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Abstract
An upwind cell-centered finite element formulation is combined with an adaptive

meshing technique for solving high-speed compressible flow problems. The finite element
formulation and its computational procedure are described. A corresponding computer program that
can be executed on standard personal computers has been developed. An adaptive meshing technique
is applied to increase the analysis solution accuracy, and at the same time, to minimize the computer
time and memory. The efficiency of the combined method is evaluated by examples of high-speed
compressible flows past a wedge and a cylinder.

1. Introduction

High-speed compressible flows past a
typical geometry normally include complex
flow characters, such as shock waves, flow
expansions, thin boundary layers, shock-shock
interactions, and shock-boundary layer
interactions [,2]. In addition, resolution of
these flow characters is required to accurately
predict aerodynamic pressure and skin friction
distributions as well as aerodynamic heating
rates on the geometry surfaces. These
quantities are important and critical for the
design of high-speed structural configurations.
Most of these flow features are characterizedby
steep gradients that need robust analysis
computational techniques with dense mesh
refinement for high flow-behavior resolution.
These requirements mean that the high-speed
compressible flow analysis always involves
large-scale computations with vast amounts of
computer time and data storage.

The analysis computational techniques
that have been developed and used in the past
few decades are based on the finite difference
method [3]. During the past decade, several
finite element algorithms have been under
development to alleviate the difficulty of the
analysis computation due to complex geometry
of the flow field. The algorithms include the

Taylor-Galerkin algorithm [4], the Petrov-
Galerkin algorithm t5l, the least-squares
algorithm [6], and the upwind cell-centered
algorithm [7].

In this paper, the upwind cell-centered
algorithm is combined with the adaptive
meshing technique [8,9] to improve the finite
element analysis solution accuracy and reduce
the computational time as well as the required
computer memory. The upwind cell-centered
algorithm is selected because of its robustness
in capturing shock with less formulation
complexity compared to other algorithms. The
adaptive meshing technique is applied to place
small elements in the region of large change in
the solution gradients to increase solution
accuracy and, at the same time, to place larger
elements in the other regions to reduce the
computational time and memory. The paper
starts by explaining the theoretical formulation
for high-speed compressible flow analysis and
the solution procedure that leads to the
development of a computer program. The basic
idea behind the adaptive meshing technique is
then described. Finally, the combined technique
is evaluated by analyzing the problems of high-
speed compressible flow past a wedge and a
cylinder. Results are compared with those



obtained from the conventional technique that
uses nonadaptive meshes.

2. Theoretical Formulation and Solution

Procedure

2.1 Governing Differential Equations
The equations for high-speed inviscid

laminar compressible flow are govemed by the
conservation for mass, momentum, and energy.
These equations in two dimensions are written
in the conservation form [0] as,

i t u l + + l E \ + i \ r \  o  ( r )
d dr. 6t

The vector t Ul contains the conservation
rariables defined by,
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where p is the fluid density, u and v are the
velocity components, and e is the total energy,

The vectors {E} anA {F} consist of the inviscid
fluxes in the x and y directions, respectively.
These inviscid flux vectors are given by,

where p is the pressure. The total energy
consists of the internal energy and the kinetic
energy defined by,

1u2 +v2; (4)

where e is the internal energy that can be
written in the form.

cn T (5)

where c" is the specific heat at constant volume,
and T is the temperature.
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2.2 Analysis Solution Algorithm
The explicit upwind cell-centered finite

element algorithm is applied to solve the Euler
Eqs. (l-3). The basic concept behind the
algorithm is to determine the flux across
e lement interfaces using Roe's averaging

procedure [7]. The average inviscid flux G
(The "overbar" denotes average quantity normal
to the element interface between the left
element L and the right element R) is given by,

I r | 'r ' l
G  =  

z l c r + G e + l A l ( U 1 - u * 1 1  
( 6 )

The last term in Eq. (6) may be viewed as
artificial diffusion needed for solution stability.
This diffusion is represented by the product of
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between the left and right element conservation
variables Up and Ua. The Jacobian matrix
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In these matrices,

U  :  u l  + v m  ;  V :  - u m + v l

c* : c(. ; cy: cm ; c2 = yplp

s  =  ( u 2 + 1 2 1 / 2 ;  F : y - l

where / and m are the direction cosines of the
unit vector normal to that side, and y is the
specific heat ratio.

Increments of the conservation variables.

