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Abstract

A finite element method for viscous incompressible flow analysis is presented. The flow is

classified into two types namely: the flow with negligible inertia for slow moving fluid, and with

inertia for a more general flow. Finite element equations corresponding to these flows are derived

and are used in the development of the computer programs that can be executed on standard personal

computers. The derived finite element equations and the computer programs have been verified by

solving academic-type examples that have exact solutions before applying to solve more complex

flow problems.

1. Introduction

The finite element method is one of the

numerical methods that has received popularity

due to its capability for solving complex

structural problems [,2]. The method has been

extended to solve problems in several other
fields such as in the field of heat transfer [3,4],
electromagnetics [5], biomecha-nics [6], etc' In

spite of the great success of the method in these

fields, its application to fluid mechanics,
particularly to viscous flows, is still under

intensive research. This is due to the fact that

the governing differential equations for general

flow problems consist of several coupled
equations which are inherently nonlinear.

Accurate numerical solutions thus require a'vast

amount of computer time and data storage. One

way to minimize the amount of computer time

and data storage used is to employ an adaptive

meshing technique [7,8]. The technique places

small elements in the regions of large change in

the solution gradients to increase solution

accuracy, and at the same time, uses large

elements in the other regions to reduce the

computational time and computer memory.

As the first step toward accurate flow

solutions using the adaptive meshing technique,

this paper investigates and develops a finite

element formulation suitable for analyses of

general incompressible flow problems. The

selected formulation is evaluated in this paper

and will be used together with the adaptive

meshing technique in the future. The paper

starts with viscous incompressible flow with

negligible inertia for slow moving fluid. The

corresponding Navier-stokes equations are used

to derive the finite element equations. The

computational procedure used in the

development of the computer program is

described. The same process is repeated but for

viscous incompressible flow with inertia for

general flow, Several examPles and

applications are then presented to evaluate and

demonstrate the capability of the finite element

formulation for analysis of viscous

incompressible flows.
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2. Viscous Incompressible Flow
" With Negligible Inertia

2.1 Governing Equations
The fundamental laws used to solve fluid

motion in a general form are the law of: (a)
conservation of mass or continuity equation, (b)
conservation. of momentum, and (c)
conservation ofenergy, which constitute a set of
coupled, nonlinear, partial differential
equatiohs. For low-speed incompressible flow,
the fluid densify and the flow temperature are
assumed constant, and only the continuity
equation and the momentum equations are
needed for the analysis. These differential
equations for the two-dimensional steady-state
flow are.
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where the stress components are,
o x  - p + 2 p u , *  ( 3 a )

oy  -p  +  2 l t v , ,

r * y  p ( u , v + v , * )

(3b)

(3c)

(1a )

where u and v are the velocity components in
the x and y direction, respectively; p is the
pressure, p is the fluid viscosity coefficient and
p is the fluid density.

The case of viscous incompressible flow
with negligible inertia can be categorized by
low Reynolds number, which represents the
ratio of inertial forces to viscous forces in a
fluid motion. When the Reynolds number is
very small, the inertial forces are insignificant
compared to the viscous forces and can be
omitted from the governing momentum
equations, Eqs. (lb-c). Small Reynolds
numbers characterize slow moving flows and
flows of very viscous fluids. In this case, the
set of differential equations (Eqs. (la-c)) for
constant fluid properties reduces to a simpler
form and can be rewritten in compact form as,

u'* * V'y 0

o*,* + T*y,y 0

T*y,* * oy,y o

(2a)

(2b)

(2c)

The differential equations, Eqs. (2a-c),
are to be solved together with appropriate
boundary conditions of either specifuing
velocity components along edge 51,

u  -  u r ( x , y )
vr (x' Y)

or surface'tractions along edge 52,

T -  o * l  + r * r m

I  r * r ( . + o r m

where ./ and m are the direction cosines of the
unit vector normal to the boundary edge.

