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Abstract
The problems of deterministic tolerance synthesis are generally solved using a combinatorial

optimization problem, for instance, an integer programming approach, a design of experiments, and
the Taguchi method. Researchers generally consider one-dimensional deterministic tolerance
synthesis; however, the problems of two or three-dimensional deterministic tolerance synthesis
sometimes happen. This paper deals with two-dimensional deterministic tolerance synthesis. Since the
objectives of designing the tolerances are minimizing the direct manufacturing cost and minimizing
the sensitivity of tolerances to variations in manufacturing processes and the service environment, the
optimization models provided in this paper include the objectives. It is assumed when a product
performance deviates from the customer identified target value, loss is assumed to incur quadratically.
In short, the concept of Taguchi's loss function is applied two-dimensional deterministic tolerance
synthesis. Three general approaches, an integer programming approach, a design ofexperiments, and
the Taguchi method, are utilized and illustrated by six numerical examples.

Keywords: quality engineering, tolerance synthesis, design of experiment, Taguchi loss function

l. Introduction A survey of the literature indicates that two

Fierce competition in the international basic models in tolerance design have been

marketplace is driving companies to seek ever- considered. The first one is tolerance analysis --

increasing product quality as well as reducing the component tolerances are specified, and the

costs. Thi selection of tolerance has a profound resulting assembly variation and yield are

impact on the manufacturing processes, product calculated. The latter case called tolerance

"oitr, and functional quality. Hence, synthesis, which we consider through this paper,

manufacturers have treated tolerance as a very involves the allocation ofthe specified assembly

important topic and realized that a proper tolerances among the component dimensions of

selection of disign tolerance is a key element in an assembly to ensure a specified yield.

their effort to increase productivity, control Tolerance synthesis is formulated as an

product quality, and yield significant cost optimization problem by treating cost

savings. iolerance is defined as the range minimization as the objective function and

betwe-en a specification limit and the nominal stackup conditions as the constraints. The

dimension. Traditionally, to assign tolerances to literature on tolerance synthesis has been

components and assemblies, designers relied on reviewed by Voelcker [1], Juster [2], and Chase

experience, handbooks, and standard and Parkinson[3]'

information. These assignment decisions; Two types of objectives have generally been

usually made at the design stage, are often based used in the design of tolerance: (1) minimization

on insufficient data or incomplete models. of the direct manufacturing cost, and (2)

However, the decisions must be taken with full minimization of the sensitivity of tolerances to

consideration of their significant influence on variations in manufacturing processes and the

manufacturing methods, production costs, and service environment. The first objective was

product quality. considered by Kusiak and Feng [4] in the case of
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one dimensional deterministic tolerance
synthesis. This paper extends the idea of Kusiak
and Feng [4] by considering two-dimension
deterministic tolerance synthesis and
introducing the concept of loss functions to the
models. The objective of introducing the
concept of loss functions is to satisfu the
objectives: minimization of the direct
manufacturing cost, and minimization of the
sensitivity of tolerances to variations in the
manufacturing process. This paper gives a
comparative study between applying the concept
of loss function and not applying the concept
among three methods, Integer Programming
(P), Design of Experiments (DOE), and
Taguchi Method(TM).

2, Two Dimensional Deterministic
Tolerance Synthesis
From a general viewpoint of geometry,

three dimensions, such as length, width and
height are considered when configuring a
physical object. Based on the study of literature
in the area of tolerance synthesis, researchers
generally consider one dimension (or one side).
However, in typical manufacturing processes,
two or more dimensions may be considered.
This paper considers two-dimensional
deterministic tolerance synthesis. The example
of two-dimensional deterministic tolerance
synthesis is the process of molding. Ihe general
form of two-dimensional deterministic
tolerances is shown in Figure l, where x;,
represents the dimension element of row i and
co lumnT  (  i  :  1 . . .m  and i  :  1 . . . r r .