[{J = gn+t - Un, where n is the nft time step,
are determined from,

['n. f r tt"'t] f]rour= # r'{et
( l  l )

where [I] is the identity matrix, At is the time
step, A is the element area, S is the length of
element side where summation is performed for
all sides.

2.3 Computational Procedure and
Computer Program

The element Eq. (ll) consists of four
equations for solutions of the conservation
variables. These equations are solved
iteratively for each element by the Gauss-Seidel
technique [l]. Thus the algorithm requires
relatively low computer memory even for a
finite element model with a large number of
elements. This Eq. ( I 1 ) is used in the
development of a computer program for
analysis of high-speed inviscid compressible
flows. The program is written in FORTRAN
and has been developed for running on standard
personal computers. The program employs
explicit time integration technique by requiring
initial conditions of the conservation variables
for the entire flow field at the beginning of the
computation. With proper time steps,
converged solution is obtained when the change
of the conservation variables for all elements is
less than the specified tolerance or the specified
total number of time steps. This program is
used together with the adaptive meshing
technique which is described in the next section.
The efficiency of the combined procedure is
evaluated by the analysis of high-speed
compressible flows past a wedge and a cylinder
which are presented in the example section.

3. Adaptive Meshing Technique

Adaptive mesh-generation techniques
may be classified into two major categories: l)
refinemenVderefinement, and 2) remeshing.
The first category, the adaptive refinement/
derefinement technique, can be further
classified into three subcategories: a) the h
method, b) the p method, and c) the r method.
In the h method. the elements in the initial mesh
are refined into smaller elements or derefined
into larger elements [2]. The p method
maintains the geometry of the elements of the
initial mesh but increases (or decreases) the
order of the polynomials used for the element
interpolation functions [13]. The r method
keeps the number of elements and their
connectivities the same but relocates the nodes
t l4 l

The remeshing technique, the second
adaptive mesh-generation category, generates
an entirely new mesh based on the solution
obtained from an earlier mesh [8,9]. The
technique is combined with the upwind cell-
centered finite element formulation in this paper
to solve high-speed compressible flow
problems. The idea is to construct a new mesh
that consists of small elements in the regions
with large change in solution gradients and
large elements in the other regions where the
change in solution gradients is small. As an
example, small elements are needed in the
regions of shock waves to capture shock
resolution, whereas larger elements can be used
in the free-stream regions because the flow
behavior is uniform. To determine proper
element sizes at different locations in the flow
field, the solid-mechanics concept of
determining the principal stresses from a given
state of stresses at a point is employed. Since
the fluid density changes abruptly across the
shock waves, the density distribution can be
used as an indicator in the determination of
proper element sizes.

Because small elements must be placed in
the region of the shock wave where large
changes in density gradients occur, the second
derivatives of the density at a point with respect
to global coordinates x and y are needed to
compute,
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(r2)

Then the principal quantities in the principal
directions X and Y where the cross derivatives
vanish. are determined.

(1  3 )

The magnitude of the larger principal quantity is
then selected.

^^-(l#l,l#l .4)
This value is used to compute proper element
size h at that location from the condition [l5],

h2'), : constant : h2rin l.* (15)

where hn.1n is the specified minimum element
size, and l.* is the maximum principal
quantity for the entire model.

Based on the condition shown in Eq. (15),
the element size is generated according to the
given minimum element size h.,n. Specifying
too small h.;n may result in a model with an
excessive number of elements. On the other
hand, specifying too large hn.ln may result in
inadequate solution accuracy or excessive
analysis and remeshing cycles. These factors
must be considered prior to generating a new
mesh. Note that, because the technique
generates an entirely new mesh with different
nodal locations from the old mesh, interpolation
of the solution from the old to the new mesh
should be used to increase the analvsis solution
convergence.

4. Examples

Two examples are presented to evaluate
the capability of the upwind cell-centered finite
element formulation combining with the
adaptive remeshing technique for analysis of
high-speed compressible flows. The two
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examples are a Mach 3 flow over a wedge and a
Mach 6 flow over a cylinder. All computations
were made on standard personal computer with
Pentium 166 MHz processor.

