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Abstract
A new macroscopic theory of thermodynamics is presented in which entropy and temperature are

introduced using only the effects of adiabatic and diathermal walls on the possible changes of state of
a thermodynamic system. Quasistatic heat, defined separately in terms of internal energy and
quasistatic work, is then used to establish quantitative measures of entropy and temperature directly
by means of new postulates equivalent to the second law of thermodynamics. The third law of
thermodynamics is included to complete the theory.
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1. Introduction 1.2 Difficulties with Traditional Theory
l.l Traditional Thermodynamic Theory Traditional thermodynamic theory, which

Thetraditional presentation of macroscopic grew out of the history of the subject, was
equil ibrium thermodynamics may be crit icized early in the 20th century by Born [2],
summarized as follows (Zemansky, l95l)[1]: and the subject was later reopened by Landsberg

First, the existence of temperature is [3] and other authors (see below) but there is
deduced from the zeroth law. Next, the still uneasiness among scientists regarding the
existence of internal energy is deduced from the logic of macroscopic theory. Here are some of
first law, and it is concluded that there exists a the difficulties:
non-mechanical method of energy transfer,
namely heat.

Two statements of the second law are then
given: the Kelvin-Planck statement and the
Clausius statement. These two statements are
proved to be logically equivalent, and are used
to prove that no cyclic engine operating between
two given reservoirs can be more efficient than
a Carnot engine. Then the Kelvin temperature
scale is constructed, and it is proved that the
integral ldg/T around a cycle is zero, where Q is
heat and I is the Kelvin temperature. The
existence of entropy is deduced from this
theorem. The principle of increase of entropy is
then established, and is used to associate
entropy with molecular disorder.

o There are differing opinions in the literature
on the significance of the zeroth law in
thermodynamic theory (see the Appendix
below).

o The word "work" is used with different
meanings, such as work defined for a
pressure-volume system' by the integral

. -lPdV, and work done when the system is
stirred with a paddle wheel.

o The use of "impossibil i ty" statements in the
Kelvin-Planck and Clausius forms of the
second law is awkward.

o The Kelvin-Planck and Clausius statements
suggest that the second law of
thermodynamics depends on the properties
of heat engines and refrigerators, even
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though it is applied in fields unrelated to
engineering.

r The existence of entropy seems to depend
on heat, Carnot cycles, and the Kelvin
temperature scale.

r The fact that entropy is related to molecular
disorder cannot be made clear in purelv
macroscopic terms.

1.3 Alternative Theories
There have been many attempts to improve

the theory of macroscopic thermodynamics,
beginning with the work of Caratheodory (1909)
[4]. Unfortunately Caratheodory's theory is
difficult for all except mathematical specialists.
Other detailed mathematical studies include
those of Falk and Jung (1959)[5], Boyting
(1 97 2)161, Cal len ( I 985 ) 17 l, and the recent work
ofL ieb and Yngvason (199S)[8,9] .

Yet the underlying statistical basis of
thermodynamics is simple in principle, so we
should be able to construct a correspondingly
simple macroscopic theory.

1.4 A New Theory
This paper gives a new macroscopic theory

of equil ibrium thermodynamics designed to
overcome the difficulties mentioned above
(Exel l ,  1985,  1996)[10,  I  l ] .  The concepts and
postulates used are inspired by the underlying
statistical basis of thermodynamics, and are
arranged in a simple logical structure. They
characterize the properties of thermodynamic
systems directly, and could in principle be
demonstrated experimental ly.

Every logical theory begins with undefined
terms representing the entities under discussion;
these terms must be introduced by description
and example. In the text below the undefined
terms, and the important defined terms, are
printed in bold type. The axioms of equivalence
and simple ordering are used to characterize
certain relations with which the theory is
concerned. These axioms are not regarded as
laws or postulates of thermodynamics.

The properties of a thermodynamic system
that we can observe macroscopically depend on
the properties of the walls of the system's
container. Entropy and temperature are thermal
properties ofa system indicating the behavior of
the system when it is separated from its
environment by thermally insulating walls, or is
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in thermal contact with its environment throush
thermally conducting walls. The first aid
second laws of thermodynamics, as postulated
in this theory, then give quantitative measures
of entropy and temperature in terms of heat.

The zeroth law of thermodynamics is not
needed as a basic postulate. The reasons for
this are explained in an Appendix.

