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Abstract
This paper presents the characterizations of the discrete array antenna pattern synthesis that

performs the tapered minor lobes for the applications of radar and low noise systems. Some kinds of
orthogonal polynomials i.e., Legendre, Hermite and the second kind Tschebyscheff polynomials are
used to synthesize the array antenna pattern. The results are compared with the conventional
discretized Taylor one parameter and Taylor n methods. Additionally, these tapered minor lobe array
pattems are also comparatively demonstrated together with the array antenna pattern yielding the
uniform minor lobe distributions viz.,the first kind Tschebyscheff array. The anay designs using some
orthogonal polynomials are rigorously described. The anay characteristics such as radiation pattern,
the maximum to minimum current ratio, beamwidth; both half power beamwidth and first null
beamwidth, directivity, the nearest to the furthest minor lobe ratio, and beam efficiency are illustrated,
The advantages and disadvantages ofeach method are discussed.

l. Introduction
Following the dramatic growth of the

wireless applications such as radar and
communication with low noise becomes
drastically, the antenna plays an important role
as the key device in transmitting and receiving
the signal. Generally, it is desirable for the
antenna to achieve the maximum directivity,
narrow beamwidth and low side lobe ratio [].
The anay antenna is one of the most suitable
candidates that can fulfill these requirements.
The array antenna pattern synthesis has been
extensively investigated to realize the current
distributions weighted to the array elements
from which the radiation characteristics are
specified. Furthermore, to apply the array
antenna in radar and low noise systems the
tapered minor lobe properties are necessary. The

nearest to the furthest minor lobe ratio and the
beam efficiency must be sufficiently high
because interfering or spurious signals will be
decreased further when they enter through those
tapered minor lobes. Therefore, the significant
contributions from interfering signal will be
through the pattern in the vicinity of the main
lobe. Moreover, in low noise systems, the
tapered minor lobe pattern plays a vital role in
order to diminish the radiation accepted through
them from the relatively hot ground tll.
Historically, the uniform array is the simplest
way to determine the current distribution
because each element is excited identically. The
directivity is maximum at the expense of very
high side lobe ratio. Binomial anay l2l, in
which the currents are determined from the
coefficients of Binomial expansion or Pascal's
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triangle, is the candidate to solve the drawback
of the uniform array. It is apparent that the side
lobe ratio of Binomial array is extremely low
while the degradation of the directivity occurred

[3]. Dolph [4] proposed using the first kind
Tschebyscheff polynomial to synthesize the
array antenna pattern to compromise between
the uniform and Binomial anays. The side lobe
ratio of the first kind Tschebyscheff array is
lower than the uniform array and the directivity
is higher than the Binomial one. However, it
was found that the Dolph-Tschebyscheff array
has the uniform minor lobe distribution which
leads to the loss of the beam efficiency and the
zero in dB of the nearest to the furthest minor
lobe ratio. Subsequently, Rashid [5] presented
the possibilities of mathematical features to
synthesize the array antenna pattem using
Legendre polynomial. In addition, it was pointed
out later [6] that Legendre array provides the
tapered minor lobe which is suitable for the
application of radar and low noise systems. The
investigations of the discrete array antenna
pattern synthesis accomplishing the taper minor
lobe especially the far-out minor lobe are
consequently conducted I7l. The authors
describe the feasibility to employ some
orthogonal polynomials to synthesize the array
antenna pattem [8]. As an alternative choice to
achieve the aray antenna with the tapered minor
lobe at which the far-out minor lobe decreases
more rapidly, the authors propose the second
kind Tschebyscheff array [9]. The comparative
study of these aforementioned synthesis is
reported [10]. From the mathematical viewpoint,
it is apparent that Hermite polynomial which is a
kind of orthogonal polynomial is able to
synthesize the array antenna pattem [1 1]. It will
be revealed in this paper that the nearest to the
furthest minor lobe ratio is extremely high and
the beamwidth is relatively wide comparing
with some other orthogonal polynomial arrays.
This paper presents the characterizations of the
array antenna pattern synthesis providing the
tapered minor lobes for utilizing in radar and
low noise systems. The anay antenna pattern
synthesis using some orthogonal polynomials is
substantially summarized. The anay
characteristics such as radiation pattern, the
maximum to minimum current ratio, half power
beamwidth, first null beamwidth, directivity, the
nearest to the furthest minor lobe ratio and beam
efficiency are carried out. The comparisons
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among the array antenna pattern synthesis
possessing the tapered minor lobe using some
orthogonal polynomials and the conventional
discretized Taylor one parameter and Taylor D
methods are illustrated. The merits and demerits
ofeach method are discussed.