2.2 Finite Element Formulation
The basic unknowns for the two-

dimensional viscous incompressible flow
problem corresponding to the continuity Eq. (l
a) and the two momentum Eqs. (lb-c) are the
velocity components u, v and the pressure p.
The six-node triangular element suggested in
Ref. [9] is used in this study. The element
assumes quadratic interpolation for the velocity
component distributions and linear interpolation
for the pressure distribution according to their
highest derivative orders in the differential Eqs.
(la-c) as,

(4a)

(4b)

(5a)

(sb)
P " * : oox oy

/ ^ ' t  ^ r  \  ^  /  ^  ^ \
l d - u  d - u l 6  |  a J  a t l

t t l  ̂ , +  ^ t  l - - : p l u ; + v  ^ l  ( l b )
\ d -  q - )  o <  \  a (  q )

/ ' - - \ /
l d - v  d - v l 6  |  a )  a )

l t l  ^ ,  +  u  l - ; :  p u ; + v ;  ( l c )
\ac-  q - , t  q  \  a (  q

u (x, y) No uo

v(x,y)  = No vo

p (x, y) Hr. pr,

w h e r e  o  : 1 , 2 , . . . . . ,  6 ;  I  :  1 , 2 , 3 ;  N o  a n d  H 1
are the element interpolation functions for the
velocity and pressure, respectively.

To derive the finite element equations,
the method of weighted residuals [4] is applied
to the momentum Eqs. (2b-c) and the continuity

(6a)

(6b)

(6c)

(7a)

(7b)
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I

lnH^1r , ,+u, r ) i l  
=  o (7c)

where A is the element area' Gauss's theorem

is then applied to Eqs. (7a-b) to generate the

boundary integral terms associated with the

surface tractions. With the use of Eqs. (5a-b)'

Eqs. (7a-b) become,

I  r ,  \  /  \  
' l

l^ lQru,--  p)  No.* *  r  (u,+ v ' '  J  N".r l  dA

= 
LN"r -ds  

(8a)

Applying the element velocity component

distributions and the pressure distribution, Eqs.
(6a-c), the finite element equations can be

written in the form,

(2F Mou* + tt Mourr) up + [r Mou*r vp - Ho^" Pl

Ro* (9a)

F Mogv* up + (p tou** * 2 P Mour, ) vp - Horv Px.

=  R " (eb)

(9c)

t
t
t
t
t
t
t'Sr

t'Sr

Hpr* uF + Hp1, no o

where

M
cP^^

M ^ * :
ap- -

M
oF^'

M
o0t^

H . *
CA

H ^ ,
d A

R *
o

R "

No,* Np," dA ( loa)

No,rNp,,  dA ( lob)

No,"Nr, ,  i l  ( loc)

No,rNt,* i l  ( lod)

N",.  Hl dA ( l0e)

No,y Hr dA (lof)

N, T- dS (lOe)

N" Ty dS (loh)

Thammasat Int. J. Sc. Tech., Vol.3, No.2, July 1998

These element matrices can be evaluated in

closed form ready for computer programming'

Details of the derivation for these element

matrices are omitted herein for brevity'

2.3 ComPutational Procedure
The closed form finite element matrices,

Eqs. (l0a-h), for the six-node triangular element

are used in the development of a computer

program. The program is written in FORTRAN

and can be executed on standard personal

computers. For each element, the element

equations (9a-c) which consist of l5 equations

are established. These element equations are

then assembled to form up a system of

equations for the problem considered.

Appropriate boundary conditions are then

applied before solving for the unknowns of the

nodal velocity components and pressures. It

should be noted that the element equations (9a-

c) are linear, thus the system of equations can

be solved directly. Both the finite element

matrices derived and the computer progmm

developed have been verified by a number of

simple examples that have exact solutions such

as the one described in the next section prior to

applying to solve more complex problems.