3. Bivariate Quadratic Loss Function
Traditionally, the quality evaluation system

classified a oroduct as nonconformins if the
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quality characteristic ofthe product fails to meet
the predetermined specification limits and then a
certain amount of economic loss is incurred;
otherwise, it is classified as conforming and no
loss is incurred. In other words, products are
evaluated as good or bad on a go/no-go basis.
Contrarily, this system does not adequately
reflect customers' perception of quality.
Typically, the exact form of quality loss
function to evaluate the quality of a product
does not exist. Various loss functions [5-9] have
been discussed in the literature of statistical
decision theory. However, a simple quadr4tic
loss function is treated as a good evaluation in
many situations [10-13]. The simple quadratic
loss function (nominal the best) is

L ( x ) : f ( x - t ) ' .  ( t )

where / is a loss coefficient and z is a target
value for quality characteristic x. Kapur and Cho
[14] proposed the model for the bivariate loss
function as follows:

L  ( n s z ) =  f  r t  ( n - q ) 2  +  p n (  x r  - - r r  )
( xz - r z )  +  f zz (  xz - r z ) '  ,  ( 2 )

where B11is a loss coefficient associated between
quality characteristics i and j. The loss
coefficient Ba can be determined by using a
regression method [6]. The expected value of Z
(xvxz), E[Z] is then given by

E[L] : fn l( tt, - r, ) '  + o,' I + fn l\p - 
!t)

( lrz - tz) + o12 I + pr, [( lt, - tr)' + o2']. (3)

Assuming that p1 : 11 and p2 = r2., Equation [3]
becomes

Figure I General form of two-dimensional

65

deterministic tolerances



EILJ: frrforl '+ frrlop]2 + frrlor)2. (4)

Generally, manufacturers accept tolerance at
three sigma limits ( t: t3 o ) and based on the
statistical method, o, is calculated by

o u = P u * o t ' 0 2 .

where p,7 is the correlation coefficient between
the quality characteristic i and i. Hence, the
expected loss in terms of tolerance is given by

E lLl: fu ft, I 312 +BD Op lt1 I 3l lt2 I 3l
+p22I t2 l  3 f "  ,  (5)

where /1 and t2 are the tolerance of dimension I
and2; pn is the correlation coefficient between
dimension I and2.

Assuming that two dimensions are independent,
ppis zero. Hence, the middle term of Equation

[5] is zero and the expected loss becomes

E [L] = fn lt, I 312 + Brrlt2l 312 . (6)

4. Integer Programming Approach
Ostwald and Huang [5] first introduced

the integer programming (lP) approach to
discrete tolerance synthesis. To solve a large-
scale deterministic tolerancing problem using
linear programming, Lee and Woo tl6]
proposed a branch and bound algorithm. Kim
Knott tlTl proposed the pseudo-Boolean
approach to determine the least cost tolerances.
Kusiak and Feng [4] applied the IP approach to
deterministic tolerance synthesis problems.
Assuming that all components are independent
and applying a tolerance-cost analysis, the fwo-
dimensional deterministic tolerance synthesis
problems can be formulated as the following 0-1
IP model.

f t L n o

M i n i m i z e  T C :  I I I
i=1  j=1k=1

Subject to

m o

ZZ t ro  xa tST l
i=1  k=1

o

I  x 1 t :  l
k=1

xiit' -- 0' 1

Cat xyr, Q)

Yj

v i j

v ij,k
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where TC = total tolerance cost,
Ctjt = manufacturing cost of process k

used to produce dimension (i7),
t4t = three sigma normal variation of

process ,t used o produce dimension (lrr),

4 : single side tolerance stackup limit
for dimension i.

{ = single side tolerance stackup limit
for dimensionj,

x4t = | if process t is selected for
dimension (i7) and 0 otherwise,

m: number of dimension i.
n = number of dimension j, and
o = number of process ft.

The objective is to minimize the total
tolerance cost. The first two constraints are to
ensure that the total tolerances in dimension i
andT do not exceed the tolerance stackup limits
of its dimension. The next constraint is to ensure
that exactly one process is selected in its
dimension. The last constraint ensures the
integrality of xr*

Incorporating the quadratic loss concept,
the model transforms to

Minimize
n n o

T C =  I t I  C 4 t x y r +
i=L  j= !k=L

iB,"l * Lp,ul
i= l  J=l

(8)
Subject to

n o

l l  t r t X u r S T i  V t
j=Lk=r

it ,* xa1, s T1
i=1  k=1

vj

v i j

trt, xytl3 V t

t4 x,1/3 V j

xiir = 0, I
v ii,k

where p,= the loss coefficient for the dimension

i, Ft: the loss coefficient for the dimensionT,

a,= the standard deviation of dimension l, and

b, : the standard deviation of dimensionT.