2. Properties of Thermodynamic Systems
2.1 Closed Thermodynamic Systems

The theory is restricted to closed
thermodynamic systems A closed
thermodynamic system is a quantity of matter
separated from its environment by a container.
The system has a set of equilibrium states
These equil ibrium states are the basic elements
of the theory.

A transition is a change from one
equilibrium state to another. The theory is
about what transitions are possible and what
€nergy exchanges occur between the system and
its environment during transitions. During a
transition a system may pass through non-
equil ibrium states. In such cases the theory
deals only with the relation between the end
states and with the total effect of the transition;
it cannot deal with the non-equil ibrium states
between the end states.

2.2 Mechanical Properties and Isometric Sets
The equil ibrium states of a thermodynamic

system are charaaterized by pairs of non-
thermal macroscopic variables such as
pressure and volume, magnetic f ield and
magnetic dipole moment, etc. The product of
each pair of non-thermal variables has the
dimensions of energy. For simplicity in this
presentation of the theory we consider systems
in which the only non-thermal variables are
pressure P and volume V, and the pair (p,l)
denotes an equil ibrium state of the system.

Unfortunately, pressure and volume alone
do not always define the equilibrium state
uniquely. For example, at a pressure of one
atmosphere, one kilogram of tiquid water has
volume 1.00016 liters at 0.C, 1.00002 liters at
4oC, and 1.00016 liters again at 8"C. We shall
suppose, however, that different equil ibrium
states with the same pressure and volume can be
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distinguished by observations in some other

way.
A non-thermal variable which can be freely

controlled, and whose change involves the

performance of work on the system, is called an

external parameter. A set of equilibrium

states in which all the external parameters are

constant is called an isometric set' In a

pressure-volume system the external parameter

is volume, and all the states in an isometric set

have the same volume' When the walls of the

system's container are rigid we can measure- the

system's volume Z, which is independent of the

properties of the environment.
The environment of a thermodynamic

system may have a high pressure ot.-1 lo*

pi"rrut". When the walls are flexible or

movable, so that the volume of the system can

change in response to changes in the pressure of

the environment, the system is in mechanical

contact with the environment' A state that

remains unchanged when the system is in

mechanical contact with the environment is said

to be in mechanical equilibrium with the

environment, and the pressure of the system is

the same as the pressure of the environment' A

set of states all in mechanical equil ibrium with

the same environment is called an isobaric set

because all the states in the set have the same

pressure.
Volume and Pressure are the basic

mechanical properties of thermodynamic

systems related to the movability of the walls of

the container.

2.3 Adiabatic Walls and Isentropic Sets

In this section the concept of entropy ts

introduced qualitatively by Buchdahl's method

t12l
The environment of a thermodynamic

system may be hot or cold. If the system is in a

ctntainer with thermally insulating walls, then

changes in the environment from hot to cold, or

cold 1o hot, do not cause any change in the

equilibrium state of the system' The thermally

insulating walls are called adiabatic walls'

Any change of state of a system separated from

its environment by adiabatic walls is called an

adiabatic transition.
Imagine a thermodynamic system that

consists of a fluid (e'g. l iquid and vapor) in a

container with adiabatic walls. Experience
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shows that when the state of the system is

changed by slowly changing the volume it is

possible to reverse the process and return the

system to its initial state. In other words there

exists an adiabatic transition from the init ial

state to the final state, and an adiabatic

transition from the final state to the initial state'

We then say that there exists a relation of

mutual adiabatic accessibility between the two

states.
The relation of mutual adiabatic

accessibility between states satisfies the axioms

of an equivalence relation' Let (Pt,Vt), (Pr,V)'

and (P3,ft) denote states, and let (P1,V1) <+

(Pz,V) mean that (PrVr) and (Pz,V) are

mutually adiabatically accessible from each

other. Then, for all (Pr, Zr ), (P tV), and (P 3,\):

(1)  (Pbvt)  <+ (P6V1).
(2) If (PbV) <> (Pz,V),then (P2,V) +> (PvVt)'

(3) If (Pr,I/r) +> (P2,V) and (P2,V) <+ (k,V)'

then (Pt,Vr) +> (fu,ft).

