Thammasat Int. J. Sc. Tech., Vol.4, No.1, January 1999

Database for Student Registration System
at SIIT

Nakarin Netcharussaeng, Nichalin Suakkaphong
Sirindhorn International Institute of Technology
Thammasat University
Pathum Thani 12121, Thailand

Apichat Tungthangthum, Pichet Chintrakulchai
Asian University of Science and Technology
Chonburi 20261, Thailand

Abstract

This paper presents the rectification of the student registration database systems of
Sirindhorn International Institute of Technology (SHT). The experience from using this registration
system shows that many amendments can be attained in order to benefit the users and the institute. A
major anxiety at the first glance is about data protection. At present, the database used for student
registration is the central database that the institute uses for many tasks such as student registration,
student academic record, student profile, etc. Evidently, there is not much data protection control.
Hence, if something adversely happened, the central database will be directly affected and may
collapse specially by those users who are not aware of the mistake when using computer-based
registration. Unexpected problems might occur and may need a tremendous amount of work to rectify
problems such as data inconsistency of the registration database.

1. Introduction

Sirindhorn International Institute of
Technology (SIIT), Thammasat University, uses
Microsoft Access version 2.0 as a database
management program for its registration
system. Due to the growth of the number of
students, many registration works have been
successfully implemented and are well served
from the use of the computerized database.
However flaws in the database have shown up
from time to time caused by the experience of
many users. The flaws signal that data
protection measures should be improved to
protect the database against a variety of possible
threats (both deliberate and accidental). For
example, the system might crash in the middle
of some unfinished transactions, thereby leaving
the central database in an unpredictable state.
Consider the case when two processes executing
concurrently interfere with one another, thereby
producing incorrect results. Sensitive data might
be exposed-or worse, changed by unauthorized
users. The fact is there are indeed many risks

that the data might be exposed to. The other
case concerns updates which might change the
data illegally. Therefore the system has to
provide an extensive set of controls to protect
the database against such threats specifically,
recovery, concurrency, security, and integrity
controls. For the stability of the database, using
one central database for registration is perilous
since some situations may adversely happen,
such as a system crash. Since only one central
database is used, the situation may leave the
database in an incorrect state in which recovery
may not be possible. Consequently, one way to
ensure a recoverable database is to be certain
that every piece of information it contains can
be reconstructed from some other information
stored in other places-redundancy. The solution
we provide is that we create another database
which is used only during the registration
period. We will refer to this new database as the
registration database and the central database
as the main database throughout this paper.

19

2. Problems
2.1 Recovery

Before we go into the details of why we
need recovery controls, we would first like to
clarify the meaning of recovery. In Date’s
words [1], recovery is depicted as “Recovery in
database system means, primarily, recovering
the database itself—that is, restoring the
database to a state that is known to be correct
after some failure has rendered the current state
incorrect, or at least suspicious.” There are
several possible reasons for a transaction to fail
in the middle of the execution. For example,
system crash (computer failure) may cause error
in the computer system during transaction
execution. Some transactions might violate the
concurrency control enforcement and the
control may decide to abort the transaction
because it violates serializability or because
several transactions are in a state of deadlock.
Physical problems (media failure) may happen
such as head crash on the disk, fire or sabotage.
For a system crash, the content in the buffer
memory is a critical point. The state of any
transaction in a progress is not known; such a
transaction did not successfully complete, and
so must be undone (rolled back) when the
system restarts. For example, while some
students are updating the record a power failure
occurs. Hence, those unfinished transactions
must be rolled back. For data protection when
media failure occurs, the backup copy of
registration database is needed for restoration,
there is no need for a roll back.

2.2 Concurrency

Registration database is a shared resource.
We must expect and plan for the likelihood that
several users will attempt to access and
manipulate data at the same time. With
concurrent processing involving updates, a
database without concurrency control will be
compromised due to interference between users.
Concurrency control allows many users to
access and update the database simultaneously
while preventing partially completed updates
from happening. This technique is essential to
our registration database, such as when more

Thammasat Int. J. Sc. Tech., Vol.4, No.1, January 1999

than one student are registering the same course
with a limited number of students in class.
When the student decides to register on the
course, the database integrity will check first
whether or not the class is full by having one
variable used to store the number of students
who have registered that course in the current
semester. This situation can lead the database
to the problem of lost updates. Assume that the
maximum students in class to be 50 and there
are already 49 students registered. Student (A)
wants to register the course so he checks to
make sure that the course is not yet full and 49
is the number that appears to him. But before
he can update the number to be 50, another
student (B) also wants to register for this course
too. So B does the same operation as A; checks
the number of students and, if possible, then
updates it. At this moment, before A updates
the record, 49 is also read by B which indicates
that he can register for this course since it is not
full yet. Hence the update by A is lost. An
invalid result is obtained since after these two
students register the course, the actual number
of students is 51, not 50 as it appears in
database. It is not only lost update problems that
concurrency control mechanism has to address,
uncommitted dependency and inconsistent
analysis problems are also possible. These
problems can cause the database to be in
inconsistency state.

