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Abstract
This paper describes the determination of a single controller that will simultaneously stabilize

a finite number of linear time-invariant systems in simple steps. To accomplish this, an overall
performance index is defined as the summation of quadratic cost functions with constraints on
Lyapunov equations for each system. The quadratic cost functions are used to yield both good
performance of the systems and suitable magnitude of the controller output while satisfaction of
Lyapunov equations guarantee the stability of the systems. The numerical optimization is then
applied to minimize the overall performance index in order to reach a sub-optimal control provided
that the solution of the simultaneous stabilization problem exists. The simulation results demonstrate
that the proposed technique can determine one control which stabilizes a set of linear time-invariant
systems and provides good transient behavior of the systems.

1. Introduction
Simultaneous stabilization is an interesting

problem in the area of robust control. It
involves determining a single controller that
will stabilize a collection of systems. For
instance, the dynamic model of a system can
unexpectedly change when the failure of a
certain mode of controller occurs. Another
example is linearized models of a non-linear
plant at different operating conditions. One
may seek a single controller which will stabilize
such systems despite the parameter variations.

Research has been done on the
simultaneous stabilization problem for a
collection of systems described in transfer
matrix form [-3]. For the existence of a
stabilizing non-linear state feedback controller,
a sufficient condition has been derived bV [a].
In 1989, Schmitendorf and Hollot considered a
simultaneous stabilization problem with linear
state feedback controller by solving a non-
smooth optimization [5,6]. The sufficient

condition was derived in [7]. In [8f, the
algorithm was based on minimizing the largest
real part of the eigenvalues of the closed loop
systems. The definition of this objective
function only emphasized the maximal stability
margin. Paskota [9] proposed the stability
constraints with Hurwitz' s necessary and
sufficient conditions.

The aim of this paper is to determine a
suitable controller which not only
simultaneously stabilizes the finite number of
linear time-invariant systems but also provides
good transient behavior of the systems. This
can easily be achieved by making use of the
quadratic cost functions and Lyapunov
equations for performance and stability of
closed-loop systems respectively.

2. Preliminary Background
Consider a time-invariant linear system:
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*(t)= l*111* Burr, (l)
y(t) = Cx(t) e)
with the linear state feedback control:

u(t)=-11*1,) t l l
wherex(t) eRn, a(t) eRr,y14 eRm,

I eRnxn, -B eRnxr CeRmxn and rKeRrxn.
Assume (A,B) is controllable. According to

[0], the quadratic cost function of the system is
defined as:

f r i  I  r
J(K) = r]; )t*' Qr + u' Ruld | =;t4rxo1

l z 6  )  z

(4)
where E is the expectation, the initial state {0)
is a zero-mean random variable with covariance
matrix Xg and P is the positive definite solution
of the matrix Lyapunov equation:

P A , + A " r P + Q + K r R K = 0  ( 5 )
where A"=(A- BK)is a stable closed-loop

system matrix. O and R are positive
semidefinite and positive definite matrixes
respectively.

Note the system dynamics in the
equation (l)-(2) are given by its physics. The
quadratic cost function in equation (4) is chosen
to achieve the desired response of the system.
The weighting matrixes Q and R are selected in
order to trade-off comformability in dynamic
performance and magnitude of the required
controls.

3. Problem formulation
Now, consider the collection of z linear

time-invariant systems:
io( t )= ArxoQ)+ BrurQ) (6)
and state feedback controls:

ur(t) = -K*r(t)

where f t : I ,  2 ,3, . . . ,  m
The simultaneous stabilization
written as follows:

n

minimize S(,K): ).wrJr(K)
k= l

(7)

problem is

(8)
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subject to

Pr(A")o + (A)kr Pk + Q* + Kr RrK = 0

for  k :1,2,3, . . . ,m
over KeC)

where w is weighting scalar which is used to
specif how tight the certain systems should be

controlled and C) is a subset of Riln such that if
K e{1, then the closed-loop matrix (lo - BoK)

is stable for each t.
The problem above can be

following steps:
l. Find the initial K.

accomplished by:
l.l algorithm provided byfl l] or
1.2 randomly generating a number of K

checking their feasibility and then discarding
those which are not feasible. The feasible K
satisfu the constraints in problem (8).