2. Array Factor
To synthesize the array antenna pattem

with the non-uniform amplitude excitations, the
array factor should be first considered. Let us
assume that there is a linear array of .isotropic
efements. These elements are aligned along z
axis and symmetry with the center of the array
and have equi-distance. When the number of the
elements is even, an array factor (AF) can be
written as [1]

N - 2

AF2N@)= f , l , cos [ (2 r  -1 ) ! cos? l .  ( l )
n = l

An array factor for the odd number of the
elements can be expressed as

N+l

AFz**r@ =rl n cosl2(n _� l)4cos7l, (2)
n=l

where 1, is the amplitude current excitation

coefficient, 2N and 2N +1 are the number of
even and odd elements, respectively, d is the
spacing between each element, I is the
wavelength at the operating frequency and d is
the angle between the field direction and the z
axis.

3. Array Antenna Pattern Synthesis
Using Some Orthogonal Polynomials

The mathematical properties of some
orthogonal polynomials which are necessary to
treat the array antenna pattern synthesis are
reported. These properties are very useful in the
computer programming to characterize the array
antenna pattem. The array design procedure of
the pattern synthesis is described, subsequently.

3.lMathematical Properties of Some
Orthogonal Polynomials

Some orthogonal polynomials i.e.,
Legendre, Hermite, the first and the second
kinds Tschebyscheff polynomials will be
utilized to synthesize the array antenna pattern
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in this paper. Since these four polynomials are
types of orthogonal polynomials, they can be
defined on the interval a < x < b with respect to
the weight function, w(x), as [2]

"h

l -  w$ ) f  ̂ ( x \ f  , ( x )dx  =0 ,  (3 )

where ,,)rO and .f,(x) are systems of

polynomials of degrees n and m, respectively.
The weight function is a real and non-negative
value which is the constant factor in each
polynomial. Alternatively, another form of the
orthogonal polynomial, referred to as
standardization, can be written as

where ftr(x) is the function of x and it can be

represented in each polynomial type. The
functions w(x) , hr(x), a and b of Legendre,

Hermite, the first and second kinds
Tschebyscheff polynomials are tabulated in
Table l .

Table 1 Weight functions and limit of
lntesralton

f,(x) w(x) h,(* ) a b

P, (') 2
2n+l I

H, (x ) 2
i T r z  n l - @ @

T,(x)
I l L -  n + 0

\ 2
l n ,  n = 0

I

U , ( " )
I

( l - x 2 1 2
1f

, I

where f,(x), P,(x), H n(x) , T,(r) and

U,(x) denote the general expression of the

orthogonal polynomial, Legendre function,
Hermite function, the first and second kinds
Tschebyscheff functions, respectively. These
four kinds of functions also satisfied the
orthogonal's differential equation as

. d 2 v  . d v
c z $ ) 4 + c , ( x ) i + c o @ ) y = Q .  ( 5 )

dx' ax
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where c2(x) , cr(x), cs(n) are the coefficient

functions. c2(x) and c1(x) are independent of

n, only function of .r but ca(n) depends only

on n. These coefficient functions for four kinds
of orthogonal polynomials are shown in Table 2.

Table 2 Coefficient functions for four kinds
o ials

.f"(x) c z @ ) cr (x) co\n)

PnG) l - x z - 2 x n(n + l)

H,(') I - 2 x 2n

T"(x) l - x z - x n 2

U,( ' ) l - x 2 - 3 x n(n + 2)

Next, in order to find the polynomials of
any orders from the polynomials in which orders
are given, the recurrence relation is used.
Normally, the polynomials of higher orders
would be determined from the polynomials of
lower orders. The general form of recurrence
relation is

a1@)f n*1Q) - a2@)xf ,(x) + a3@)f,1@) = 0,
(6)

where a{n), az(n) and a3@) can be defined

as in Table 3.

Table 3 Coefficients of recurrence relation

f,(r) ar (n ) a z ( n ) a t \ n )

P,(*) n + 1 2 n  + l n

H,(x) 2 2n

T"(x) 2
u,(x) 2

In addition, Rodrigue's formula is the
alternative form of the orthogonal polynomials
in which the polynomials of order n are in the
form of derivative of the weieht and the
coefficient functions as

I  dn r  ' l

. f , (x)=-- - . := [pt ' t {e( ' ) } 'J ,  Q)
anP(x) dx'

where p(x) and g(x) are functions of x,

independent of n and a, is the function of n.

These coefficients are illustrated as in Table 4.

