set
of data elements and/or objects. It is a tripleL (id,
name, S), where rd is an identifier, name is the
name named to the set of data elements (objects)
and S is the set ofdata elements (objects).

A perspective represents an aspect of an
object. It is a triplet (id, name, NE), where ld and
name are similar to those of named element
Further, //E is a set of named elements related to
the aspect in which there are no same names.

An object is a unit expressing one entify by a
triplet (id, name, P), where id is an identifier,
name is the object's name and P is a set of per-

Thammasat Int. J. Sc. Tech., Vol.7, No.3, September-December 2002

spectives of the object in which there are no same
names.

A bundle represents a set of objects and/or
bundles. It is a triplet (id, name, S'), where ld is
an identifier, name is the name of the bundle and
S'is the set ofobjects and/or bundles. A bundle is
to manage some objects that have common
properfy.

Example 1. Consider a cup obtained from an
archeological site. This cup has one line on the
outside of the rim and some characters on the
outside of the bottom. Height of the cup is 5.3
centimeters. And further, the cup has serial
number "3310". The information of this cup is
stored by the following database elements.

Data elements:
(el , int, {33 I 0}),
(e2, string, \linej),
(e3, string, {char}),
(e4,float, {5.3})

Named elements:
(e5 , " i d ' , { e l)) ,
(e6, " out_side _of_rim" , {e2}),
(e7," id ' , le l |) ,
(e8, " out _s ide _of_rim", {e2}),
(e9, " out _side _of_bottom", {e3l),
(e10,"height" , {e4\)

Perspectives:
(e11 , " t op " , { e5 ,e6 }) ,
(e12, " both", {e7,e8,e9,e10})

An Object:
(e13, " OBJ2", {e l 1 ,e12\)

The object having name "OBJ2" expresses
the cup. It has two perspectives. One is "top"

expressing only the upper part of the cup, and
another is "both" expressing the whole cup.

Figure 1 shows an example of a database.
This database is for the pieces of celadon cups
and plates, that are obtained from an archeo-
logical site. The data obtained by analyzing the
pieces can be put into several data elements, such
as done in the above example. In Fig.1, there are
two perspectives with names "top" and "both".

This database stores three objects, whose names
are "OBJI", "OBJ2" and "OBJ3" respectively,
and two bundles. The bundle "celadon plates
" holds two objects that were considered as a
plate. The bundle "celadon cups" holds two
obiects that were considered as a cup.

Thammasat Int. J. Sc. Tech., Vol.7, No.3, September-December 2002

. -. :-"l4gl pl3l-e_'_ _ - _ - - _ _ _ - - _ _ _ _ _ ;: _ _ _ _ _ _ _ _ _ _ _ _ _ _
I OBJ2

I ou,u "t"*"n, l-_-l named elcmenr [-l n"op".tiu" [l]l otr".t i I u*at.

Figure 1: Example of a database

The OBJ2 couldn't be classified clearly, so it
belongs to both bundles. Each object can consist
of different perspectives and each perspective
can hold different named elements. Furthermore,
database elements can be changed easily by using
the operations of DREAM model. Therefore,
information about relics can be stored in a
DREAM database even though they have dif-
ferent structures than each other. From the above
discussions, it is obvious that we needn't define
schema beforehand.

2.2 Shape entry and shape

Some information such as names of attrib-
utes, data fypes, etc. are indispensable for opera-
tions of databases. If we use conventional data
model, we can find out this information from
database schema. Since DREAM model does not
have a database schema, we cannot do so.
Therefore we have defined a concept shape

[10,11,12]. However, shape is insufficient to
describe database structures since it can't explain
nested structures of database elements. To solve
this problem, we are to refine shape by introduc-
ing a new data structure "shape-graph".

Shape is defined to describe structures of
perspectives, objects and bundles. The funda-
mental unit of shape is a "shape entry" describing
the structure of a named element.