This equivalence relation divides the

equilibrium states into equivalence classes

called isentropic sets X. Two states in the same

isentropic set are mutually adiabatically

accessible from each other.
Now suppose that the state of the same

adiabatically enclosed system can be changed in

other ways, such as by passing an electric

current through a resistor in the fluid, or by

stirring the fluid. Experience shows that in

these cases the adiabatic transitions are

irreversible; there exists an adiabatic transition

from the initial state to the final state, but not

from the final state to the initial state' We say

that a relation of one-way adiabatic

accessibility exists from the initial state to the

final state. If the init ial state is (P,,Vt) and the

final state is (P2,Y), we write (PvVt) --> (Pz,V)'

Let(Pt,V) be any state in an isentropic set

21, and let (P2,V) be any state in a dffirent

isentropic set L2. Experience shows that either

(Pt,V,) -+ (Pz,V) or (Pz,V) -+ (P1,V1)' lf

(Pr,Yr) -+ (P2,V), then every state in 12 is one-

way adiabatically accessible from every state ln

L1 via (P6V) and (P2,V). In other words, the

one-way adiabatic accessibility relation holds

from Xr to Iz, and we write Ir -) Iz'
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The one-way adiabatic accessibil i ty
relation between isentropic sets satisfies the
axioms for a simple order relation. For all I1, I
2, and X3:

(l) Exactly one of the following relations is
true: X1 -+ 12, 11 : 12, 12 -+ I,1.

(2) If Xr -) 12 and X2 --> Ij, then 11 ->I3.

Axiom (1) is true because, as explained
above, it is true for the individual states in I,
and X2. To see that axiom (2) is true note that if
the conclusion is false, then there exists an
adiabatic transition from every state in 13 to
every state in X1. This implies that if I; -+ 12 is
true then 12 -+ 13 is false, and if 12 -> Ir is true
then I1 -+ 12 is false. In other words, the
hypothesis is false.

The ordered system of isentropic sets can
now be labeled with numerical entropies
consistent with the ordering. The entropy is
defined quantitatively in Section 4.1 below.

2.4 Diathermal Walls and Isothermal Sets
ln this section the concept of temperature is

introduced qualitatively by a new method
similar to Buchdahl's method of introducing
entropy.

A thermodynamic system may be in
thermal contact with its environment through a
thermally conducting wall. A thermally
conducting wall is called a diathermal wall. A
state that remains unchanged when the system is
in thermal contact with its environment is said
to be in thermal equil ibrium with its
environment. If the volume of a system in
thermal contact with its environment is changed,
the pressure changes spontaneously to keep the
system in thermal equil ibrium with the
environment.

Two states in thermal equilibrium with the
same environment are said to be in mutual
thermal equilibrium with each other. The
relation of mutual thermal equil ibrium satisfies
the axioms of an equivalence relation. Let
(P,,Vt) - (Pr,Vr) mean that (Pt,Vt) and (P2,V2)
are in mutual thermal equil ibrium with each
other. Then, for all (P1,V1), (Pz,Vr), and (\,\):

( l )  (Pt ,v t )  -  (Pr ,v , ) .
(2) lf (Pr,V1) - (Pz,V), then (P2,V) - (P,,V).
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(3) lf (Pt,Vt) - (Pz,V) and (P2,V) - (P:,V),
then (P1,V1) - (h,V).

This equivalence relation divides the set of
equi l ibr ium states in to equivalence c lasses
called isothermal sets O. Two states in the
same isothermal set are in mutual thermal
equi l ibr ium wi th each other .

Now suppose that the volume of the system
is fixed and the thermal property of the
environment is changed (from hot to cold or
from cold to hot). A spontaneous transition
occurs from the init ial state to a final state in
thermal equil ibrium with the second
environment. When the final state is one-way
adiabatically accessible from the init ial state,
the final state is said to be hotter than the
init ial state, and the second environment is
hotter than the first environment: then. if the
init ial state is (Pr,Zo) and the final state is
(Pz,Vi, we write (PtVi << (Pz,Vi.

Let (P1,V1) be any state in an isothermal set
@r, and let (P2,V) be any state in a dffirent
isothermal set @2. Let (Pp,V) be in @r and let
(Pzt,Vr) be in @2. Experience shows that either
(Pt,Vt) << (Pzt,V,) and (Pp,V) << (Pt,V), or
(Pz,,Vr) << (Pt,Vr) and (P2,V) << (Pn,V). In
other words, a unique hotter-than relation holds
between @r and @2 which is independent of the
choice of the fixed volume.

The hotter-than relation between
isothermal sets satisfies the axioms for a simple
order relation. For all @r, @2, and @r:

(l) Exactly one of the following relations is
true: @; <( @2, @r : @2, @z aa @r.

(2) If @r << @2 and @z << @:, then @1 qq @:.

These axioms are true for the isothermal
sets because they are true for the adiabatic
accessibil i ty relation between individual states
with a fixed volume.