['.1x17] lxSdx = hn(x), (4)
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Tabfe 4 a,, p(x) and g(x)

f,(x) an p(x) c@)
P,(x) ( -1 ) '2n  nr . I l -  x 2

H,(x) ( -  l ) "
-2 I

T,(')
f t n + 1 t

|  - t \n  )n  2

l n

I
( l - x )  2 l - x 2

Ur(x) '  t ' n ^ n + l  
' \ "  

2 '

(n + 1)'l r

-t
( l  - ; ) z l -  x 2

3.2 Array Design Using Some Orthogonal
Polynomials

After Legendre, Hermite, the first and the
second type Tschebyscheff polynomials are
well-studied, the next step is to apply these
polynomials to synthesize the array antenna
pattem. The summation of the cosine term of (1)
and (2) for the case of even and odd elements
will be expanded. The order of harmonic cosine
term is equal to the total number of the elements
minus one and the argument of the cosine term
is the positive integer times of the fundamental
frequency that can be written in the form
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2.Find the order  of  the or thogonal
polynomial by subtracting the total number of
elements by one.

3. Solve the root for the derivative of the
orthogonal polynomial to determine the level of
the first maximum ripple (y,) to form the point
of the peak of the main beam and the first side
lobe.

4.Equate the orthogonal polynomial with
the major to the first minor lobe intensity ratio
(R,). The side lobe of the array pattem can be
established from 0 dB to the first null point
(measured from the main beam) and the main
beam is formed from the first null point to x.

region as depicted in Fig.l.
5 .Normal ize .x ,  to  ensure that  the

magnitude of cosine term is not more than unity,
by dividing by ,..

6. Equate the expanded array factor to the
orthogonal polynomial, the amplitude current
excitation coefficient 1, will be obtained.

After the current excitation coefficients are
known, by substituting into (l) or (2)
corresponding to the even or odd number of
elements, the complete expression of the array
factor can be realized.

If,trtl

+ x
0 x .

Fig. l How to form the main beam and the
minor lobes

4. Array Pattern Synthesis using

Conventional Discretized Taylor One

Parameter and Taylor n Methods
Some other array antenna pattern syntheses

that perform the tapered minor lobe were
proposed by Taylor. They are Taylor one
parameter and Taylor D methods. Taylor one
parameter method was first introduced in
Taylor's unpublished classic memorandum and
the details are widely described by many authors

!3]. In practice, Taylor one parameter method

,  f r )
cos(tz) = cost (r)  -  

[ rJ.oto- ' t r)s in2 
(a;

* | 
frl.or*-o 

1r; sin 4 (z) - . ..
\4 )

-  [ ,  
o  

^ ' l .or '1  u)s ink-2 (u)+ s in*  ( r . r ; ,
\ K - z )

(8)

/ r .  \

*n"r .  (Xf  )=;#; f  andsin2(u)=l  -cos2(r . r ) .

Consequently, the design procedure of
orthogonal polynomial array will be
summarized. Assume that the number of
elements, the spacing between the elements in
terms of wavelength and the ratio of the major to
the first minor lobe intensity ratio are known. To
obtain the array factor the following step can be
applied. From the known number of elements,
we can select the array factor from (l) or (2)
which corresponds to the even or odd number of
elements.

l. Select the appropriate cosine term
function from (8) and substitute in the expanded
array factor.
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is more applicable to the line source distribution.
To apply this method to the discrete array
antenna pattem synthesis, the aperture
distribution must be sampling (discretized). The
amplitude current excitation coefficient can be
calculated from the source distribution, which is
siven as
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as the straightforward problem from the
hyperbola equation as

B : b
(n,(aa) - c)2 r

a 2  

-  t ' (  l 3 )

r ,=ro("aS-() , (e)

where Is(.r) is the modified Bessel function of

the first kind of order zero, related to the
ordinary Bessel function of the first kind of

orderzero ("16(r)) ut

Is(x) = to( i r) (  10)

and ( is the normalized distance along the

overall length ofthe array, which is defined as

a = -'  (u -tV' ( 1 1 )

where z, is the dimension along the array with

the origin at the center of anay and M is the
total number of elements. The constrained value
of { is between -l and 1. B is the constant,

which can be determined from the side lobe
ratio. The B parameter is also called weighting
parameter or one parameter. For the specified
side lobe ratio, the formulation for the relation
between the side lobe ratio R,(dB) and the
weighting parameter is given as [13]

R,(dB) =t3.26+ robc[*4) .  (  r2)

where the cardinal number 13.26 means the side
lobe ratio of the uniform distribution which
occurs when the value of the weighting
parameter vanishes. In the design of the
radiation pattern, we would generally start with
the required side lobe ratio and subsequently
determine the weighting parameter. For this
reason, (12) it is not appropriate for computing
the weighting parameter because it is an inverse
problem. Blanlon [4] presented the alternative
expression for solving the weighting parameter

where a and b represent the hyperbola's semi-
transverse and semi-conjugate axes,
respectively. c is the displacement (in dB) of
the center of the hyperbola measured from the
origin. In the case ofthe line source distribution
the values of a, b and c are, respectively,
22.96,0.9067 and -9.7. The sampling point of
the aperture distribution are set to be