Definition 2. A shape entry describes the struc-
ture of a named element and is represented by a

triplet (ld, name, DT), where id is an identifier,
name is the name of the named element and DZ is
a set ofdata types ofdata elements related to the
named element and/or shapes of objects that are
included in the named element.

Example 2. The following are shape entries of
the named elements of OBJ2 in Example 1.

(se\," id' , { int}),
(s e2," out _s ide _of_r im", |s tr ing|),
(se3," id' , { int\),
(s e4," out side _of_rim", lstring)),
(se5," out_side _of_bottom" , {string}),
(se6," he ight", tfl oat))

As Example 2 shows, different shape entries
have same names. Here, "coalescent set" ofshape
entries is to be introduced as a preliminary to
define shape. In a coalescent set ofshape entries,
each shape entry must have different name.

Suppose shape entries se1 and re2 have the
same name and se2 is included in a coalescent set,
if ser is inserted into this coalescent set then a
new shape entry must be created, which contain
name of .re2 and the set of data types obtained
through the union ofsets ofdata types ofsel and
s€2.

Definition 3. A coalescent set ofshape entries is
defined as follows.
o An empty set is a coalescent set of shape en-

tnes.

42

o Let S be a coalescent set of shape entries and
ser be a shape entry not included in S. Ifthere
is no shape entry with the same h&rt€ ES sa1,
then union ofS and {se1 } is a coalescent set of
shape entries.

o If there is a shape entry se2 in S has the same
name as se1, then union of S and {se1} is not a
coalescent set of shape entries. If combining
se1 to S to construct a new coalescent set of
shape entries, then it is the union ofthe set {x I
xeS, x+se2\ and the set that consists ofonly
new shape entry that has the name ofse2 and a
set of data types {dt I dteDT(se1)
v dteDT(se)1.

Definition 4. There are three kinds of shape:
shape of an object, a perspective and a bundle.
Each shape is a triplet (id, name, S), where ld and
name are an identifier and its name, and S is a
coalescent set including shape entries with the
named elements in the object, the perspective and
the bundle.

Example 3 shows shapes of OBJ2 and per-
spectives in OBJ2. The shape entry sel is a new
shape entry obtained by combining sel and se3
according to Definit ion 4. se8 is obtained simi-
larly by combining se2 and se4.

Example 3.
Shapes of perspectives in OBJ2:

(s l , " top" , {se l , se2}) ,
(s2, "both",

lse3, se4, se5, se6\)

Shapes of OBJ2 (containing new two shape
entries indicated with * I and *2)

(se1 ,
" id ' , { in t })) . . .

* I
(sel, " out _s ide _of_rim", {string}) ...

* 2
(s3, " OBJ2", lse7, se8, se5, se6))

2.3 Shape-graph
Shape provides us information about attrib-

utes included in perspective, object and bundle.

Thammasat Int. J. Sc. Tech., Vol.7, No.3, September-Decernber 2002

But it doesn't give us information about other
elements composing the database element. For
example, a bundle is composed of many objects
and an object is composed of some perspectives.
This information is very important in under-
standing construction of databases. For this, we
propose shape-graph.

Definition 5. There are two kinds of
shape-graphs. One is a shape-graph of an object
and another is a shape-graph ofa bundle.

The shape-graph ofan object is a triplet (ld,
s_obj, {sger}), where id is an identifier of the
shape-graph, s_obj is a shape of the object and

{s1er} is a shape set of perspectives included in
the object.

The shape-graph of a bundle is a four-piece
set (id, s_bndl,{s1ter}, {s_obj}), where ld is an
identifier, s_bndl is a shape of the bundle,

\s1er\ is a shape set of perspectives and

{s_obj\ is a shape set ofobjects included in the
bundle.

Example 4. The shape-graph of OBJ2 is a triplet
(sgl, s3, {s1, s2}). Figure 2 shows its structure.
As shown in Fig.2, a shape-graph is a tree con-
sisting ofshapes that correspond to the object and
the perspectives.

