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Abstract
Genetic programming (GP) is a novel paradigm that simulates the way of solving problems by

nature according to Darwin's theory of fitness-driven natural selection. Instead of using bit strings as
in genetic algorithm (GA), GP uses tree structures as its computing structures. As computer programs
can be represented as trees, GP has been employed as a method of generating computer programs. In
the work reported in this paper, GP is applied to the graph-coloring problem, an NP-complete problem
which is an abstraction of many real-world practical problems, with expectation of constructing com-
puter programs that are capable of computing approximations of the optimal solutions to many in-
stances of the problem. The resulting computer programs are analyzed and their performance is com-
pared with two existing commonly used approximation algorithms for graph coloring, i.e., the sequ€n-
tial coloring algorithms with random coloring order and with maximal-to-minimal-degree coloring
order.
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1. Introduction programs 16,7,81, it is also known as evolution-

Various computing paradigms in artificial ary programming.

intelligence, including inductive leaming, artifi- While a conventional genetic algorithm

cial neural networks, conventional genetic algo- (GA) is typically used when the solution to an

rithms, etc., have been proposed as responses to instance of a problem can be easily represented

one of the central questions in computer science: aq a value or a set of values, GP is more often
"How. can computers leam to solve problems used when the solution is a particular behavior

without being explicitly programmed? !2]" or function. In this paper, GP is applied to the

Computation in these paradigms is based on graph-coloring problem, an NP-complete prob-

some specialized structures, such as flat records lem, the optimal solutions to instances of which

of obsirvable properties, vectors of weights, can, in general not be determined by means of

chromosome strings (bit strings), etc. However, any known deterministic algorithm in polyno-

such specialized structures are often unnatural mial time. In contrast with most of the applica-

and impose some constraints on solving prob- tions of GP, which attempt either to directly ap-

lems [i]. Based on the basic idea that tree proximate the optimal solution to some specific

structures are more flexible and provide more instance of a problem or to generate a computer

expressive power, the genetic programming program for solving some specific problem in-

(Gp) paradigm [2,5] has emerged as a promising stance, this paper aims at studying the possibil-

*"y of nnJing p.obl". solutions encoded as ity of applying GP to the construction of com-

trees. As computer programs themselves can be puter programs that can be used for solving the

represented ur tr""r, GP has been applied in di- graph-coloring problem in general. Two groups

verse fields as a method of evolving computer of experiments have been conducted. The per-



formance of the constructed computer programs
is investigated by comparing them with existing
widely used approximation algorithms for graph
coloring, i.e., the sequential coloring algorithm
with random coloring order and the sequential
coloring algorithm with maximal-to-minimal-
degree coloring order.

The rest of this paper is organized as fol-
lows. Section 2 recalls the graph-coloring
problem along with some of its practical exam-
ples. Section 3 presents the experimental results
and analyzes the performance and the internal
structures of the generated programs. Section 4
discusses some related works and draws conclu-
sions.

2. The Graph-Coloring Problem
The graph-coloring problem is an NP-

complete problem - one of the hardest problems
in the class NP (non-deterministic polynomial
problems). The problem can be formalized as
follows. An assignment of colors to a graph G =

(V, E) is a mapping C:V -+ S, where S is a finite
set of colors, which are normally represented as
integers, such that if (v, w) e E then C(v) * C
(w); in other words, the same color is not as-
signed to adjacent vertices. Given a graph, the
problem is to find the minimum number pf col-
ors needed for coloring the graph according to
the above requirement. This minimum number
is also referred to as the chromatic number of
the given graph.

The graph-coloring problem is an abstraction
of many real-world problems [], such as time-
table scheduling, radio-frequency assignment,
registers allocation in compiler construction, and
printed circuit board testing, etc. For example,
in scheduling lecture classes at a school, each
lecture class can be represented as a vertex, each
lecture-time period as a color, and a conflict
between two lecture classes that cannot be
scheduled at the same time as an edge, and then,
the chromatic number will conespond to the
minimum number of lecture-time periods re-
quired. Likewise, in assignment of program
variables to hardware registers during program
compilation, where one variable is considered to
be in conflict with another variable if the former
is used, both before and after the latter within a
short period of execution time, each variable can
be represented as a vertex, each hardware regis-
ter as a color, and a conflict between fwo vari-
ables as an edge, and, consequently, the chro-
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matic number will indicate the minimum num-
ber ofregisters needed. In testing printed circuit
boards for unintended short circuits. a net on a
board can be viewed as a vertex, a possibility of
a short circuit between two nets as an edge, and,
then, an assignment of colors will partition the
nets into supernets, which can be simultaneously
tested for existence of short circuits, thereby
speeding up the testing process.