o

I Xat= 1
k=1

n o
-  =  \ i s
ut 

/- /J

j=rk=r

m o

, . = t t
J  - -

i=1 ft=1
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t121 = .09
tp2  = .05

To l3< . l 0

/111  =  .05
t 1 p  = . 0 4

C n r : 2
Cxz  =3

Tol4<.10

Czu :2
Czzz = 5

In Equation [8], the additional constraints
are to transfer tolerances into its standard
deviation, assuming that tolerance equals to
three standard deviations. Then the additional
constraints are utilized in the objective function.
In this model, the quadratic loss function is
applied in order to evaluate loss into the model
in the case that the performance falls within the
tolerance limits. Generally, the models can be
utilized directly, however in some situations, the
models need to be properly applied.

Example 1: Select tolerance for two
dimensional-chain with two process alternatives
each shown in Figure 2. xi, where i: 1,2 and j
: 1,2 are considered as factors. Suppose that
each dimensional tolerance can be obtained
independently using two process altematives,
where /rr denotes the three standard deviation of
process fr used to generate dimension ( i, j ), C,it
denotes the corresponding cost. Assume that all
loss coefficients are equal to 1.

Applying the first and second optimization
model (Equations [7-8]), the following
optimization model are generated in models as
shown in Equations [9-10], respectively. Note

*2xzu*5xzzz
Subject to

5xyft4x1p*9xnfF5xat
4 x 21 ft 3 l r tr'1 5 x zz r* 4 xzzz
5xsft4x1p*4xzrr*3xztz
9xp1*5xp2+Jxzu* 4Xzzz
x I l +x |2

xzn*xztz
xtzt*xnz
xzzt*xzzz
x6=  0 '  I

(e)

s l 0
s 8
s l 0
s l 0
- l- I

- l- l

I
I

v  i , j ,k

Solving the optimization model in Equation [9],
using LINDO software the solution iS .x1t1 =.ty22
= xztz: xzzz. = 1 and other x's equal zero, which
corresponds to the following tolerances: t11 * =
5 ,  hz *  : 5 ,  t x  * : 4 ,  and  t zz *  : 3 ,  whe re  l ,  *

denotes the optimal tolerance for row i and
columnT. Integrating the quadratic loss concept
in the previous model, the model becomes:

To l l < .10

C r r r  : 5

C u u  = 8

tn r  : . 04

t212 = .03

C u : 3
Cnz  :4

tzt : .05
t222 = .04

Tol25.08

Figure 2 Representation of example I

that for calculation ;iurpose, the first four
constraints are multiplied by 100.

Minimize
TC : 5x1 y 1+8x t1,z*3 xm*4xrzz*2xztr*3xztz



Minimize
TC : 5x1q 1+8x to*3xnrr4xnz*2xzn*3xuz

*2x221*J1c222*a12 +ar2 +4r2 + 602
Subject to

5x111 * 4xy2 *9xpft Jvrtt
4x211 * 3x212 * 5x221* 4x222

5x111 * 4x1p * 4xyf jrr t ,

9xp1 * 5xp2 * 5x221* {16r,

r t t t  +  x rz
xztt + x:.:r2
xnt + x0r:2
xzzt + x222
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Minimize
TC : 5xr r r+8x nz*3xtu*5xrzz*2xnt*5xrn

*2x21 1*3y212*3 x221*5 x222*1sztr+3 xztz (l l)
Subject to

5 x s* 4x yir2*J 4211-2x p2* 64 t*3 x nz
4x21 ft 3 x212+ J x 2yl 4x222* { v zt t1'3 x ztz
5xsr4x1p*4xut* 3xzrz
3x121 * 2xnz * 5x2211- 47r,
6xs31 * 3xs62 * 4x41* J11rt
r t t t  +  r r t z
xu * xtzz
xnt * xttz
xztt * xuz
xzzt * xzzz
xztt * xxz

xy t :0 ,  I

Solving the Equation I l ] model, using LINDO
software, the solution is xy11 : xtz2: xrtz= x2t2:
xzzz : xx2: I and other x's equal zero, which
corresponds to the following tolerances and
processes:  / r r  *  :  5 ,  t rz*  = 2,  tn*  - -  3 ,  tzr*  :3 ,

tzz* = 4, and tl,:,* = 3. Integrating the quadratic
loss concept to Equation [11], the model
becomes:

Minimize
TC=5x1 1 1+$yt ol3x m*5x nz-t2x pft 51c e2

*2x 2 1 ft 3 x 21 2* 3 x 22 1 * 5 x 222* v zt r*3 x zt z
+2ar2 +2a22 +br2 +br2 +br2 (12)

Subject to
5xr I r+4ir r2+3 xe1*)vp2*$xnr*3xrp
4x21 ft 3 x21 2* 5 x 221* 42c 222* $g zt t*3 xztz

5xy1f4x1p*4x21* 3xuz
3x121 * 2xp2 * 5x221* 4vr,

6x131 * 3xs2 + 4xy1* JYr.t
. x t  r t  *  x t  t z
xnt * xtzz
xnt I  xnz
xztr * xzrz
xzzt * xzzz
xzr * xztz
a 1 = (5 y y+ 44 n*3x nr*Zx n2* 643ft3 432)lJ
a2 = (4xy ftJ xr12* J 7c2y*4x222+4x:r,ft3 x:l,) 13
b 1 = (5 x n ft 4x .r2* 4x21 fJx212)lJ
bz : (3 x ot+2x nz+ 5 xzzf 4xzzz)/3
b t : (6x sr:i3x r:;2* 4xyftJ 1cy2)/J

5 1 0
< 1 0
s 8
< 8
< 8
= l

- l- t

= l
: l
: l

v i, j , k

s

s

(10)

t 0
8
l 0
t 0

2010.010
#

Figure 3 Example

18r0.080

ar : (5;rrrr + 4xuz * 9qrztt 5x21) / 3
az= (4xn + 3xaz + Sxzzr* 4x22) | 3
a: : (5xrrr + 4xtz * 4x21ft 3x21) / 3
at, = (9xu * Sxnz + Sxzzr* 4x22) / 3
a i >  0  i = 1 , 2 , 3 , 4

x y * = 0 , 1  V  i , i , k

Solving the model in Equation [10] using
LINGO software, the solution is .x111 : x122 :

xuz= xzzz = I and other x's equal zero, which
corresponds to the following tolerances: /rr * =

4,  tn*  :  5 ,  t r t *  :3 ,  an<) t22* :  4 .
Example 2: Select tolerance for two

dimension-chain with three process alternatives
each shown in Figure 3. Suppose that each
dimensional tolerance can be obtained
independently using two process aitematives
shown in Figure 4, where /rr denotes the three
sigma-standard deviation of process t used to
generate dimension ( i, j ), Crr denotes the
corresponding aost. Assuming that the loss
coefficients for row tolerance are 2 and the
coefficients for column tolerance are l.

Applying optimization model Equations [7-
81, the following optimization models are
generated as shown in Equations UI-121,
respectively. Note that for calculation purposes,
the first five constraints are multiplied by 1000.

l 0
1 0
8
8
8
I
I
I
I
I
I

s

S

a i , b i >  0

x y t : 0 ,  1

i : 1 , 2 ,  j : 1 , 2 , 3
v i, j, k
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/ r rr  = .005
frrz :  .004

C n r : 2
C u z : 3

Solving the model in Equation [2] using
LINGO software, the solution is: x112 = xnz =
XB132= Xztz: Xzzz : xztz: I and other x'S eqUal
zero, which corresponds to the following
tolerances and processesi ttr* = 4, tp* :2, t3*
: 3 ,  t z r *  =  3 ,  t z z  * : 4 ,  a n d  t z t *  -  3 .  I f  t h e
tolerance allowances are loosened bv two each.
the model becomes:

Minimize
TC = 5-r1 ; 1 +$; r n*3 x m* 5 x nz*2x nt* 5 x nz

-r)76211*Jx212*3x221*5x222*1s,ztr*3xxz (13)
Subject to

Figure 4 Representation of tolerances for example 2

C z v  : l

C x z : 3

quadratic loss concept in Equation [3], the
model becomes:

Minimize
TC : 5xr r r+8x uz*3xot*5xnz*2xnt*5xnz

*2xzn*3xzrz*3 x221* J 1srt 1xztr*3 xztz
+2a12 +)ar2 +[r2 +gr2+Sr2 (14)

Subject to
5xs']ft47c1rr*Jxpft2xp2*64:r*3lrrz S 12
4x21ft3x212*Jx2y*4x222*4xztr*3xztz S 12
5x11ftlvrrrl4xzn* 3xztz S l0
3xp1 *2xp2 * 5x221* !16rt < l0
6-1131 *3432*4x1a11J4t ,  S l0
xt'tt * xrz I
xnt * xoz I
xsr  *xnz = I
xztt *xuz : I
xzzt *xzzz : I
xzt *xzlz : I
a1 : (5 x 1 1 ft 4x t n*3x ni2xt2+6x r�ft3 x 32)/]
a2 : (4x21 ft3 aztz* 5 xzzr* 4xzz2+ 4x4ft3 xy2)/3
b 1 = (5 x 1 1 ft $ 1 p't 4x y f3 x212)/ ]
b 2 = (3 x p1+2x nz* 5 xzu+ 4xzzz) / 3
fu : (6x s ft J v nz+ 4xzt i3 xzzz) / 3
a 1 , b 1 2  0

x11t= 0, I

i : 1  )  i = l  )  1

v i,j, k

/ rzr  : .003

tnz= .002
/rl : .006
/rz : .003

Czt  :3

Czzz :5

5 g 1 ft 44 p*J x p1*2x p2*$16r r r *3xr :z
4 x 21 f3 x r r r+ J x 22 1 1- 4 x 222* { 16 zz t*3 x ztz
5 x ni!1g t trl4tzr r * 3xzrz
3x;21 * 2xp2 + 5x221* $r,
6x1j1 * 3x132 * 4x2j1* Jyrt,
r r r t  * x r t u

x tz t  I  x tzz
xnt * xnz
xzl + xztz
xzzt * xzzz
xzlt * xztz

xqt= 0, I

s
s

l 2
1 )

l 0
1 0
1 0

v i,j, k

Solving the model in Equation [13], using
LINDO software, the solution iS-r111 :.x121 :.1132
= x2tz: xzzr : xzzr: I and other x's equal zero,
which corresponds to the following tolerances
and processesi  l r r  *  = 5,  tn*  :3,  tn*  :3,  t t *  =

3, tzz * = 5, and tzt * : 4. Integrating the

Solving the model in Equation [4], using
LINGO software, the solution is x12 : xe2 =
X132= Xzrz: Xzzz = xzzz: 7 and other x's equal
zero, which corresponds to the following

C r r r  : 5

C r r z  : 8

t211 : .004
t212 = .003

Cw - -3

C n z  : 5

tzx: .005
t222= .004

C s  = 2

Cnz  :5

txr: -004
ty2 = .003
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tolerances and processes: 11 * : 4, tp* :2, tsp*
= 3, tx* = 3 , tzz* : 4, and tzt* = 3.

5. Design of Experiments APProach
Kusiak and Feng [4] applied the desigr of

experiments (DOE) approach, which is a
statistical tool, for the deterministic tolerance
synthesis. In their research, both full and
fractional factorial design are applied. The
detailed discussion of the DOE approach can be
found in Montgomery [8]. Applying the DOE
approach to the tolerance syrithesis problem, a
component dimension with tolerances can be
considered as a factor, a.E.x;j, which means the
component dimension of row i and column j'

Since the tolerance synthesis problem requires
the selection of a set of processes, the number of
process altematives can be considered as a level
of each factor. In case of not considering the
loss concept, the objective of the deterministic
tolerance synthesis problem is to minimize the
manufacturing cost. The direct manufacturing
cost is considered as a response. Hence, the
response function corresponds to the objective
function in IP approach. In case of considering
the loss concept, the ob.jective is to minimize the
manufacturing cost as well as loss' The
summation of both is considered as a response.
Since the DOE approach cannot cope with the

tolerance stackup constraint, additional elements
are corporated into the design in order to deal
with the constrains. A set of process altematives
is selected in order to minimize the response
while rneeting the constraints of the component
tolerances and the tolerance stackup.