(  l , t  - t \
z "  = - l  - : - - : :  ld  + nd,n =1.2.3, . . . .  P.  (14)" \ 2 )

where

|  + .  M = e v e n
P = l  .'  

l r i . M = o d d
(  1 5 )

Additionally, Taylor also proposed the line
source distribution with the tapered minor lobe
referred to as Taylor D method [5]. To apply
this method to the discrete array antenna pattern
synthesis, various techniques were employed.
They are discretization of the source expression
(aperture sampling) [16], applying the null
matching [7] and using Villeneuve method

[8]. These three methods yield similar results
as reported in reference [16]. Aperture sampling
and null matching are easier than Villeneuve
method but the accuracy is slightly lower than
Villeneuve one. When compared between
aperture sampling and null matching, it is
evident that null matching gives better results
for small arrays and aperture sampling gives
slightly more accurate results for large anays.
However, as the simplest way to determine the
cunent distribution the aperture sampling will
be used in this paper. The cunent distribution of
Taylor i can be expressed as

,, = # *l + zl r Q,,e,r) "*(#fu)f,

t 5

( 1 6 )



n
v - - )

L )  r  .  )
, l  A ' + ( m - + ) -
T L

where the constant A canbe found from

I= Icorh- r . lR , .
7t

5. Numerical Example of the ArraY
Antenna Pattern Synthesis
5.1 Using Some Orthogonal Polynomials

To demonstrate the principle, the linear
discrete broadside array of 10 elements with the
major to first minor lobe intensity ratio of 20.00
dB (which equals 10.00 in dimensionless) with
half wavelength of antenna spacing is illustrated.
To form the maximum value of the main lobe,
the maximum value of the first ripple (y,) aird

the major to the first minor lobe intensity ratio

(R,) are multiplied. The value of x, can be

determined by solving the root of the following
characteristic equation

k rxe  +k rx1  +k5xs  +k3x3  +k1x+ks - -0 ,  ( 21 )

where y* R* kg, kt,  ks, k3, k1 and ko

case of this demonstration are shown as
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Table 5. The value of x- is substituted to

normalize in the cosine term so that

Tabte 5 Coefficients of characteristic equation

.f ,(r) P"(x) H n $ ) T,(x) u "(x)
0 .41 428t52.00 L00 2.25

p 10.00 10.00 10.00 I  0.00

^ 9 94.96 512 .00 256.00 5 12.00

n j -20t.09 -92t6 00 -576.00 - I 024.00
t.
^ 5 t40.77 48384.00 432.00 672.00

k3 -36.09 -80640.00 -120.00 -160.00

t-
^ l 2.46 30240.00 9.00 10.00

^ 0 4 .10 428ts20.00 -10 .00 -22.58

xm 1.04 J . ) t t 1.06 L0 l

By plotting this anay factor as a function of the
angle, it can be shown in Fig.2.

0 (d.O

Fig. 2 Radiation pattern of six arrays

where the space factor of the
distribution can be written as

I tt'-rlrP
|  (n - t t  n l t \n - t  n r l l
I  n - l

r(p.,e.n)= I " n lr-rfl 't
I  m= l

l 0
t

Taylor n

The location ofthe null can be obtained by using

|  < m < t  ( t s )
i < m < a .

The scaline factor is

@ l . n
v l>n .

(17)

( l e )

(20)

1 d ^ . x
cos(- cos 6, ) = -

t t  ^ m

By following step 6 in the design procedure, the
amplitude current excitation coefficients I, can

be obtained as tabulated in Table 6. After the
amplitude current excitation coefficients are
revealed, by substituting that current into ( I ), the
complete expression of the array factor can be
realized.

Table 6 Amplitude
coefficients of

(22)

current excitation

ln

in

Eot

M E

tclents ol sl

f,(x) I l I . I4 I ._)
Pr (x ) 1 .95 L 8 t 1 . 5 4 1 .22 00

H,(x) 6.91 o . t z 5.60 3 . 3 1 00

T,(r ) L56 1.44 | . 2 1 0 9 3 00

u,(r) 2.29 2 1 3 L84 | . 44 00

o,(') 2.88 2 6 4 2 . t 9 t .62 00

N , ( x ) 1 .47 | . 34 1 .06 0.89 00
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5.2 Using Discretized Taylor One Parameter

and Taylor z Method
The linear array of l0 elements of the major

to the first minor lobe intensity ratio of 20.00 dB
with half wavelength spacing of the
conventional discretized Taylor one parameter
and Taylor D methods is also carried out to
compare with those using some orthogonal
polynomials. By using the expression of (9) for
Taylor one parameter and (16) for Taylor re
method, the current distribution of each element
can be determined straightforwardly. The results
of the current distributions of these conventional
methods are also shown in Table 6, where
O, (x) represents Taylor one parameter method

and N,(x) is Taylor D method. The array

factor corresponding to these currents are
plotted together with the synthesis by using
some orthogonal polynomial methods as
illustrated in Fig.2. The discussions for the
results of the radiation patterns will be
mentioned in the subsequent section.