The ordered system of isothermal sets can
now be labeled with numerical temperatures
consistent with the ordering. The temperature is
defined quantitatively in Section 4.1 below.

3. The First Law of Thermodynamics
3.1 The First Law and Internal Energy
The Principle of Conservation of Energy and the
First Law of Thermodynamics are seDarate
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ideas in this theory. The Principle of

Conservation of Energy states that energy

cannot be created or destroyed. If energy

seems to appear or disappear, then we can

always find a new form of energy which

accounts for the discrepancy. Our statement of

the First Law of Thermodynamics is based on

that of CaratheodorY:
The amount of energt transfened to or

from a thermodynamic system in an adiabatic

transition - measured by work done in the

system's environment - depends only on the

initial and final equilibrium states'
This statement characterizes adiabatic

transitions as those in which the energy change

in the environment is measurable entirely as

mechanical work.
Suppose that any three equilibrium states

are given. We may number the states l, 2, and 3

so that the following adiabatic transitions exist:

(PvV) to (P2,V), (Pz,V) to (P3,V), and (PvV1)

to (P3,\). Let Ep be the energy transferred to

the system in an adiabatic transition (Pr,Vr) to
(Pz,V), and let .82: be the energy transferred to

the system in an adiabatic transition (P2,V) to

(PyV). Then, by the first law, the ener$! .E13

transferred to the system in an adiabatic

transition (Pr,V) to (P3,V) is given by

E 3 :  E P *  E 4 ,

whether or not the system passes through

the state (Pz,Vl.

It follows from this fact, and from the

principle of conservation of energy, that we may

define an internal energy potential U for the

equil ibrium states such thar U(Pz,V) - U(Pt,Vt)
= En.

3.2 Quasistatic Paths, Quasistatic Work, and

Quasistatic Heat
A path in the set of equil ibrium states

through a succession of neighboring states is

called a quasistatic path. For each quasistatic

path we define the quasistatic work W by

TT: -IPdV,

where the integral is from an initial state
(PtV,) to a final state (P2,V) along the path.
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The value of W depends on the path as well as

on the initial and final states.
Also, for each quasistatic path we define

the quasistatic heat P bY

u(P2,v) - u(Pbvt): ,r + Q.

Since the value of I/ depends on the path,

but the value of U(P2,V) - U(P;V\) does not, it

follows that the value of Q depends on the path.

Quasistatic work and quasistatic heat are

properties of quasistatic paths. They must not

be confused with mechanical work and heat

transfer in real physical processes. However,

mechanical work and heat transfer may be

practically equal to W and Q in a real process

that is practically quasistatic.

4. The Second Law of Thermodynamics
It is now recognized that the second law of

thermodynamics can be divided into parts

(Kestin, 1976)t131. In this new theory the first

part gives universal measures of entropy and

temperature in terms of quasistatic heat' The

second part associates the one-way adiabatic

accessibility relation with the proper direction

of the entropy scale, and the "hotter-than"

relation with the proper direction of the

temperature scale. The third part is the

principle of increase of entropy for spontaneous

transitions in unbalanced coupled systems; this

is deduced from the first two Parts.

4.1 The First Part ofthe Second Law
The First Part of the Second Law

consists of the following two postulates.

(1) On a quasistatic path in an isentropic set

Q : 0 .
(2) Let two dffirent environments be given'

Choose any thermodynamic system and any

pair of isentropic sets in the system. Then

the quasistcttic heats Q, and Q, on

isothermal quasistatic paths in thermal

equilibrium with the tuvo environments

from the first isentropic set to the second
are always in the same positive ratio

Q/Qz'

Since QrlQz dePends onlY on the

environments, and not on the thermodynamic
system chosen, nor on the isentropic sets
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chosen, we define absolute temperatures Z1
and I'2 for the two environments by means of the
equation

T1lT2= Q1lQ2,

with a standard value T = 273.16 kelvins at the
triple point of water. The kelvin defined in this
way is the universal 'thermal unit of
thermodynamics.

Since the standard value of Z at the triple
point of water is positive, it follows from
postulate (2) that: All absolute temperatures
are positive.

We can now define an entropy potential ,S
for each isentropic set such that for the two
isentropic sets chosen

,S2 -. 51 = Q1lT1= Q2/72.

The first part of the second law and the
definitions of absolute temperature and entropy
imply that:

Along a quasistatic path we have dQ : TdS.