2. Apply the conventional Quasi-Newton
method with BFGS formula and line search
method [2] to problem (8).

3. If the obtained K satisfies the desired
performance, then stop. Otherwise, go to step l.
while appropriately changing Q and R.

4. Example
The linear model of the lateral dynamics of

an aircraft [3] has the states and controls as

x=Ip r B Ql' '  and u=l& 6rl '
respectively and

wherep is the roll rate, r is the yaw rate, B is an
incremental sideslip angle, $ is an increment
roll angle, 6a and 6r are the incremental
changes in the aileron and rudder angle
respectively. Suppose malfunction
manipulations of the inputs 6a and 6r are
regarded as case I and 2 respectively. The

solved by the

This can be

[ - t o  
o  - l o

| 0 -0.7 e
A o = l  o  - r  - 0 . 7

I
L l  0  0

'l
0l
0l
0.1
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[o 
2.8

l 0  - 3 . 1 3' '  = lo  o
1 0 0

lro 2.8
|  0  -3 .13

o = l o  o
L 0  0

collection of linear time-invariant systems
consists of the following.

lzo ol
t l
l o  0 l

B " = l  I' 1 0  0 l
L O  O J

where lo = Ar = Az.
It is first verified that only systems of (Ao,Bo)
and (Ao,4) are controllable whereas the
system of (Ao,Br) is not controllable. This
means the aircraft can be rolled by using only
the ailerons, but it cannot be made to turn. Only
the nominal system (Ao, B) and system
(Ao,Br) in case I can be stabilized by using a
state feedback control since controllability
guarantees that all the states can be manipulated
to zero in finite time.

To demonstrate the effectiveness of the
proposed technique, case I of the malfunction
actuator is not considered for a moment. Usins
the proposed technique and [eg=I4" 4 unZ
R0=l2r2l, the controller gain matrix r(6". is
obtained in Table l. In Fig. l, the controller
gain matrix K6r, provides a performance close
to K1q. which is obtained from the conventional
LQR inethod[14]. Ir is found that the controller
gain mahix determined from LeR method can
be obtained by this technique if an initial
controller gain matrix is chosen around LeR
solution. However, the controller gain matrix
K6", destabilizes the system (A0,4) and the
dynamics of the states are shown as Fig 2.
Therefore, the proposed technique is applied to
the systems of (,4o,8) and (.Ao,,fl,) and this
yields the single controller gain matrix
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Kr.un.which simultaneously stabilizes the
systems of (An,Bo) and (,4r,Br). The overall
performance index, weighting matrixes and
controller gain matrix Kr.un are presented as a
unmodified control case in Table 2. By
implementing a single controller Kr.un, the
performances of systems (Ah, B) and (Ao, Br)
are i l lustrated in Fig. 3 and Fig 4 respectively.

Now, the state response in Fig 4 is required
to be faster to reach steady state. The weighting
matrix Q1 is now made larger. For this
modified control, the overall performance
index, weighting matrixes and controller gain
matrix rKr.n.,o6 are indicated in the second 

-row

of Table 2. According to the state response in
Fig 5, the modified control does not have much
affect on the system (10,ft) with respect to
state response in Fig 3. On the other hand, the
modified controller [Ks.mod] drives all the
states in the system (Ao,Br) to steady state
faster than the unmodified controller [Ks,un]
does, as is expected.

5. Conclusion
In this paper, control of a set of linear

time-invariant systems with a single state
feedback controller is considered. To determine
the suitable controller gain matrix, the
conventional BFGS optimization procedure is
implemented to minimize a weighted sum of the
quadratic objective functions with constraints
on the stability Lyapunov equations provided
that the solution exists. It is found that this
procedure is straightforward and takes little
computation and effort. Therefore, the
proposed technique is a practical approach to
obtain a sub-optimal stabilizing control and also
provides the good transients through the choice
of the weighting matrixes in the obiective
function. The effectiveness of this proposed
technique is demonstrated in the example.