2.3 Security

After a workable application for the
registration database had been made, it is time
to concentrate on how to manage who can use
which features and establish application
security. Security concerns ensuring that users
can do only what they are allowed to do. In the
SIIT central database, all information concerned
with every student is kept in it. If no security
system is implemented into the system,
tremendous problems will arise since a student
might alter his academic record by changing his
grades, his colleagues grades, or putting in a
course and grade in which he did not actually
register. Hence a security system is needed for
maintaining a usable database for student
registration.

20

security. Some constraints must be enforced to
ensure that authorized users are doing correct
operations, satisfying all constraints. For
example, the institute enforces the constraint
that each student must register at least 9 credits
and must not exceed 22 credits per semester, or
that a student cannot register some courses as
regrade if he has gotten a better than D+ grade
for that course. Another example is that some
courses have prerequisite courses in which
students must pass their prerequisite before he
can register the courses, etc.

3. Solutions to the Problems

By using a central database for student
registration, many problems are likely to occur
due to unaware or deliberate action. All the
errors will be adversely directed to the central
database. With the great importance that the
central database is used for most institute
administration work, a small database is
implemented in order to be used as a substitute
during the registration period. So any adverse
affect will only be confined to the registration
database. Consequently, advantages concerning
security are also provided. Moreover, by
separating the registration database out, the
institute can modify or change the structure of
the database easily, without too much concern
about its side effect on the central database.
The registration database can be generated
easily from the central database by transferring
only the necessary information for registration.
Some information is transformed into more
appropriate form such as grades. Grades will be
transformed into the form of regradable and
canreregis, as shown in Figure 1 and 2. Hence,
as shown in Figure 3, there will no longer be
actual grades of each student in the registration
database, but only flags to indicate whether he
can regrade or reregister or not. Any
unauthorized users who try to change the grades
will fail since no grade is kept in the registration
database. It is also more convenient for our
registration database since the transformed
grade is more relevant to the objective of the
registration’s query than the actual grade. The
initializing procedure of registration database is
simply depicted in Figure 4. From Figure 4, the
table “TREGISTER” and the table “TregisterW
Regradable” are doing an unmatch query to find

21

Thammasat Int. J. Sc. Tech., Vol.3, No.2, January 1999

any student that might register later, after the
registration period. The result is appended back
to table “TregisterW Regradable” which is then
exported to the registration database. All of the
adbove processes are done by the registrar.The
table “TregisterW Regradable” is used as an
intermediate between the central and the
registration database. In addition, the grade
information in the table “TREGISTER” is
transformed into regradable and canreregis,
and appended to the table “TregisterW
Regradable”. All of the student academic
information in the previous semester is stored in
this table and will be used as reference only.
During student registration, new records are
added in table “TableX™ and this table will be
exported back to the central database after
registration period. There is no need to transfer
the table “TregisterW Regradable” back to the
central database since no change was made to
this table during registration period.

3.1 Solution for Recovery

Since we are using separate databases any
failure that might cause the database to corrupt
is now limited only to the registration database,
leaving the central database untouched. For the
case that registration database is collapsed, it
can easily be reconstructed within three
minutes, since it contains only information for
registration, it is then ready to be used again to
provide uninterrupted service during the
registration period. Furthermore, for any
terminated transaction, the transaction manager
is used to provide the atomicity of important
transactions. In other words, it guarantees that
if the transaction executes some updates and a
failure occurs (whatever the cause) before the
transaction finishes (reach its plan), then those
updates will be undone. Thus, the transaction
either executes in its entirety or is totally
canceled. In this way a sequence of operations
that is fundamentally non-atomic can be viewed
as if it were atomic from this point of view. The
commit transaction and rollback transaction are
the key to the way recovery works. For commit
transaction, it tells the Database Management
System (DBMS) that the atomicity of the
process has been thoroughly finished. The
database is in a consistent state and the updates
made by the process can now be made