5.3 Comparison of Radiation Characteristics
To evaluate the merit of the antenna for

applying to the radar and low noise system, the
beam efficiency is a very significant parameter.
It is defined as the ratio of the power transmitted
(received) within the main beam to the power
transmitted (received) by the antenna. For the
discrete linear broadside array, beam efficiency
can be formulated as [11l

- , n'\ [^'t l 'ere>l' sinwo
Beam Efficiency(BE)

[[' l'aro>l' sin odo

where d1 is the half angle of the cone where the

first null occurs. Directivity is another important
parameter of the antenna which must be
considered. It is defined as the ratio of the
maximum intensity of the antenna to the
radiation intensity of the isotropic source.
Determination of directivity is done by using [1]

zl,tr6izylz

f;" lerratl'
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In order to compare the tapered minor lobe
distribution characteristics, the nearest to the
furthest minor lobe ratio is defined as the ratio
of the level of the nearest minor lobe to the
furthest minor lobe when the nearest and the
furthest minor lobes are referred to with respect
to the main lobe position.

In case of l0 elements discrete broadside
linear array of )"12 spacing with 20.00 dB side

lobe ratio, the first null angle (d1), beam

efficiency (BE), half power beamwidth

@PBW), first null beamwidth (FNBW) 'and

directivity (Ds ) are determined and the results

are shown in Table 7. It is evident that these
array types yield different characteristics , for
example the discretized Taylor one parameter
provides the highest beam efficiency whereas
the discretized Taylor n performs the narrowest
beamwidth and maximum directivity. The
details ofthe analysis ofthe array characteristics
will be summarized in the next section.

Table 7 Rad charac istics

f,(x)
el

(dee)

BE

l%)

HPBW
(o.e)

FNBW
(a.e)

Do
(asil

P,\x) 75.79 97.86 t .02 28.42 9.16

Hn@) 73.00 99.01 3.05 34.00 9 . 1 0

T"(x) 76.39 96 30 | . 1 7 27.22 9.84

u,(x) 75.54 88.43 | . 7 5 28.93 9.70

o,(x) 74.75 99.12 z.z5 30.50 9.5 5

N , ( r ) 76.50 95.45 L00 27 00 9.85

6. Array Characteristics
In this section, the array characteristics will

be illustrated. The radiation pattems of six
arrays are first revealed for the case of 10
elements of the 20.00 dB side lobe ratio. After
that the other array characteristics such as the
maximum to minimum current ratio, the
beamwidth, the nearest to the furthest minor
lobe ratio, the directivity and the beam
efficiency are illustrated. There are two cases to
demonstrate; Fig.3(a) through Fig.8(a)
demonstrates when the side lobe ratio is fixed at
20.00 dB. but the number of elements is varied,
and Fig.3(a) through Fig.8(a) demonstrates
when the number of elements is fixed at 10, but
the side lobe ratio is varied.

Directivity(Do ) =

sin0d0
(24)



6.1 Radiation Pattern
To gain more insight into the synthesis of

the discrete anay yielding the tapered minor
lobes, the radiation patterns of Legendre,
Hermite and the second kind Tschebyscheff
array are illustrated and compared with the
conventional tapered minor lobe array pattern
i.e., discretized Taylor one parameter and
discretized Taylor n methods as depicted in
Fig.2. The results of these array antenna patterns
possessing the tapered minor lobe are also
compared with the array pattem performing the
uniform minor lobe viz., the first kind
Tschebyscheff array. It can be seen that for
specified 20.00 dB side lobe ratio, Taylor one
parameter belongs to the first side lobe around 2
dB lower than 20.00 dB because this method is
originally applicable to continuous line source
distribution. Therefore, the decrease of side lobe
ratio occurs when this method is applied to
discrete array. In the similar fashion, although
the first side lobe of Taylor n- can be controlled
to be 20.00 dB as desired, the second and the
third side lobes exhibit slightly higher than the
first one. This circumstance is caused from the
error of the discretization and the results will be
better when the number of the elements is
sufficiently large. The levels of all minor lobes
of the first kind Tschebyscheff anay are
identical as known. The minor lobes of the
discretized Taylor i are almost identical
because this method is originally derived from
Dolph-Tschebyscheff one. For Taylor one
parameter, it is evident that the minor lobe
decreases drastically. When compared with
three kinds of orthogonal polynomial arrays, it is
clear that Hermite array has the lowest level of
the far-out minor lobe. The second kind
Tschebyscheff anay possesses slightly more
tapered minor lobe than Legendre array.
However, it is noted that Hermite and
discretized Taylor one parameter arrays have
extremely low furthest minor lobe at the expense
of the wide beamwidth. Although Legendre and
the second kind Tschebyscheff arrays yield the
less tapered minor lobe than Hermite and
discretized Taylor one parameter arrays, their
beamwidths are close to the first kind
Tschebyscheff one which is near optimum.