As the problem is NP-complete, there is no
known deterministic algorithm that can always
find the chromatic number of a graph in poly-
nomial-bounded time. In practice, heuristic al-
gorithms have been employed for approximating
the chromatic numbers of graphs.

Sequential Coloring Algorithms
Several heuristic algorithms for graph col-

oring have been proposed [9]. Among them, the
class of sequential coloring algorithms (SC algo-
rithms) is best known and most widely used. An
algorithm in this class can be described as fol-
lows:

Algorithm: SC Algorithm
Input: a graph G.
Output: the chromatic number K of G.
l. [Initialization] K :: 0.
2. [Cycle] While there is an uncolored vertex

in G, repeat the following three steps:
2(a) [Choose a vertex] Choose an uncolored

vertex v in G.
2(b) [Determine the color] Find the minimum

integer 6 such that no vertex adjacent to v
has already been colored by D.

2(c) [Color the chosen vertex] Color v by D,
and if K < 6, then K := b.

The order ofvertices to be chosen in Step 2
(a) above characterizes the SC algorithm. If a
vertex is randomly selected from the set of un-
colored vertices, the algorithm is called the ,SC
algorithm with random co.loring order. If a
vertex with maximal degree' is selected from the
set of uncolored vertices in that step, the algo-
rithm is called the SC algorithm with maximal-
to-minimal-degree coloring order. For short, in
the sequel, these two algorithms will be referred
to as the Random SC algorithm and the Max-
min SC algorithm, respectively.

t 
The deg.". of a vertex is the number of edges associated

with the vertex.



3. Experiments
Two groups of experiments, i.e., Groups A

and B, have been conducted using lilgt version
l.l genetic programming system [13] running
on Sun Ultra-I0 workstations. Each group

comprises four experiments. The experiments in

the same group use the same Problem
formulation and control parameters but different
sets of fitness cases.

3.1 Group-A Experiments
There are four experiments in Group A, i'e.,

Experiments I, II, III and IV. The problem for-
mulation, specifuing the set of terminals, the set
of functions as well as the fitness measure, and
the control parameters used in these experiments
are described below.

Problem Formulation

Terminal Set: Seventeen primitive operations,
listed in Table l. are used as terminals. Most of

them are operations for traversing graphs; for

example, move from the current vertex to an

unvisited vertex having maximal degree ('mv-

gmx-nvsted'), and move to an uncolored ver-

tex adjacent to the current vertex ('*.t-

ncol red ' ) ,  e tc .

Function Sel.' Functions are operators that ap-
pear as interior nodes in program trees. Six

functions, listed in Table 2, are used. They are

determined by basic control-flow statements,
i.e., sequential, conditional, and iterative state-

ments.

Fitness Measure: In each generation of a GP

run, the fitness of an evolved program is evalu-

ated by testing the program with a set ofgraphs,

called finess cases. Each set of fitness cases

consists of 100 randomly generated^ graphs

having the same edge-density value.' Each

graph is connected, i.e., each vertex in the graph

is adjacent to some other vertex, and contains at

most 100 vertices. The edge-density values of

the graphs in the sets of fitness cases used in

Experiments I, II, III, and IV are 0.1' 0.2, 0'5

and 0.8, respectively; and the four sets offitness

2 The edge-density value ofa graph G having n vertices is

the ratio of the number of edges in G to the maximum

number of edges that a graph with ,, vertices can contaln'

That is, ifthe number ofedges in G is N5, then the edge-

density value of G is 2Npln(n'l).
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cases are referred to as FC-O.1, FC-0.2, FC-0.5
and FC-0.8, respectively.

Each program in an experiment is tested
with all graphs in the set of fitness cases for that
experiment, one graph at a time. Testing a pfo-
gram P with a graph G terminates when P has
colored all vertices in G or the amount of time P
has spent exceeds the time limit specified by the
maximum-evaluation-time control parameter.
The evaluation time is estimated using the num-
ber of applications of primitive operations. That
is, the execution of each terminal is assumed to
take one logical time unit, while the execution of
a function, which is typically a control-flow
statement, is assumed to take zero time. This
evaluation time is merely an approximation, and
is not directly used in determining the perform-
ance of a program.