3 Design and Implement of DRf,AM DBMS

In this section, we discuss design and im-
plementation of DREAM DBMS. We have de-
veloped a system on Compaq Proliant ML350
server (CPU Pentium III 600MHz, 256M8
Memory, Red Hat Linux release 6.lJ). The
DREAM DBMS has been implemented by
UniSQL/X release 5.0, which is a commercial
Object Relational DBMS [3].

+ J

Thammasat Int. J. Sc. Tech., Vol.7, No.3, September-December 2002

Figure 2: The shape-graph of OBJ2

3.1 Storing database elements and shapes

Each database element (such as a named
element), shape, shape entry and shape-graph
(we call shapes, shape entries and shape-graphs
as SHAPE for short hereafter) are stored in a
corresponding class (here class is represented by
table in UniSQL/X database). Moreover, to re-
alize a processing system ofdatabase operations,
we represent the operations of DREAM model by
the operations of UniSQL/X.

However, SFIAPE and database elements,
except data element, have similar structure,
which is a triplet (id, name, S). Here id is an
identifier, name is a name of the SHAPE or the
database element and ,S is a set of database ele-
ments, data types or shape entries. Fufthermore,
database elements and SHAPE have similar op-
erations. So it is inefficient to create classes in-
dividually for each database elements and
SHAPE.

Therefore, we have introduced a kernel data
model called named set model [11], in which so
called named set is defined. It has a simple
structure and is represented by a triplet (id, name,
,S), where id is an identifier, name is a name and S
is a set of named sets andlor data. ln addition,
named set model has operations such as union,
difference, which are similar to operations on set
theory. Operations of DREAM model are based
on these operations.

We have to define classes that correspond to
database elements and SFIAPE by UniSQL/X.
Firstly we define a class of named set (ns class)
and its operations. And then, we define classes of
database elements and SFIAPE with inheritins t?s

cluss. Data elemerrts are stored into classes that
are created corresponding to each data type. Note
that these classes storing data elements have no
connection with n.r c/ass. This method makes
implementation of DREAM DBMS easy. Figure
3 shows relationships between DREAM rnodel.
named set model and UniSQL/X.

Figure 3: Relationships between DREAM model,

named set model and UniSQL/X

Figure 4 shows classes ofobject, perspective,
named element, shape graph, shape, and shape
entry. Let us explain the named element class thal
store shape entries has attributes id, name, S and
ID. The attribute S of the class is a set of identi-
fiers of the data elements stored into the class of
data elements. An attribute 1D is a set of

User

I DREAM Model I

I Named set Model I

fi* , f-u"rsalDr-)
I Data model"f lf l l Engine I'

| \-l _______________

I unisarx I c
:

DREAM DBMS I database I

44

identifier of shape entries corresponding to the
named element such as shown by the arrows in
Fig.4. The attribute is to make processing time of
database operations short. The attribute 1D of
other class is similar to the attribute of named
element class. Other classes shown in Fig.4 are
almost the same.

Fufthermore, SHAPE should be recon-
structed when an update operatiott, such as itr-
sertion, rnodification or deletion, is executed. For
example. a shape and a shape-graph of a bundle
should be reconstructed rvhetr an object is added
into a bundle. Because it takes long tirne in re-
constructing all SLIAPE. u'e intrttduce t\\ 'o ne\\ '
classes. The llrst is a class "update_db_element"

storing histories of operations. The second is a
class "remake_shape" storing the database ele-
ments related to shape entr)'. shape and
shape-graph that should be reconstructed. By'
these tw'o classes, the system needs only to
change SHAPE that should be reconstructed.

On the other hand, database operations in
DREAM DBMS are provided by API (Appl ica-
tion Program Interface) l ibraries of C language.
We call these API l ibraries as DREAM API.