6.2 Maximum to Minimum Current.Ratio
The maximum to minimum current ratio is

another parameter to characterize the array
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pattem. Fig.3(a) illustrates the maximum to
minimum current ratio as a function of the
number of elements, it is explicit that Hermite
array has very high maximum to minimum
current ratio. The nominal value of the ratio
more than 270 is observed when the number of
the elements exceeds 20. The ratio higher than
this value is too high for fabrication. For other
array types, it is obvious that discretized Taylor
one parameter array gives the highest current
ratio followed by the second kind Tschebyscheff
array. Legendre and the first kind Tschebyscheff
arrays have very similar results whereas the
discretized Taylor n provides the lowest current
ratio. Fig.3(b) shows the maximum to minimum
current ratio for various side lobe ratios. When
the side lobe ratio is less than 33 dB, Hermite
array yields the highest current ratio. However,
the current ratio of the discretized Taylor one
parameter becomes the highest for the side lobe
ratio lower than 33 dB. For the other arrays, the
second kind Tschebyscheff array possesses the
highest ratio and follows, in order, by Legendre,
discretized Taylor i and the first kind
Tschebyscheff arrays. From the'view point of
the current ratio, the feeder structure for the case
of the discretized Taylor one parameter and
Hermite arrays is difficult to construct when the
extremely low side lobe ratio is desired.

o 3 N

Q

.E ]N
E

E -so

* lstkindT$hcblschcff
* 2nd kind Tsh€byschcf
-Di$rctzd 

Trylor onc pdtmct€r
-Disrclad 

Trllor n b&
ffi i i  " /

- . f l

3  4  5  6  7  8  9  1 0  l l  1 2  1 3  1 1  t 5  1 6  1 7  t 8  1 9  2 0
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(a)
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lobe ratio exceeds 37 dB is rapidly increased
because the first null becomes very shallow until
its level is equal to the level of the side lobe.
Hence, the first null point is shifted to be the
second one. This situation always takes place for
the extremel side lobe of the discretized Taylor
i anay.

(b)
Fig.3 (a) Maximum to minimum current ratio
for various number of elements (b) Maximum
to minimum current ratio for various side lobe
ratios

6.3 Beamwidth
The beamwidth; both half power

beamwidth and first null beamwidth of six
arrays are illustrated in Fig.4 and Fig.5,
respectively. Figs.4(a) and 5(a) illustrate the half
power beamwidth and the first null beamwidth
as a function of the number of elements. These
beamwidths have the same trends, i.e., the
discretized Taylor one parameter and discretized
Taylor i arrays give the wider beamwidth than
the other ones. It is noted that the beamwidth of
these two arrays in the event of the odd elements
exhibits wider beamwidth than the even
elements because the aperture sampling
techniques cause eror for the small number of
elements. This difference becomes decreased
when the number of the elements is higher. The
first kind Tschebyscheff array performs the
narrowest beamwidth as expebted. Legendre and
the second kind Tschebyscheffarrays have very
similar results of the beamwidth. However, the
beamwidth of Hermite array is the highest when
the number of the elements exceed 10. For
various side lobe ratios, half power beamwidth
and first null beamwidth are depicted as shown
in Figs.4(b) and 5(b), respectively. These results
are similar to each other. For small side lobe
ratio, Hermite anay has the widest beamwidth.
In contcast the discretized Taylor one parameter
anay provides the widest beamwidth for the
large side lobe ratio. The beamwidth are
descending as follows; the second kind
Tschebyscheff array, Legendre aftay, the
discretized Taylor n anay and the first kind
Tschebyscheff array. The first null beamwidth
of the discretized Taylor n array for the side
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Fig.5 (a) First null beamwidth for various
number of elements (b) First null beamwidth for
various side lobe ratios