2.4 Example
To evaluate the finite element computer

program developed, the fully-developed flow

between parallel plates (Poiseuille flow) as

shown in Fig. I is used. The inlet velocity
profile is in the form of parabolic distribution
given by,

u(v) fi c'-rl ( l  l )

The exact velocity profile at any x-location can

be derived [0] and written in the form,

u(y) fr o-r'l ff (r2)

The finite element model with 12

triangles and 35 nodes and the boundary

conditions are shown in Fig. 2. With this

model, the computer program was used to solve

flow field velocity and pressure distributions.

Figure 3 shows the predicted flow velocity

profiles which are identical along the x-

direction of the flow. These predicted velocity

profiles are identical to the exact solution, Eq.
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(12), as compared in Fig. 4. Figure 5 shows the
predicted pressure disbibutions on the lower
and upper plates and on the center line along the
flow direction. These predicted pressure
distributions agree with the exact solution,

p(x) -p tlr-rol (  l3 )

u (y)
0.00
0.75
r.00
0.75
0.00

30
Fig. I - Flow between parallel plates.

u (y)

0.00
0.75
1.00
0.75
0.00

Fig.2 - Finite element model and boundary
conditions for flow between parallel
plates.

x = 0  1 0  2 0  3 0

Fig.3 - Predicted flow velocity profiles
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dong rdircction of fiow
between penllel phtcc.

20

u(v)

Fig. 4 - Comparative flow velocity proliles
between exact and linite element
solutions.

u (v)

x

Fig. 5 - Predicted pne$ure distributions
along x-direction.

3. Viscous Incompressible Flow With
Inertia

3.1 Governing Equations
For more general flow problems, the

Navier-Stokes equations, Eqs. (la-c), must be
solved. These equations are inherently
noirlinear because ofthe presence ofthe inertia
terms shown on the right-hand-side of Eqs. (lb-
c). These Navier-Stokes equations are rewritten
in compact form for clarity in the derivation of
finite element equations in the next section,

I
=20

L

3020l 0

0 0 . 5  I

- -T
p = 0  |

u : v : 0 1
30 _|{

6.0 4.s .- P(dx)
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u , * * v , y  0  ( l 4 a )

Uu,x  + .VU,y  -  O* , *  -  T"y ,y  0  ( l4b)

uv,x + vv,y - T*y,* - oy,y 0 ( l4c)

where the stress components are now defined by,
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vNo, ,  Nr , ,  dA (180

vNo,* Nr, ,  dA

vNo," Np,* dA

*  I^ ,  vNo, ,  Nr , ,  dA ( l8h)

These element matrices can be evaluated in

closed form and detailed derivation is omitted

herein for brevity.

3.3 Computational Procedure
The derived finite element equations,

Eqs. (l7a-c), are nonlinear. These nonlinear

algebraic equations are solved using the

Newton-Raphson iteration technique [11] by

first writing the unbalanced values frorh a given

set of solutions for the finite element Eqs. (l7a-

c) as,

f,* 
= Kop* uP \ + Kop.yY vP \ 

- Ho^* Pr

+ sop** uF * Sop*, vp - Qo* (l9a)

1, 
= Kopr" uP nP + KoplY vP vr - Ho^v Pi'

* Sopr* uF + sopw ufi - Qoy (l9b)

$ 
= tuu* ug + Hpuv tF ( l9c)

The application of the Newton-Raphson
iteration technique leads to a set of algebraic
equations with the incremental unknowns in the
form,

s =
ootY

Sogt

t
t
t

o x  =  - P l P  * 2 v u , *

o y  - P f P + 2 v v ' ,

( l 5a )

( l 5b )

S ^uu
c,p"

(1 8e)

(20a)

(20b)

(20c)

r * y  v ( u , r + v , * )  ( l 5 c )

and the kinematics viscosity,
tl
p

(16)