As the primary goal of a graph-coloring
program is to find the minimum number of col-

ors required, the performance of a program is

measured by the number of colors it uses, i.e., a
program using fewer colors has better perform-

ance. Accordingly, some fitness measure terms
are defined as follows. The raw fitness,f., is the
total number of colors' used in coloring all
graphs in a set of fitness cases within the maxi-
mum fitness evaluation time. If some graph is

not successfully colored, some penalty, i'e., the

number of uncolored vertices times the constant
10, will be added to the raw fitness. In this
problem, since the raw fitness should be mini-
mized, the raw fitness is also used as the stan-
dardized fitness,f. As usual, the adjusted fit-
ness,,f, is derived.from the standardized fitness

bV f" = (l +,[I'. The number of hits is the

number of graphs that are colored successfully
(no uncolored vertex left) in a set of fitness
cases.

Control Parameters
The major control parameters specified for

a GP run in each experiment are as follows: the

maximum number of generations is 1001' The

population size is 500. The depth of a program

tree in the initial population is between 2 and 6.

The maximum depth of a program tree is 17.

The probability of crossover is 0.9; the prob-

ability of internal crossover point is 0.9; the
probability of external crossover point is 0.1;

3 
Since the main task ofan evolved program is to approxi'

mate the chromatic number of a graph, the colors used in

coloring different graphs are considered to be all different.



and the probability of reproduction is 0.1. In
order to generate program trees having a wide
variety ofsizes and shapes, the ramped half-and-
half method [5] is used for generating the initial
population. The maximum fitness evaluation
time is specified as 30,000 logical time units.

Benchmark Graphs
Twelve graphs, the chromatic numbers of

which are known beforehand. are used as
benchmarks for comparing the performance of
evolved programs with the Random SC algo-
rithm and the Maxmin SC algorithm. These
twelve benchmark graphs, which are taken from

[0], are characterized in Table 3.

Group-A Experimental Results
Table 4 shows the total number of colors

used by the Random SC algorithm and the
Maxmin SC algorithm when they are tested with
the four sets of fitness cases and the twelve
benchmark graphs, whereas Table 5 shows the
performance of the best-so-far evolved pro-
gramso of the experiments in Group A. The ta-
bles indicate that for their respective sets of fit-
ness cases, the best-so-far evolved programs
perform better than both the Random SC algo-
rithm and the Maxmin SC algorithm. However,
when they are tested with the benchmark graphs,
the best-so-far evolved programs of Experiments
I and III fail to color the benchmark graphs en-
tirely due to the specified time constraint, while
those of Experiments II and IV yield satisfactory
results in comparison with the two SC algo-
rithms, i.e., they use 40 and 43 colors, respec-
tively, fewer than the Random SC algorithm,
and use only 7 and 4 colors (0.0276% and
01159%), respectively, more than the Maxmin
SC algorithm.

Figure I shows the adjusted fitness curves
of the GP runs in the experiments in Group A.
As signified by the figure, the development of
the evolved programs in these experiments is
unsatisfactory in comparison with a normal GP
run. In particular, the adjusted fitness curves of
the GP runs in Experiments I, II, and III exhibit
wide swings and seem not to converge to any
particular value.

a 
In this paper, the best-so-far evolved program of an ex-

periment is the program of which the raw fitness is not
higher than any other evolved program in any generation in
that exDeriment.
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3.2 Group-BExperiments
In order to improve the development of

evolved programs, and to enhance the perform-
ance of the generated programs, especially the
programs obtained from Experiments I and III,
the set of functions and the set of terminals are
revised, and another group of experiments, i.e.,
Group B, has been conducted. This group con-
sists of Experiments V, VI, VII and VIII. The
sets of fitness cases used in Group A are also
employed in this group, i.e., the sets FC-0.1, FC-
0.2, FC-0.5 and FC-0.8 of fitness cases are used
in Experiments V, VI, VII and VIII, respec-
tively. The same set of benchmark graphs (see
Table 3) are used.