6.4 The Nearest to the Furthest Minor Lobe
(N/T) Ratio

The nearest to the furthest (measured with
respect to the main beam) minor lobes ratio is
defined to compare the tapered minor lobe
characteristics. N/F ratio versus the number of
elements and side lobe ratios are plotted in
Figs.6(a) and 6(b), respectively. As expected,
Hermite array provides the highest N/F ratio and
is followed, in order, by the second kind
Tschebyscheff anay, Legendre anay and the
first kind Tschebyscheff array, respectively. N/F
ratio of the discretized Taylor one parameter and
discretized Taylor i arrays are non-uniform
because the degradation of the side lobe from
the sampling occurred. It is mentioned that for
the number of elements less than 6, some array
antenna pattem exhibit no side lobe. Therefore,
N/F ratio does not appear in Fig.6(a). From
Fig.6(b), it is apparent that although the side
lobe ratio is varied, Hermite, the second kind
Tschebyscheff, Legendre, the first kind
Tschebyscheff arrays have the constant N/F
ratio of 35, 7, 5 and 0 dB, respectively. The
discretized Taylor one parameter and discretized
Taylor n arrays possess the non-uniform N/I
ratio. The N/F ratio is changed as the side lobe
ratio is varied. Their N/F ratios do not converge
to any certain value according to the
deterioration of the side lobe from the sampling
process.
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Fig.6 (a) The nearest to the furthest minor lobe
ratio for various number of elements (b) The
nearest to the furthest minor lobe ratio for
various side lobe ratios

6.5 Directivity
Directivity of all arrays for various number

of elements and side lobe ratios are plotted as
shown in Figs.7(a) and 7(b), respectively. The
values of the directivity correspond to the
beamwidth i.e., the narrow beamwidth leads to
the high directivity and vice versa. lt is evident
that the directivity of the second kind
Tschebyscheff, Legendre and the first kind
Tschebyscheff arrays are almost identical. The
discretized Taylor i and discretized Taylor one
parameter array possess the directivity slightly
lower than those three arrays. Furthermore, the
directivity of these discretized Taylor anays of
even elements is higher than the odd elements.
The reason is that the current distribution at the
end of the anay for odd elements is not
distributed in the same manner as in even
elements which affects the directivify. The
directivity of Hermite array is the lowest as
expected due to very wide beamwidth. When the
side lobe is varied at the fixed number of
elements as illustrated in Fig.7(b), the directivity
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of all arrays are similar. They are decreased
from higher to lower value as follows; the first
kind Tschebyscheff, Legendre, the discretized
Taylor n, the second kind Tschebyscheff, the
discretized Taylor one parameter and Hermite
arrays, respectively.
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respectively. Alternatively, when the side lobe
ratio is varied at the constant number of
elements as shown in Fig.8(b), it is seen that
beam efficiency of all the arrays is greater than
96Y".The beam efficiency tends to l00o/o when
the side lobe ratio approaches 40 dB. The
discretized Taylor one parameter array achieves
the highest beam efficiency followed, in order,
by Hermite, the second kind Tschebyscheff,'Legendre 

and the first kind Tschebyscheffor the
discretized Taylor - arrays. The beam
efficiency of the discretized Taylor n is not
decreased in the same fashion as the other arrays
due to the change ofthe null angle as described
in the previous section.
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Fig.7 (a) Directivity for various number of
elements (b) Directivity for various side lobe
ratios

6.6 Beam Efficiency
Beam efficiency is defined as the ratio ofthe

power, distributed to the main lobe, to the total
radiated power. For some applications, it is
desirable to yield the tapered minor lobe as well
as the high beam efficiency. Fig.8(a) illushates
the beam efficiency for various number of
elements. It is evident that beam efficiency of
Hermite array is the highest and it is followed by
the discretized Taylor one parameter array of the
even elements, the second kind Tschebyscheff
array, Legendre array, the discretized Taylor D
array of the even elements, the first kind
Tschebyscheff anay, the discretized Taylor one
parameter array of odd elements and the
discretized Taylor i array of the odd elements,
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Fig.8 (a) Beam efficiency for various number of
elements (b) Beam efficiency for various side
lobe ratios

7. Conclusions
Array characteristics of the Legendre,

Hermite, the second kind Tschebyscheff,
discretized Taylor one parameter, discretized
Taylor i and the first kind Tschebyscheff
arrays are comparatively studied. The radiation
patterns, the maximum to minimum current
ratio, beamwidth, directivity, the nearest to the
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furthest minor lobe ratio and beam efficiency are
characterized and compared. It is obvious that
the first kind Tschebyscheff array has uniform
minor lobe distributions. Thus, the noise or
spurious signals can enter through those tapered
minor lobes. It is not suitable for low noise
systems. For the arrays with the tapered minor
lobe, Hermite array has the highest N/F ratio but
a very high maximum to minimum current ratio,
especially when the number of elements exceed
20, this drops our further interest in applications.
The discretized Taylor one parameter and the
discretized Taylor i anays are alternative ways
to accomplish the appropriate characteristics for
applying to radar and low noise systems.
However, since these two methods are originally
applicable for the continuous line source, the
discretization for small number of elements
maybe causes some errors and leads to the non-
uniform characteristics. Eventually, Legendre
and the second kind Tschebyscheff arrays yield
the tapered minor lobes with narrow beamwidth,
low maximum to minimum current ratio, high
directivity, high N/F ratio and high beam
efficiency. Even though their characteristics are
not dominant as in the other arrays, it is
acceptable from the view point of all average
properties. However, it can be expressed that it
is possible to use all of the wrays presented in
this paper in radar and communication with low
noise systems. Furthermore, for practical
applications the choice to use these array types
can be made according to the individual
characteristic requirements. For instance, if the
number of elements is small. the side lobe is
low, and a high N/I ratio as well as high beam
e{ficiency are necessary, Hermite array is the
most appropriate.