Tabte I controller gain matrix obtained from the LQR method and the proposed method

Table 2 Numerical values of overall perfonnance index, weighting matrix

and controller gain matrix

Controller gain matrixValue of

objective cost

function [r;
f.esso .0770 -2612 .en1

K'r=l.ota -.71u -2t43 .ffi3)

lzmo .w .a3T 236s3
&=lntg -:rM -.u% Lur3

Initial S Sub-

optimal

,S

Weighting

matrix

Sub-optimal controller gain

matrix

Unmodified

control

47.8385 15.0360Qo=QFrut,

Rn:R;12"2 [-.mtz .13s8 -.4T7 3160l
4*=l-xn -w3 -.ffi -Jeld

Modified

control

90.71034l.3098 Qo:l+,+,

Qt:5x14y4,

Rg=R1=I2,.2

l--m l@ -tffi 3Nl1
&itt* -1s4 -1%> -ts?s)
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Fig. I Performance of comparison of
controls obtained from the conventional
LQR method and the proposed method.
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Fig.4 State response ofstable closed
loop system (4,4,4.-)

Fig.5 State response ofstable closed
loop system (4,4,4,*) in case of
modified control
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Fig.2 State response ofunstable closed
loop system corresponding to (,4, 4, &,)
[one mode of controller fails]

Fig.3 State response of stable closed
loop system (,4b,4,4.^)
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Fig.6 State response ofstable closed
loop system (4,4,4.,r) in case of
modified control

0.

0
-0.2

-0.4

Time

Time

, . ,  L
1.0  F

l

i l[
n' 11
,if
,:ii

53



6. References

[1] Ghosh, B. K. and Bymes, C. I. (1983),
Simultaneous Stabilization and
Simultaneous Pole-placement by
Nonswitching Dynamic Compensation,
IEEE Transaction on Automatic Control,
Vol .28,  pp.734-741.

[2] Kale, M. A., Chow, J. H. and Minte, K. D.
(1990), A Controller Parametrization and
Pole-placement Design for Simultaneous
Stabilization, Proceeding of the 1990
American Control Conference, pp. 116-
t21.

[3] Vidyasagar, M. and Viswanadham, N.
(1982), Algebraic Design Techniques for
Reliable Stabilization, IEEE transactions
on Automatic Control, Y ol 27 , I 085- I 095.

[4] Petersen, I. R. (1987), A Procedure for
Simultaneously Stabilizing a Collection of
Single-input Linear System Using
Nonlinear State Feedback Control",
Automatica, Vol. 23, pp. 33-40.

[5] Schmitendorf, W. E. (1988), Designing
Stabilizing Controllers for Uncertain
System Using the Riccati Equation
Approach", IEEE Transactions on
Automatic Control, Vol. 33, pp.376-379.

[6] Schmitendorf, W. E. and Hollot, C. V.
(1989), Simultaneous Stabilization via
Linear State Feedback Control, IEEE
Transactions on Automatic Control, Vol.
34 ,  pp .1001 -1005 .

Thammasat Int. J. Sc. Tech., Vol.3, No.l, January 1998

[7] Wu, D. N., Gao, W. B. and Chen, M.
(1990), Algorithm for Simultaneous
Stabilization of Single-Input System via
Dynamic Feedback, Intemational Journal
of Control, Vol 51, pp. 631-642.

[8] Howitt G. D.and Luus R.(1991),
Simultaneous stabilization of Linear
Single-Input Systems by Linear State
Feedback Control, International Journal of
Contro l " ,  Vol .  54,  No.4,  pp.  l0 l5-1030.

[9] Paskota, M., Sreeram, V., Teo, K. L. and
Mees, A. l. (1994), Optimal Simultaneous
Stabilization of Linear Single-Input
Systems via Linear State Feedback
Control, International Journal of Control,
Vol. 60, No.4, pp 483-498.

[0] Choi, S. S. and Sirisena, H. R.(1974),
Computation of Optimal Output Feedback
Gains of Linear Multivariable Systems",
IEEE Transactions on Automatic Control,
Vol.3, pp.257-258.

[ l ]Goh,  C.  J .  and Teo,  K.  L.  (1988),"On
Minimax Eigenvalue Problems via
Constrained Optimization", Journal of
Optimization Theory and Applications,
Vol. 57, pp. 59-68.

[12] Arora, J. S.(1989), Introduction to
Optimum Design, McGraw-Hill Inc..

!31Brogan, W. L. (1991), Modern Control
Theory, Prentice-Hall Inc.

[4] Lewis, F. L.(1986), Optimal Control, John
Wiley & Sons, Inc.