Revised Problem Formulation
Using the problem formulation of Group A,

all the evolved programs that succeed in as-
signing colors to graphs contain at least one oc-
currence of the terminal 'co1or', and most of
them have at least one occurrence of the func-
tion 'f or-a11-vertces'. The terminal
'color' must be applied to each vertex in a
graph at least once, otherwise assignment of
colors will not be complete. The function 'f or-
all-vertces' is also nec€ssary for traversing
all vertices in a graph.s From this observation
and the unsatisfactory development of programs
in the experiments in Group A, the authors hy-
pothesize that evolutionary construction of com-
puter programs should not depend on any par-
ticular necessary terminal and/or function, oth-
erwise the structures of evolved programs will
be constrained to have some specific content and
the variety of evolved programs will be reduced.
Based on this hypothesis, the terminal 'col-or'

and the function 'for-aIL-vertces' are
identified to be inappropriate.

Accordingly, the set of terminals and the set
of functions are revised. The terminal 'col-or'

is removed, and its operation (i.e., assigning the
minimum possible color to the current vertex) is
instead incorporated into the traversing-related
terminals. For example, the traversing-related
terminal 'mv-gmx-ncol-red' is now modified
in such a way that after moving to an uncolored
vertex with globally maximal degree, the mini-

5 Although a cascade of ' for-a1f-neighbs' is a pos-
sible altemative, it would result in a large program struc-
ture.



mum possible color will be assigned to the cur-
rent vertex. All other traversing-related termi-
nals are also modified in this way. After such
modification, some terminal now has exactly the
same operation as another, €.g.r since a vertex
will now always be colored whenever it is vis-
ited, the terminal 'mv-gmx-ncolred' and 'mv-

gmx-nvsted' perform the same task. Termi-
nals with duplicate operations are also removed.
The resulting terminal set consists of l0 termi-
nals, i.e., those marked with 'x' in the third col-
umn of Table l.

Based on the hypothesis, the function'for-
all-vertces' is also removed from the func-
tion set. Instead, it is assumed that every
evolved program will be executed iteratively by
some external control mechanism until there is
no uncolored vertex left. With such implicit
extemal control mechanism. the function 'for-

al}-neighbs' can also be removed. Further-
more, the functions ' if-colred' and ' if-

ncolred' are now unnecessary due to the revi-
sion of the terminal set6 and are also removed.
The revised set of functions, used in Group B,
therefore contains only two functions, i.e.,
' p roq2 'and 'p rog3 ' .

It is worth remarking that the removal of the
func t i on ' f o r -a1 f - ve r t ces '  has  ano the r
merit. This function consumes a considerable
amount of time in fitness evaluation since its
argument is applied to all vertices in the graph.
In particular, when an evolved program contains
several occurrences of this function and a given
graph has many vertices, the evolved program is
likely to fail to color the given graph within the
specified time limit. With the revised set of
functions, an evolved program tends to require
much less time to color a graph. The maximum
fitness evaluation time is thus reduced from
30,000 logical time units for Group A to 3,000
logical time units for Group B. Other control
parameters are unchanged.

Group-B Experimental Results
Figure 2 shows the adjusted fitness curves

of the GP runs in the Group-B experiments, and
Table 6 shows the total number of colors used
by the best-so-far programs of these experiments
in coloring their respective sets of fitness cases
and the benchmark graphs. They indicate that

6 
Using the revised set of terminals, the current vertex will

always be colored.
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the results obtained from the GP runs in Group
B are better than those in Group A in terms of
both the development of evolved program trees
and their performance.

As demonstrated by Tables 4 and 6, the per-
formance of the best-so-far evolved programs of
the experiments in Group B is significantly bet-
ter than that of the Random SC algorithm, i.e.,
the best-so-far evolved programs of Experiments
V, VI VII and VIII use 67, 91,124 and 168 col-
ors, respectively, fewer in coloring the graphs in
their respective sets offitness cases, and use 31,
43,43, and 39 colors, respectively, fewer in col-
oring the benchmark graphs. In comparison
with the Maxmin SC algorithm, these best-so-far
programs have slightly better performance in
coloring their respective sets of fitness cases,
i.e., they use 12, 15, l8 and 5 colors, respec-
tively, fewer. However, when tested with the
benchmark graphs, the performance of the
Maxmin SC algorithm is slightly better, i.e., the
Maxmin SC algorithm uses 16, 4, 4 and 8 colors
fewer (0.0608%, 0.01590 , 0.0159% and
0.0314% better) than the best-so-far programs of
Experiments V, VI, VII and VIII, respectively,
in coloring the twelve benchmark graphs en-
tirely. Notwithstanding, it should be remarked
that, as will be seen in the next subsection,
evolved programs with exactly the same
performance as the Maxmin SC algorithm are
also obtained from some experiments in Group
B .