This paper then proposes a step procedure to
apply DOE approach to two dimensional
determines tolerance synthesis as follows: (1)

consider the dimensions with tolerances as
factors, (2) consider the total manufacturing cost
as a response when not considering loss concept
or consider the summation of manufacturing
cost and loss as a response when considering
loss concept, (3) select a proper design for the

experiment (4) incorporate the 'constraint'

columns tL) represent the tolerance stackup

constraints (5) calculate the tolerance stackup
and response for each combination (row) of
factors and (6) select the row with the smallest
response value that satisfies the tolerance
stackup constraints as the best set ofprocesses.

Thammasat Int. J. Sc. Tech., Vo.7, No.2, May-August 2002

Example 3.: Applying DOE approach to
Example l. The number of levels is 2 as two
alternatives for each factor. The numbers -1 and
I denote the low and high levels of tolerance,
respectively. A full factorial design is shown in
Table l.

Similar to Example l, the summations of
tolerances are multiplied by 100 for calculation
purpose. Using the four constraints
(Tollcl0,Tol2<8,Tol3<10, and Tol4<10), the
minimum cost is 14 in case of not considering
loss concept. The associated cost (=1a) is
calculated by the summation of four cost
components, which are 5 for x11, 4 for xp,3 for
x21, dnd 2 for xzz. This solution corresponds to
the processes (see Table 1 ): Factor xr r and x22are
at the high level (/rr : 5 and tzz= 5) , faclor x,2
and x21 are at the low level (tn: 5 and /zr = 3)'
After integrating the quadratic loss concept in
the design, the solution is changed and the
minimum total cost (summation of cost and
loss) is 48.89. The cost is calculated by the
summation of four cost components, which are 8
for x11, 4 for xp,3 fot x21, and 5 for x22. The
associated loss is calculated by the summation
of the squared one-third tolerances. In this
example, four types of tolerances are
considered. They are Tol l, Tol 2, Tol 3, and
Tol 4. The associated loss is 28.89, which is
(g I 3)2 + (7 I 3)2 + (7 B)2 + Q B)2 . The corresponding
process is that all processes are at the low level
of  to lerance ( t1 � :4,  tn :5,  tzr= 3,  and t22:4) .
Both solutions are identical with the solutions in
example l.

Example 4: Applying DOE in examPle 2
The number of levels is 2 as two alternatives for
each factor. The numbers -l and I denote the
low and high levels oftolerance for each factor,
respectively. There are 6 factors in this case (x11'

xn, xB6, x2t, x22, x23). To reduce the number of
.*p".i..ntr, a fractional factorial design (26-r) is
planned as shown in Table 2. The number of
experiments in this case is 8; however, there is

no feasible result under the five constraints (Tol

1< 10,  Tol  2510,  Tol  3 < 8,  Tol  4 < 8,  and Tol5
< 8). Then we extend the number of experiments
to 16(26'2). The result in this experiment does
not meet all five constraints(Table 3). Then, we
decide to extend to the full factorial design and
find that the solutions between the IP and design
of experiment approaches are identical.
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6. Taguchi Method
The Taguchi Method (TM) has been a

useful method in the statistical design and
analysis of experiments over the years. Kusiak
and Feng [4] applied the TM approach to the
deterministic tolerance synthesis. The
methodology of TM approach is shown as
follows: (l) IdentiS a response, and classiS the
product (or process) parameters as (a) control
(or design) parameters, or (b) noise (or

Thammasat Int. J. Sc. Tech., Vo.7, No.2, May-August 2002

uncertain) parameters. Control (desigr)
parameters arc the product (process)
characteristics whose nominal settings can be
specified by the product (process) designer.
Noise parameters are the variables that cause
performance variation. (2) Arrange these control
and noise parameters in the orthogonal array
developed by Taguchi [2] and Taguchi et.al.
[3]. The selection oforthogonal array depends
on (a) the number of factors and their
interactions of interest, (b) the number of levels

Table I Factorial experiment for example 3
X r r Aru Xzr Xzz Tol I Tol2 Tol 3 Tol 4 No l,oss [.oss