The above set of coupled nonlinear partial

differential equations, Eqs. (l4a-c;), are solved
simultaneously with the boundary conditions of

specified velocity components (Eqs' (4a-b)) or
surface tractions (Eqs. (5a-b)) along edges'

3.2 Finite Element Formulation
The method of weighted residuals [4] is

applied to the differential equations, Eqs. (l4a-

c), to derive the finite element equations in the

saine fashion as for the case of flow with

negligible inertia. The same six-node triangular
element with the velocity component and
pressure distributions given by Eqs. (6a-c) is

used. The procedure leads to the finite element
equations in the nonlinear form as,

KogT"ug\ * Kopr'upu' - Hof Pr

* tou,"uu * Sop*rup q. (l7a)

Koor*hnr + Kop,yvvPvt - HolrPr'

+ Soo.up + Sop.vg Qo, (l7b)

tpu*h * Hpurup o (17c)

where the coeflicients in element matrices are in
form of the integrals over the element area A

and along the edge 52 as,
I

K ^  *  J .  N .  Np N/ , .  dA ( l8a)
cBr^

K ^ ,  J .  * "  * ,  N/ .y  dA ( l8b)
cr07' rA

f  _ _
Hor* = Jo No* H,r dA (l8c)

f
H . "  J  N-  "  H ,  dA ( l8d)

clt u '!

aou** lo z ,N",. Nr' dA
I

+ J ,  vNo. ,  Np,y  dA ( l8e)

Gop* Aup + Lop, aup - Hor* apl.:

Lop* Aup * Gop, Avu - Ho^r APl, =

Hur* ouu * "uu, ouu =

where

Gop* : Sopr* 
u, * Korp* 5 + Korov uT + sou*t

(2ta)

GopY = Kop^1Yvr * Korp'u, * Korp*\ + sopvv

(21b)

(2rc)

eo* = d, N" r^ as (lsi)

q, lr, N" 1 as (lsj)

F *
c

F ,

q,
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L o p t :  K o p T v \ + S o p v * (21d)

In these Eqs. (2la-d), q and v, are the values

of the velocity components at the i6 iteration.
The iteration process is terminated if the
percentage of the overall error is less than the
specified value.

The final form of the finite element
equations, Eqs, (20-21), and the iteration
procedure described are used in the
development of the second finite element
computer program. The program is also written
in FORTRAN and can be executed on standard
personal computers. The main objective in the
development of this computer program is such
that it follows the formulation derived, easy to
understand, and will be used together with the
adaptive meshing technique later. Both the
formulation derived and the computer program
developed have been verified by several
examples that have exact solution and/or
experimental results before applying to solve
more complex flow problems. Selected
examples and an application are presented in the
next section.

3.4 Examples and Application
The first example selected for evaluating

the finite element computer program for viscous
incompressible flow with inertia is the Couette
flow problem. The problem geometry and the
boundary conditions are shown in Fig. 6. The
top plate moves to the right with the velocity of
u=l while the bottom plate moves to the left
with the velocity of u=-0.5. The finite element
modef consisting of l8 elements and,49 nodes is
also shown in the figure. The exact u-velocity
distribution for the entire flow field can be
derived [0] and is given by,

u (y) = 1.5y - 0.5 (22)

The problem was analyzed by the
computer program developed and the predicted
flow velocity profiles which are identical at any
x-location along the flow direction as shown in
Fig. 7. These predicted velocity profiles are
compared and found to be identical to the exact
solution, Eq. (22), as shown in Fig. 8.
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Fig. 6 - Finite element model and boundary
conditions for Couette flow.

Fig. 7 - Predicted flow velocity profiles
along x-direction for Couette
flow.