3.3 Analisis of Evolved Programs
To illustrate some program trees obtained

from the GP runs in Group B, the best-so-far
programs of Experiment V (obtained from Gen-
eration #41 5) and Experiment VI (obtained from
Generation #741) are shown in Figures 3 and 4,
respectively.? When tested with the benchmark
graphs, the performance of the program tree in
Figure 4 is better than that ofthe program tree in
Figure 3 (it uses 12 colors fewer). Observe that
the majority (13 out of 19 or 68.4%) of the ter-
minals in the program tree in Figure 4 is 'mv-

gmx-ncol red ' .
In Experiments VI and VIII, GP also gen-

erates several programs that have almost the

t In th" experiments, program trees are represented as S-
expressions. For the sake of readability, however, the pro-
grams trees illustrated in this paper are presented in a
graphical form.



same or exactly the same performance as the
Maxmin SC algorithm when tested with the
twelve benchmark graphs. Such programs in-
clude the fourth best programs of Experiment
VI, shown in Figures 5 and 6, and the second
best programs of Experiment VIII, shown in
Figures 7 and 8.

A closer examination of the results reveals
that evolved programs which produce good col-
oring results for the benchmark graphs in com-
parison with the Maxmin SC algorithm (such as
those in F igures 4,5,6,7 and 8)  main ly  use the
terminal 'mv-gmx-ncolred' as their coloring
strategy. As the Maxmin SC algorithm uses the
terminal 'mv-gmx-ncolred' solely as its trav-
ersing operation, these programs can be consid-
ered as variants of the Maxmin SC algorithm. It
should be noted that in company with some
other terminals, such as 'mv', 'mv-max', and
'mv-vsted', some of these variants perform
even better than the Maxmin SC algorithm for
their respective sets of fitness cases. For exam-
ple, the programs in Figures 5 and 6 both use
619 colors, while the Maxmin SC algorithm
uses 625 colors, in coloring the graphs in the set
FC-0.2 of fitness-cases. Moreover, some pro-
gram trees that work exactly in the same way
and have exactly the same performance as the
Maxmin SC algorithm are also generated, e.g.,
the program tree in Figure 8, which is con-
structed in Generation #941 of Experiment VIII.

4. Related Works and Conclusions
Both GP and the conventional genetic algo-

rithm (GA) simulate the way of solving prob-
lems by nature according to Darwin's theory of
fitness-driven natural selection, i.e., fitter indi-
viduals survive and reproduce at a higher rate
than other individuals. GA, however, employs
passive chromosome strings (bit strings) as its
underlying computing structures, and a chromo-
some string obtained from GA can merely repre-
sent a solution to a single specific instance of a
problem. ln the graph-coloring problem, for ex-

ample, an entire process of GA run is required in

order to approximate the chromatic number of
an individual graph. By contrast, GP uses more
flexible and more powerful computing struc-
tures, which may represent either a direct solu-
tion to an instance of a problem or a program
tree for solving some problem instance' As a
program tree is, in a sense, an active structure, it
may also be possible to gradually construct by
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means of GP a general computer program that
can be used for solving some class of problem
instances.

In [3,4,11], GP has been employed as a
method of approximating the optimal solutions
to NP problems. Nonetheless, in these works,
an approximate solution is specific to only a
particular problem instance. For example, in [3],
GP is applied to the facility layout problem
(FLP), which is an NP-complete combinatorial
optimization problem, in order to generate a
slicing tree structure (STS) representing an ap-
proximation of the optimal arrangement of a
given collection of facil i t ies. Such a slicing tree
is, however, a passive binary tree, in which each
terminal node simply represents a facility and
each interior node expresses the relation be-
tween its children substructures, and does not
represent a computer program. In [4,11], GP is
employed to solve the minimum clique problem,
another NP-complete problem, by generating a
program tree for finding the largest complete
subgraph ofa given graph, but the resulting pro-
gram tree is specifically tailored for the given
graph only.