An outl ine of the proof is as follows:
Consider two points close together on the path.
Suppose (without loss of generality) that Z is
non-decreasing and S is monotonic along the
given path from point I to point 2. Choose a
three-step path from point I to point 2 as
follows:

(a) An isentropic step with entropy Sr from
temperature I; to temperature i'such that Z1
< T < T z ,

(b) an isothermal step at temperature Z from
entropy S1 to entropy,S2,

(c) an isentropic step with entropy Sz from
temperature Zto temperature 12.

The temperature I is chosen so that the
quasistatic work along the three-step path is the
same as the quasistatic work W along the given
path. By the first law of thermodynamics, we
.have along the given path U2 - Ut : W + Q,
where Q is the quasistatic heat. Therefore,
since U2 - Ur is the same for any path, the
quasistatic heat along the three-step path is also
a By postulate (l) in the first part of the
second law, the quasistatic heat is zero in steps
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(a) and (c). By the definition of entropy, the
quasistatic heat is t'(Sz - 51) in step (b).
Therefore O = f(& - S'). By making point I
and point 2 closer and closer together we obtain
in the l imit

dQ= rds.

Note that in a transition from a given initial
state to a given final state the entropy difference
& - Sr between the states is the same for all
possible processes. In particular, along any
quasistatic path from the initial state to the final
state

s, - s' -- IdQtr.

4.2 Second Part ofthe Second Law
The Second Part of the Second Law

consists of the following two postulates.

(3) A state with entropy 52 ls one-way
adiabatically accessible from a state with
entropy 51 if and only rf Sr < Sz.

(4) A state with absolute temperature T2 is
hotter than a state with absolute
temperature T1 if and only tf T, < Tr.

A corollary of postulate (3) is that: When a
system gains heat the initial state rs
adiabatically inaccessible from the final state.

To prove this, note that along any
quasistatic path from the initial state to the final
state 52 - St : /aQtf. Since 7' is always
positive, a positive quasistatic heat implies that
Sr < Sz. Therefore, by postulate (3) above, the
final state is one-way adiabatically accessible
from the initial state. In other words, the initial
state is adiabatically inaccessible from the final
state.

A corollary of postulate (4) is that: A
system at a higher absolute temperature than its
environment loses heat lo the environment when
pl.aced in thermal contact with it.

To prove this, note that, by postulate (4),
the system is initially hotter than the
environment. Therefore, by the definition of
"hotter than", the initial state is one-way
adiabatically accessible from a final state in
thermal equil ibrium with the environment. It
follows from the corollary of postulate (3) just
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proved (with the initial and final states
interchanged) that the system loses heat when
placed in thermal contact with the environment.

4.3 An Application to Mechanics: The Carnot
Cycle

It can be shown from the first and second
parts of the second law that the most efficient
cycle for a heat engine converting heat into
work is the Carnot cycle.

The proof is based on the fact that the
system, after increasing its entropy by absorbing
heat at a high absolute temperature, must reject
some heat at a low absolute temperature to
return to its initial entropy. The greatest amount
of mechanical work is obtained when the heat
rejected is the least. This means that (a) the
heat should be absorbed without any
temperature difference between the source and
the working thermodynamic system, (b) the
rejection of heat should be at the lowest
possible temperature, and (c) the entropy
produced by irreversibilities should be zero'

The Kelvin-Planck and Clausius statements
of the second law of thermodynamics are
corollaries of this result.

4.4 The Third Part of the Second Law: The
Principle of Increase of EntroPY

Imagine two closed thermodYnamic
systems surrounded by adiabatic walls and
coupled by a movable adiabatic wall so that
changes in volume of the two systems satisfu

the equation LVt + 6yr: 0' Each system may
be regarded as the environment of the other
system. Suppose that initially the pressures are

unequal with P1 < P2, and after the movable
wall is released it comes to rest with the final
pressures equal. It follows from the laws of

mechanics that L,V1< 0, and L'V2> 0.
We can imagine quasistatic paths from the

initial states to the final states. In these
quasistatic paths the total quasistatic work IIzl +

W2 is negative because Pt < Pz, AIlr < 0, and A

Vz> 0. Butthe total change in internal energy A

tl + LUz is zero. Therefore the total quasistatic
heat is positive. Since the walls are adiabatic, it
follows from the equation dQ = TdS that the
sum of the entropies of the two systems
increases.
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In this example the quasistatic heat is
produced by friction, not by heat transfer,
because both systems are surrounded by
adiabatic walls.