8. References

tll Balanis, C. A., Antenna Theory Analysis

and Design, John Wiley & Sons, 1997.

[2] Stone, J. S., United States Patents No.

1,643,323 and No. 1,7 15,433.

[3] Ricardi, L J., Radiation Properties of the

Binomial Anay, Microwave J., vol.l5,
no.l2, pp.20-21, Dec. 1972.

[4] Dolph, L. J., A Current Distribution for

Broadside Arrays Which Optimized the
Relationship Between Beamwidth and
Side-Lobe Level. Proc. IRE, Vol.34,
pp.335-348,  June 1948.

Thammasat Int. J. Sc. Tech., Vol.6, No.2, May-August 2001

[5] Rashid, A., Legendre Distribution for

Radiation Pattern, IEEE Trans. Antennas &
Propagat., Vol.l6, no.5, pp.598-599, Sep.
1968.

[6] Phongcharoenpanich, V., Krairiksh,

V.,Meksamoot, K., and Wakabayashi, T.,
Legendre anay, Proceedings of the 1997
Thailand-Japan Joint Symposium on
Antennas and Propagation, pp. 195-201,
May 1997.

[7] Phongcharoenpanich, C., and Krairiksh, M.,

The Discrete Anay Pattem Synthesis
Which Provides the Tapered Minor Lobes,
Thammasat Int. J. Sc. Tech.,Yol.3, pp.80-
87, July 1998.

[8] Phongcharoenpanich, C., and Krairiksh, M.,

Discrete Array Pattem Synthesis by Using
Some Orthogonal Polynomials,
Proceedings of the 1998 IEEE Asia-Pacific
Conference on Communications,
Singapore, Vol. l, pp. 433-437, Nov. 1998.

[9] Phongcharoenpanich, C., and Krairiksh, M.,

Second Kind Tschebyscheff Anay,
Proceedings of the 1999 Progress in
Electromagnetics Research Symposium,
Taipei, Vol.l, p.107, July 1999.

[0] Phongcharoenpanich, C., Lertwiriyaprapa,

T., and Krairiksh, M., A Comparative
Study of the Discrete Anay Pattern
Synthesis Providing the Tapered Minor
Lobes, Proceedings of the 2000 IEEE
International Symposium on Antennas and
Propagation and USNC/URSI National
Radio Science Meeting, Utah, Vol.3,
pp.1 126-1229, July 2000.

I l] El-Kamchouchi, H., and El-Araby, N.,

Exact Generalized Polynomial Array
Synthesis, Proceedings ofthe 17th National
Radio Science Conference, pp.224-231,
Feb. 2000.

[2] Abramowitz M., and Stegen, I. A.,

Handbook of Mathematical Functions,
Dover Publication Inc., 1970.

[3] Hansen, R, C., Phased Anay Antennas,

John Wiley & Son Inc., 1998.

[4] Blanton, L., Approximations for

Computing the Weighting Parameters for
One-Parameter Taylor and Hansen
Aperture Distributions, H.Schrank (ed.),
IEEE Antennas and Propagation Magazine,
Vol.34, no.4, pp.34-35, Aug.1992.

80



[15] Taylor, T. T., Design of Line-Source

Antennas for Narrow Beamwidth and Low
Side-Lobes, IRE Trans. Antenna &
Propagat., Vol.AP-3, no.l, pp.l6-28,
Jan. l955.

[6] Pozar, D. M., Antenna Design Using

Personal Computer, Artech House Inc.,
I  985 .

[7] Elliott, R. S., On Discretizing Continuous

Aperture Distributions, IEEE Trans.

Thammasat Int. J. Sc. Tech., Vol.6, No.2, May-August 2001

Antennas & Propagat., vol.AP-25, no.5,
pp .6 r7 -621 ,Sep .  1977 .

[18] Villeneuve, A. T., Taylor Pattems for
Discrete Arrays, IEEE Trans. Antennas &
Propagat., Vol.AP-32, no.10, pp.l089-
1093,  Oct .  1984.