3.2 Util izingshape-graphs

Next, we describe how the shapes and
shape-graphs are used. In general database sys-
tems, users search and operate data by referring
the database schema that consists of database
name, table name, attribute name, data type and
so on. But there isn't a database scherna in
DREAM model and further each object has dif-
ferent structure. So users might know only da-
tabase name and some bundle's name, and might
not know structure of each object. To manage
database elements easily even if users don't know
the details of database components, we provide
graphical user interface (DREAM GUI) imple-
mented by DREAM API, Java and JNI [4].
Figure 5 shows structure of DREAM DBMS &
DREAM GUI. And Fisure 6 shows two

Thammasat lnt. J. Sc. Tech., Vol.7, No.3, September-December 2002

Figure 5: Structure of DREAM DBMS &

DREAM GUI

windows of GUI. l 'he le f t ' "v indorv is to expla in a
shape-graph of a bundle "celadon_porcelain". As
the frgure shorvs, the bundle has named elements,
which have names "out,side_of rim", "height",
"radius" and so on. The condition to search ob-

.jects, of which radius is 6cm (rcrdius : 6), is in-
dicated on the left side tree of the window. And
the right side tree is the result of the searching.
As it shows, there is one object that satisfies the
condition. The right window explains the detail
ofthe object found by the searching.

4 Evaluation
We have implemented the DREAM DBMS

and realized the function of constructing shapes
and shape-graphs on it. To evaluate the function,
we have measured run time taking in construct-
ing shapes and shape-graphs for the Web con-
tents database of Yamaguchi University, Japan.
Because web contents data can be collected
automatically and easily, we use these data as the
sample of semi-structured data. The run time is
measured every 200 objects under the following
two conditions.

Condition 1 To totally reconstruct SHAPE for
200,400,600, 800, 1000 objects.

DRSAM
GUI

45

Thammasat Int. J. Sc. Tech., Vol.7, No.3, September-December 2002

Fieure 4: Classes of database elements

shape-graphs, users can operate databases
even if they don't grasp the schema; and (iii)

Table 1: Results of measurements

Condition 2 To reconstruct a part of SFIAPE
that should be reconstructed, when 150, 350,
550,150,950 objects have been stored and 50
objects are inserted.

In the experiment under condition 2, in-
formation stored in the classes "up-

date_db_element" and "remake_shape" that is
used to identifl' shapes should be recon-
structed. Table 1 and Figure 7 shows the times
to reconstruct SHAPE every 200 objects. The
data in Table I show the average of 10 times'
executions. When stored 1000 objects, con-
structing all shapes takes 62.27 seconds. On
the other hand, constructing partial shapes
that should be reconstructed takes only 16.8
seconds. From these results, it is clear that
adopting the data of these two classes to re-
construct SHAPE is an efficient method'

5. Concluding remarks

We have refined the previously proposed

concept "shape" by introducing a new concept
"shape-graph". Implementing DREAM
DBMS as well as DREAM GUI, we have
evaluated the performances of our system by
measuring its runtime taken in constructing
shape and shape-graph for new inserted data.
As the results, (i) nested structures can be
represented; (ii) by the GUI showing

Condition I
Number

of
oorecls

Time to
derive shape

200 10 .4

400 t3.'7 |

600 3 l . 7 8

800 46 86

l 000 62.27

Condition 2

Number
of

obiects

Time to
derive shape

{sec)

150-+200 8 0 2

350+400 9.48

550+600 t2.3

750-+800 t 4 5 l

950+1000 16 .8

the evaluation experimental results show that
DREAM DBMS can construct dYnamic
schema efficiently, that is our system can be
developed to a practical database system
handl ing semi-structured data.

As the future works related to realization
of the DREAM, we need to (i) complete the
API libraries and GUI of DREAM; (ii) im-
prove run time for updating operations and
constructing SFIAPE; and (iii) provide the
database query and manipulation language
such as SQL.

s ! ! l lfllurdk i

lS dteladoxr-oarrtlorn I
I ogllrtt+c I

References

[1] Zdonik, S. B., Incremental Database Sys-
tems: Database from the Ground Up, Proc.
of ACM SIGMOD 1993, PP.408-412,
1993.