Imagine two systems with fixed volumes in
thermal contact with each other through a
diathermal wall, but thermally isolated from the
general environment by adiabatic walls. Each
system may be regarded as the local
cnvironment of the other system. Suppose that
initially the temperatures are unequal with lnr <

T2 It follows from the second part of the
second law that system I gains heat and system
2 loses heat until the two systems reach thermal
equilibrium at the same temperature. Therefore,
by the first part of the second law, A,S1 > 0, and

ASz < 0.
We can imagine quasistatic paths from the

initial states to the final states. On these
quasistatic paths the quasistatic work is zero,
because the volumes are fixed, and the total

change in internal energy LU, + LUz is zero;
therefore the quasistatic heat gained by system I
equals the quasistatic heat lost by system 2. But
along the path between the initial and final
states we have ?"r < 12; therefore, by the

equation dQ: fds, we have lASll> lAJ2l. Since

A.S' > 0 and ASz < 0, it follows that the sum of
the entropies of the two systems increases.

The same result can be proved for two
systems thermally isolated from the
environment and coupled by a movable
diathermal wall.

These "thought experiments" prove the
following statement, which we call the Third
Part of the Second Law:

Llrhen two coupled systems separated /rom
the environment by adiabatic walls pass

spontaneously from an unbalanced condition to

mutual equilibrium, the sum of the entropies of

the two systems increases.

The general Principle of Increase of

Entropy is based on this law. Spontaneous
natural processes involve changes towards
mutual equil ibrium in unbalanced coupled
systems. By the third part of the second law

these changes cause the total entropy of the
combined systems to increase.

46



5. The Third Law of Thermodynamics
The theory may be completed by the

following statement of the Third Law of
Thermodynamics:

On a quasistatic path such that the
absolute temperature approaches zero while the
external parameters remain bounded, the
entropy potential approaches a finite limit Sn
which is the same for all such paths.

The Nernst Heat Theorem is a corollary
of this law. It may be stated as follows:

In a set of equilibrium states with bounded
values of the external parameters the entropy
dffirence between two states at the same
temperature approaches zero as the absolute
temperature approaches zero.

We now define the absolute entropy of a
system to be the entropy potential obtained by
putting So : 0. The postulates constituting the
second part of the second law imply that, for
any pair of states I and 2 in an isometric set, 12
> fr if and only if S2 > Sr. It follows from the
definition of absolute entropy that: All absolute
entropies are positive.

The third law of thermodynamics has
applications in low temperature physics and
chemistry, but it is not needed in engineering.

6. Concluding Remarks
It is hoped that the reader will find this

theory more direct than other theories,
especially as regards the treatment of entropy
and temperature. All the relations connecting
the internal energy, entropy, and temperature of
thermodynamic systems with other macroscopic
quantities (such as isothermal compressibility,
thermal expansivity, heat capacity, etc.) can be
derived on the basis of this theory. But the
actual values of thermodynamic quantities are
not given by thermodynamic theory; they must
be measured in the laboratory, or calculated by
statistical mechanics.

Appendix: The Zeroth Law of
Thermodynamics

The zeroth law may be stated as follows:

Thammasat Int. J. Sc. Tech., Vol.5, No.3, September-December 2000

Two thermodynamic systems in thermal
equilibrium with the same environment are in
thermal equilibrium with each other.

There are two reasons why the zeroth law
does not appear as a postulate in this new
theory:

l. Redlich has pointed out !41 that there exist
experimental situations where the zeroth
law fails. For example, a system which
emits neutrons, and another system which
absorbs neutrons may separately be in
thermal equilibrium with the environment;
but they wil l not be in thermal equil ibrium
with each other because of the neutron
interactions. Therefore the zeroth law can
be viewed as a characterization of thermal
interactions.

2. Turner has shown [5] that the zeroth law is
a consequence of the first and second laws
of thermodynamics. An argument
equivalent to Turner's is as follows: Let
systems A and B be in thermal equil ibrium
with the environment, and suppose that B is
hotter than A, violating the zeroth law.
Expand B reversibly unti l i t is in thermal
equil ibrium with A. Then put A and B in
thermal contact, and compress .B reversibly
to its original volume. Since ,B loses heat to
I during the compression, the work of
compression of B is less than the work of
expansion, and there is a net output ofwork.
Finally, let A and .B be returned separately
by thermal contact to equil ibrium with the
environment. The overall result is a
complete conversion of heat from the
environment into work in a cyclic process
violating Kelvin's statement of the second
law.
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