that is fundamentally non-atomic can be viewed
as if it were atomic from this point of view.
The commit transaction and rollback
transaction are the key to the way recovery
works. For commit transaction, it tells the
Database Management System (DBMS) that the
atomicity of the process has been thoroughly
finished. The database is in a consistent state
and the updates made by the process can now be
made permanent or committed. In contrast, the
signal of failure to end the transaction is
indicated by the rollback transaction.
database might be in an inconsistent state and
the updates by that transaction must be undone
or rollback. A log will be maintained by the
system about the details of all update
operations. So, if it is necessary to undo any
specific update, a log file will be used to update
value to its previous value. For SIIT, the
technique of commit and rollback transaction is
implemented in Microsoft Visual Basic for
Access by using the reserved words BeginTrans,
CommitTrans, and Rollback. These three
functions are used for important transactions
that might be able to compromise the
consistency of the database. For example, by
using these functions, when students decide to
register, the program adds the students to the
institute record and updates the number of
students in class with a fallback recovery
against any failure. A clearer idea of the
importance of recovery might be depicted when
the transaction is concerned with payment. For
example, total tuition fee that student A must
pay is 40,000 Baht which he will pay in two
installments of 20,000 Baht each. While he is
in the middle of the payment process, at time t]
the transaction is terminated for some reason
just after 20,000 Baht is deducted from his
balance. Assume that the transaction did not
complete yet since it needs to update the total
amount that he had paid, update that he pays by
cash or check, and update the date that he had
paid. As a result to the database, the transaction
did not complete and must be redo. The amount
that he still owes the institute now turns to be
20,000 Baht instead of 40,000 Baht. So he needs
to process his payment again, and finds that he
only had to pay 20,000 Baht once instead of a
total of 40,000 Baht (the first 20,000 Baht
installment was not paid to the cashier yet, only

The °

Thammasat Int. J. Sc. Tech., Vol.4, No.1, January 1999

processed by the computer that he was going ro
pay 20,000 Baht). If an atomicity is used for the
payment transaction, whenever a termination is
forced on the transaction the whole transaction
must be undo- instead of redo only the
incomplete transaction. Therefore this kind of
payment transaction should be made as
atomicity in order to avoid the inconsistency of
the database

3.2 Solution for Concurrency

As mentioned before, without concurrency

control the problems of lost updates,
uncommitted dependency, and inconsistent
analysis are expected to occur. Since the

registration database is a shared and classified
resource, careful database management must be
incorporated. Microsoft Access, provides three
levels of locking. These are record locking,
table and recordset locking, and opening with
exclusive access. For record locking, only the
record currently being edited is locked. For
table and recordset locking, an entire table or all
tables underlying a form are locked while any
user is editing any record in the form. Finally,
for opening with exclusive access, the entire
database is locked by a single user-change into
single-user environment. Microsoft Access
automatically locks the record currently being
edited even though the programmer did not
predefine the lock mechanism. In registration
database, since we always operate under multi-
user environment, the opening with exclusive
access is irrelevant and will not be mentioned
twice. The most used mechanism in our
registration database is table and recordset
locking. Since this database is a relational
database and has a quite complicated relation
and query, recordset will be used for most of the
time. As mentioned before about concurrency,
the inconsistency about counting the number of
students in class can be solved by using table
and recordset locking which will be referenced
as lock. As the students decide to register any
course, the lock is made active so that counting
the number of students in each class is correct.
The reason why the original system locks the
entire table is that it uses one table to store all
records of who had registered for which
courses. Consequently, the counting method

22

also uses this table to count the number of
students for each class. In other words, from
Figure 2, the central database uses the table
“TREGISTER” to store and count the number
of students in each course by using student ID
and section ID as criteria for counting the
number of students registered in each course. In
our new system, the registration database stores
records in table “TRegiterW Regradable” which
is then used to count the number of students in
each course. DCount is used in Visual Basic
code. Hence, if these tables are locked while
any student is currently updating then, the lost
updates problem can be solved.