The primary objective of the effort reported
in this paper is to study the possibility of apply-
ing GP to the construction of general computer
programs for solving the graph-coloring prob-
lem. Since the resulting programs are expected
not to be specific to any particular graph (in-
stance of the problem), a set of fitness cases is
used in each experiment instead of a single fit-
ness case as in usual GP applications. After the
revision of the problem formulation of the
Group-A experiments, the best-so-far evolved
programs of the experiments in Group B can
successfully color all the benchmark graphs. In
terms of performance, the best-so-far evolved
programs yield far better approximations of the
chromatic numbers of both the graphs in their
respective sets of fitness cases and the bench-
mark graphs than the Random SC algorithm,
and produce approximations which are compa-
rable to those computed by the Maxmin SC al-
gorithm. In particular, as seen in Subsection
3.3, ifone takes not only the best-so-far program
of a particular experiment, but a set consisting of
a few top programs (for example, the top three
programs) of each experiment in Group B as the
result of program construction, then the best
coloring results obtained from the programs in
this set are at least as good as the results ob-



tained from the Maxmin SC algorithm, both for
the sets of fitness cases and the benchmark
graphs.

Close analysis of the internal structures of
the constructed programs shows that the pro-
gram trees that either are variants of, or work in
the same way as the Maxmin SC algorithm bear
good coloring results, especially for the bench-
mark graphs. To the authors' knowledge, the
Maxmin SC algorithm is the best human-known
graph-coloring algorithm that can be constructed
out of the terminals and functions used in the
experiments. This work therefore provides evi-
dence supporting the application of GP to com-
puter program synthesis. Given a new problem
for which no known algorithm already exists
and a set of basic operations and functions that
are supposed to be used, GP can be fairly ex-
pected to gradually construct good computer
programs for solving at least some class of in-
stances of the problem.

More evidence supporting such application
of GP may be gained by conducting further ex-
periments with some other well-known prob-
lems, such as the bin-packing problem, the
knapsack problem, the Hamiltonian cycle prob-
lem, and the traveling salesperson problem [1,9],
and comparing the internal structures and the
performance of resulting computer programs
with human-known algorithms that can be de-
rived from the terminals and functions used in
their respective experiments.
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Table l: Terminals
The terminals in the entries marked with 'x' in the second and the third columns are used tn

the Group-A experiments and the Group-B experiments, respectively.

Table 2: Functions
The functions in the entries marked with 'x' in the second and the third columns are used in

the Group-A experiments and the Group-B experiments, respectively.
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Graphs
Random

sc
Maxmin

sc
FC-0.l
FC-0.2
FC-0.5
FC-0.8

Benchmarks

497
701
1285
2t39
294

442
625
1179
t976
247

Term ina l
Group

A
Group

B
Description

c o I  o r

mv
h \ , - ^ h v - n . ^ l  r a d

mv-gmx-nvs  ceo

mv- gmx -vs E e o

mv-  gmx -vs  t  e  d -nco f  re  d
m r ' - d m h - ^ ^ ^ l  r a d

mv-gmn-nvs teo

mv-gmn-vs ted

mv-gm-vs  ted-nco l  red

mv-max

mv-min

mv-nco l red

mv-nvs ted

mv-vs ted

m v - v s t e d - n c o l r e d

nop

X

X

X

X

x

x

X

X

X

X

X

X

X
x

x

X

x
x

Assign the minimum possible color to the current vertex.
Move to the first adjacent vertex.
Move to a globally maximal degree, uncolored vertex.
Move to a globally maximal degree, unvisited vertex.
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Apply the argument to all adjacent vertices.
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Apply the first argument if the current vertex is colored;
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Apply the two arguments consecutively.
Aoolv the three arguments consecutively.
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Table 3: Characteristics of the Benchmark graphs

Table 4: Performance of the two SC algorithms



Table 5:
Performance of the best-so-far programs in Group A
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Table 6:
Performance of the best-so-far programs in Group B
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Figure l: Adjusted fitness of the best-of-generation programs of the Group-A experiments

Figure 2: Adjusted fitness of the best-of-generation programs of the Group-B experiments
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Figure 3:
The best-so-far program of Experiment V

(Raw fitness : 430; 263 colors for the benchmarks)
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Figure 4:
The best-so-far program of Experiment VI

(Raw fitness :610; 251 colors for the benchmarks)

Figure 6:
One of the 4th best programs of Experiment VI

(Raw fitness = 619; 247 colors for the benchmarks)
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Figure 5:
One of the 4th best programs of Experiment VI

(Raw fitness - 619; 248 colors for the benchmarks)
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Figure 7:
One of the 2nd best programs of Experiment VIII

(Raw fitness : 1976; 248 colors for the benchmarks)
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Figure 8:
One of the 2nd best programs of Experiment VIII

(Raw fitness = 1976; 247 colors for the benchmarks)
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