[2] Papakonstantinou, Y., Garcia-Molina, H',
and Widom, J., Object Exchange Across
Heterogeneous Information Sources, Proc.
of I lth International Conference on Data
Eng., pp.25 1-260, 1995.

[3] Abiteboul , 5., et al, The Lorel query

language for Semistructured Data,

International Journal on Digital Libraries,
Vol . 1 , No. 1, PP.68-88 1997'

[4] Abiteboul, S., Querying Semi-Structured
Data, Proc. of the 6th Int'l Conf. on Da-
tabase Theory, PP.1-18, 1997.

[5] Buneman, P., et a/, A Query Language
and Optimization Techniques for Un-

structured Data, Proc. of the 1996 ACM

Thammasat Int. J. Sc. Tech., Vol.7, No.3, September-December 2002

objtrt

9C:
p flbadt

6 fl out-side-of-bonon
0 C: out-ride-of-rif,
s f ik ind
e f , i d

I d t o r
g flrrdru:

f ihe iqh t
+ n lqerq f i
' i", j rr: -rr d e-of. rrn

$ fJ li irri

$ r : i i

Figure 6: Windows of DREAM GUI

400 dn 8$

n-un*Efolobicqs

Figure 7: Times to construct SHAPE

SIGMOD Int'l Conf. on Management of
Data, pp.505- 51 6, 1996.
Buneman, P., et al, Adding Structure for
Unstructured Data, Proc. of the 6th Int'l
Conf. on Database Theory, pp.336-350,
1997.
Shoens, K. et al, The Rufus SYstem: In-

E 11 obist!

s i*l

l) out-rr dc-of-nn

S r*intt'
ft ndrur*$
i), i
I t , r , l
] ou;-*t cl-+f-nl;mr

i-1 ** ttt

s l l e r r c r t u t

t6l

l7l

t8l

formation Organization for
Semi-structured Data, Proc. of the 19th
VLDB Conf., pp.97 -107, 1993.
Pfaltz, J. L. and French, J. C., Scientific
Database Management with ADAMS,
Bulletin of the Technical Committee on
Data Engineering, Vol. 16, No. i '
p p . 1 4 - 1 8 , 1 9 9 3 .
Goldman, R. and Widom, J., Data
Guides: Enabling Query Formulation and
Optimization in Semistructured Data-
bases, Proc. of the 23rd VLDB Conf.'
pp.436-445 , 1997 .

. l i . ; l

l l l r

t 4 i r

tel

Thammasat Int. J. Sc. Tech., Vol.7, No.3, September-December 2002

[l0]Hochin, T. and Tsuji, T., a Method of
Constructing Dynamic Schema Repre-
senting the Structure of Semistructured
Data, Proc. of Int'l Database Engineering
& Applications Symposium 99,
pp. l 03- 1 08, 1 999.

[11]Hochin, T. , Nakata, M. and Tsuj i , T. , A
Flexible Kernel Data Model for Bot-
tom-Up Databases and Management of
Relationships, Proc. of Int'l Database
Engineering & Applications Symposium
98, pp. l70-177, 1998.

[2]Nakata, M., Hochin, T., and Tsuji, T.,
Bottom-up Scientific Databases Based on
Sets and their Top-down Usage, Proc. of
Int' l Database Engineering & Applica-
t ions Symposium 97, pp.17l - I 79, 1991 .

I I 3]Stonebraker, M., OBJECT- RELA-
TIONAL DBMSs, Morgan Kaufmann
Publ ishers, Inc. , I 996.

[14]Rob Gordon, Essential JNI: Java Native
Interface (Essential Java), Prentice Hall,
1 998.

48