3.3 Solution for Security

In the past, the original system used table
TUSERS to store login name and password for
the registrar. As the registrar log on to the
database, the application only verifies login
name and password using ordinary Visual Basic
code to check the information in TUSERS.
DlookUp is used to check the data in the table.
Hence, if anyone is able to look into this table,
he can find the login names and passwords
easily. If the registration database is not
encrypted, anyone with a disk editor can view
the contents of the file. Although the data
within the file will not appear in an easy-to-read
format, the data is there and available for
unauthorized individuals to see. Therefore, the
encryption is used for the registration database
even though the performance of the application
will drop but it is necessary to keep it
encrypted. In other words, another level of
security is made from encrypting the database.
Typically, the DBMS supports either or both of
two broad approaches to data security. The
approaches are known as discretionary and
mandatory control. In the case of discretionary
control, a given user will get different authority
or privilege. Discretionary schemes are very
flexible. In contrast to discretionary, mandatory
control defines each data object to be labeled
with a certain classification level, and each user
is given a specific level of clearance. A given
data object can then be accessed only by users
with the appropriate clearance. Consequently,
mandatory control is rigid but appropriate to use
with a registration database. It is easier and

23

Thammasat Int. J. Sc. Tech., Vol.4, No.1, January 1999

clearer to maintain a class of users than to
concentrate on individual users, since every
student must have the same right. Login name
and password table will not be used, TUSER
and new approach should be used here.
Microsoft Access provides a very powerful and
comprehensive feature to maintain user account.
The information on each clearance level of user
and password, and access right for each object
will be stored in the file SYSTEM.MDA. This
file is distinct from the database file which
Microsoft Access uses to store information
database security. The privileges of each level
will be discussed in the next section.

3.4 Solution for Integrity

As mentioned before, integrity concerns
protection against authorized users. For
students they must be assigned the rights to read
all that data and update only the table
TREGISTER since this table is used to store
who is registering which courses. Students
must not be able to view database application as
in the design view to avoid any adverse
alteration by them. The other thing of concern
is that students should not be allowed to use the
toolbar since it provides features beyond the
necessity of student registration. For the
registrar class of users, it depends on the policy
of the institute to what the registrar is allowed to
do as does the faculty class of users. The other
policies such as how many credits students must
enroll in each semester, the maximum number
of credits a student can register each semester,
prerequisite, corequisite, etc, are deliberately
ignored from user privileges levels since it
varies from organization to organization.

4. Conclusion

So far, all fundamental problems have been
cleared up. Security and stability of the
registration database have been solved.
However, a lot of delicate improvements can be
implemented because the further use of this
registration database in the future will tell what
is appropriate and what should be improved.
User-interface is another area for improvement
since it can reduce the error that users might
make but requires further work to produce an

Thammasat Int. J. Sc. Tech., Vol.4, No.1, January 1999

appropriate and elegant design that suits the 5. Reference

users needs. [1]Date, C. J. (1995), An Introduction to
Database Systems, Addison-Wesley
Publishing Company, Inc.

1osoft Access - [Relationships]

§STDID REGISTERID
ADDRESS1 SECTIONID

semestesd
stéd
datetime
scholarshipname
scholarshipmoney DEPARTSHOR
late payment DEPARTLONG
paid
ATMamount |} ginTHDATE i
cashamount NATIONAUTY T
check no STATUS - i
bank GRADUATE_DA ; i

bank branch ENTRANCEID

checkamount PREVIOUS CER
ather

otheramount
owe
receipt

SEMESTERID

ASOAN aass
HAJORMINORID TUITION FEE LE
MAJORMINOR MAJORMINOR TUITION FEE LA

EDUCATIONAL

Figure 1. Relationship of the Central Database

24

Thammasat Int. J. Sc. Tech., Vol.4, No.1, January 1999

Yes

No No Yes Yes
No No Yes Yes
No No No No
No No No No
No No No No
No No Yes Yes

Figure 2. Grades Transformation Table

INSTRUCTID
INSTRUCTTITLE
INSTRUCTNAME
INSTRUCTSURNAME
INSTRUCTSEX
DEPARTID
POSITION

datetime
scholarshipname
scholarshipmoney |

late payrnent
paid

ATMamount
cashamount

CNUMID

SEMESTERI
PREVIOUS CERTIFICAT ERlD

DATE OF ADMISSION
LockRecord
Password |s Chang

Figure 3. Relationship of the Registration Database

25

Thammasat Int. J. Sc. Tech., Vol.4, No.1, January 1999

Main Database Registration Database

Tre gister\V Re gradable Tre gis W Re gradable

TREGISTER Without Maiching
Tiegister\V Regradable

Figure 4. Pictograph of the Initialization of Registration database

26