Y o.s

-0.5
u(v)

Fig. 8 - Comparative flow velocity profile
between exact and finite element
solutions.

u :  -0 .5 ,  v  : 0  
|_ 

I 
_____+l
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To demonstrate the capability of the

computer program for solving flow behavior of

a more complex problem, a flow through a duct

is simulated shown in Fig. 9' The duct is in the

main electricity generating plant of the

Electricity Generating Authority located at the

northem section of Bangkok, Thailand. As

shown in the figure, the duct has uncommon

shape with varying cross-sectional area. Flow

circulation that causes erosion is suspected at

the upper left comer of the duct. Figure 9 also

shows the finite element model with 233

triangles and 516 nodes. The flow velocity

profile at the top inlet of the duct is assummed

in the form of parabola with the Reynolds

number of 100.
With the problem statement and the finite

element model shown in Fig. 9, the finite

element computer program was used to predict

the flow behavior. The result of the flow fielc

is shown by the velocity vectors in Fig. 10. The

velocity vectors indicate the area of flow

circulation as previously suspected. Details of

the flow circulation behavior in this area is

enlarged and shown in Fig. I l.
To avoid the flow circulation, two guided

plates are placed at the top section of the duct to

control the flow behavior as shown in Fig. 12'

The figure also shows the finite element model

that consists of 388 triangles and 869 nodes'
The analysis was repeated and the predicted

flow velocity vectors are shown in Fig. 13. The

figure indicates the disappearance of the flow

circulation. Figure 14 also highlights the detail

of the flow behavior near the plate exits' The
predicted flow solutions demonstrate the

capability of the finite element formulation and

the computer program developed that can help

engineers to increase understanding ofthe flow

behavior in order to solve the problem or to

improve the design.

4. Concluding Remarks

A finite element method for analysis of
viscous incompressible flow problems is
presented. The Navier-Stokes equations
consisting of the conservation of mass and

momentums are solved. The flow is classified

into two types, i.e., the flow with negligible
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inertia for slow moving fluid, and with inertia

for a more general flow. For both types, the

finite element equations were derived and the

corresponding computer programs have been

developed. These computer programs will be

used together with the adaptive meshing

technique in the future to improve the flow

solution accuracy as well as to reduce the

computational time and memory.
In the case of flow with negligible inertia

for slow moving fluid, the finite element

equations are linear and a direct solution

technique can be used to solve nodal

unknowns. For a more general flow, the inertia

terms are included in the Navier-Stokes
equations resulting in nonlinear differential

equations. The derived finite element equations

are thus nonlinear requiring an iterative

technique solver. The Newton-Raphson

iteration method is applied to solve the nodal

unknowns.
Both the finite element formulations and

the corresponding computer programs

developed have been evaluated by several

example problems that have exact solutions

and/or experimental data before applying to

solve more complex flow problems. Two

selected examples that have exact solutions and

an application of complex flow behavior
through an uncommon shape of duct with

varying cross-sectional area are presented in

this paper. These example problems

demonstrate the capability of the finite element

formulations and the computer programs that

can provide insight to the complex flow

behaviors in order to help solving problems as

well as improving the design.
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Area of
Circulation

Wall

Fig. 9 - Finite element model with 233
triangles and 516 nodes for flow
through a duct.
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Guided plates

Wall

Fig. 12 - Finite element model using 388
triangles and 869 nodes for flow
through duct with guided plates.

Fig. 13 - Predicted flow velocity vectors in
duct with guided plates.

Fig. 14 - Detail of flow behavior in the area
highlighted in Fig. 13.

Fig. 10 - Predicted flow behavior by
velocity vectors with area of
circulation.

Fig. 1l - Detail of flow circulation in the
area highlighted in Fig. 10.

Guided plates
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6. Nomenclatures

A

F

H

K

[ , ^

M

N

p

Q , R

S

Element area

Unbalanced value

Pressure interpolation function

Element matrix

Direction cosines

Element matrix

Velocity interpolation function

Pressure

Element traction vectors

Surface
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T Tractions

u, v Velocity aomponents

x, y Coordinates

v Kinematic viscosity

p Dynamic viscosity

Density

Normal stress

Shearing stress
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