Cost Loss TC
9 7 7 9 20 28.89 4E.E9r

l 0 7 8 9 32.67 49.67
- l l 3 7 7 l3 l 9 4E.44 67.44
I l 4 7 l 3 l 6 53 .1 69.1 1

9 8 9 l 9 32.22 1.22
I 9 9 t 6 36.22 52.22
t 3 8 t3 l 8 5  t . 78 69.78
t 4 9 l 3 56.67 | . 67
9 7 l 0 l 7 32.67 49.67
l 0 8 8 l 0 l 4 f 36.44 50.44
l 3 8 7 t4 6 5 3 . t 1 69.1 1
t4 8 8 l4 f J I . 1 6 70.78
9 9 8 l 0 6 36.22 52.22
l 0 9 9 t 0 40.22 3.22
l 3 9 8 t4 56.67 71.67
t4 9 9 t4 6 t . 5 6 73.56

Table2 26-3 Factorial desi

Table 3 26-2 Factorial desi

7 l



for the factors of interest and (c) the desired
experimental resolution or cost limitations. We
usually design by using the first two items
which determine the smallest orthogonal anay
that it is possible to use, but this will
automatically be the lowest-resolution, lowest
cost experiment. We may choose to run a larger
experiment, which makes a higher resolution but
is more expensive. Finally, we conduct
experiment and collect data. (3) Incorporate the
'constraint' columns in the orthogonal array to
represent the constraints and calculate the
tolerance stackup. (4) Calculate the responses
for each combination (row). The responses both
cost and loss can be obtained by using the
similar procedure as ihe DOE approach. (5)
Select the smallest response value that satisfies
the constraints.

Example 5: Applying the TM to example I
Sixteen experiments are planned in cxample 3
using full factorial design. We apply the TM
approach to make the experiment smaller. Four
factors are defined as the control factors and the
two tolerances are defined as the noise factors.
Then applying L{2') orthogonal anay to this
problem, the result is shown in Table 4. The
result is that the optimal is not met. In this
problem, the optimal solution may be met if the
column in orthogonal array is changed.
However, the results of this method and DOE
approach when considering loss concepts are the
same.
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Example 6: Applying the TM to example 2.
In this problem, we define six factors as control
factors and two tolerances as noise factors. Then
applying Ls(2') orthogonal an:ay to this
problem, the result is shown in Table 5. The
number of experiments in Taguchi method is 8
compared with 26(64) experiments in the full
factorial design. Table 5 shows that a feasible
solution, which is the low level of tolerance in
all factors and costs 29. Compared with the
result of example 2, the optimal solution gives
the cost of 26. Hence, in this particular problem,
TM method can not give the optimal solution.
However, when integrating the quadratic loss
concept, the solution is optimal (TC=62.56).

7. Conclusion and Discussion
This paper presents two-dimensional

deterministic tolerance synthesis by applying
three approaches, which are IP, DOE, and TM in
two scenarios: with and without the loss
concept. The loss concept is used to satisff the
objective of minimizing the sensitivity of
tolerance to variation.

Comparing IP, DOE, and TM approaches,
it can be concluded that IP approach is the most
effective method because.it always gives the
optimal solution. However, IP approach cannot
be applied to a probabilistic case, while DOE
and TM approach can easily be applied. Using
the full factorial design of DOE approach will
gain the optimal solution as well. While the

Table 4 i method for example

No
Noise factors Constraints

Cost Loss TCx , , X Tol I Tol 2 Tol 3 Tol 4

I I o 7
'l 9 z0 28.89 48.89

z I o 8
'l l 0 t 1 32.67 49.67

3 2 2 I I J 8 I J 51 .78 69.18

2 2 2 9 8 t4 l 5 56.67 7 |.6't

) I L I l 0 8 9 l 6 36.22 52.22

6 I 2 l 0 9 9 l0 40.22 <1 t ' )

7 2 2 I l 4 7 8 t 1 t 6 53 .1  1 69.1

8 2 2 I 2 l 4 8 8 t4 l 3 51.78 10.7
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fractional factorial design and TM approach
may not provide the optimal solution. Therefore,
company between DOE and TM approaches,
DOE approach is superior to the TM approach
but the DOE approach is more costly than the
TM approach.
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