4.1 Mach 3 Flow Past a Wedge
The problem statement of a Mach 3 flow

past a wedge is described by Fig. l. The flow
enters through the left boundary of the
computational domain and creates an oblique
shock wave as highlighted in the figure. Figure
2(a) shows a typical standard finite element
model that consists of structured mesh with 400
triangular elements and 23 I nodes. With this
finite element model, the computer program
developed was used to computate the solutions.
A typical solution of density distribution in the
form of the contour lines is presented in Fig. 2
(b). The figure shows an oblique shock
generated from the comer of the inclined
surface. The computed oblique shock is not
sharp because the elements along the shock line
are not small enough. Such a solution suggests
the need of small elements clustered along the
shock line to provide better shock resolution.

Small elements along the shock line for
improving shock resolution can be generated by
using the adaptive meshing technique described
in the preceding section. The technique starts
from generating a relatively uniform mesh such
as that shown in Fig. 3(a) with 344 elements and
201 nodes. With this first mesh, the fluid
analysis is performed to obtain the
corresponding flow solution as illustrated by the
density contours in Fig. 3(b). Based on this
flow solution and the use of the adaptive
meshing technique, the second mesh is created
as shown in Fig. 4(a). This second mesh
consists of 669 elements and 357 nodes with
smaller elements clustered along the shock line
and larger elements in the free stream region.
The fluid analysis is then repeated to yield a
flow solution as illustrated by the density
contours in Fig. 4(b). The entire process is
repeated again to generate a third adaptive mesh
with 970 elements and 506 nodes and the
corresponding fl ow solution of density contours
as shown in Figs. 5(a) and 5(b), respectively.
The final flow solution as shown in Fig. 5(b)
indicates good solution accuracy for oblique
shock because small elements are generated
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along the shock line. And since larger elements
are used in the other regions, thus the total CPU
time for the fluid analysis is minimized. Each
analysis requires approximately 1,200 time
steps for a converged solution. Table I
compares the computational times, in seconds
on a standard personal computer with Pentium
166 MHz processor, needed for the finite
models in Figs. 2-5. Figure 6 shows the
improvement of the shock resolution (along
section A-A in Fig. l) from the third adaptive
mesh by comparing with the exact solution and
the nonadaptive mesh solution.

Table l. Comparative CPU times needed by
nonadaptive and adaptive finite
element meshes for flow past a
wedge.
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is presented in Fig. 8(b). The figure shows that
the computed bow shock is not sharp because
the element sizes are too large along the shock
line. However, the predicted flow density
behind the bow shock is reasonably good
because the flow field changes gradually. The
solution from this initial study using
nonadaptive mesh thus suggests the need of
clustered small elements along the bow shock
for better shock resolution. It should be noted
that, in general, the shape and location of the
bow shock are not known to the analyst a priori.
The use of the adaptive remeshing technique
that will be explained next can be used to
overcome such difficulty.

The combined finite element analysis and
adaptive meshing technique starts from
generating a relatively uniform mesh such as
that shown in Fig. 9(a) with 512 elements and
325 nodes. The fluid analysis is performed to
yield the corresponding flow solution shown by
the densify contours in Fig. 9(b). Based on this
flow solution, the adaptive remeshing technique
is then used to generate the second adaptive
mesh consisting of 548 elements and 299 nodes
as shown in Fig. l0(a). The fluid analysis is
then performed to yield the corresponding flow
solution such as the density contours shown in
Fig. l0(b). The process is repeated again to
generate the third mesh as shown in Fig. I l(a)
with 956 elements and 501 nodes. Small
elements are clustered along the bow shock as
can be seen clearly in this figure. After the fluid
analysis is performed using this third mesh,
good quality of flow resolution with sharp bow
shock is obtained as shown in Fig. I l(b).
Comparison of the computational times required
for converged solutions using 6,000 time steps
on a standard personal computer with Pentium
166 MHz processor is shown in Table 2 for the
nonadaptive and adaptive meshes in Figs. 8-l l.
Figure 12 also highlights the improved shock
resolution along the flow centerline obtained
from the third adaptive mesh comparing with
the exact solution and the nonadaptive mesh
solution. This example demonstrates the
capability of the combined finite element
method and the adaptive remeshing technique
that can provide improved flow solution
accuracy for general flow behavior that is not
known a priori.

Mesh No. of CPU time
etements (sec)

Nonadaptive (Fig. 2)

1st Adaptive (Fig. 3)

2nd Adaptive (Fig. a)

3rd Adaptive (Fig. 5)

400

344

669

970

4.2 l{Iach 6 Flow Past a Cylinder

To further evaluate the upwind cell-
centered finite element formulation combining
with the adaptive remeshing technique, the
analysis of a Mach 6 flow past a cylinder is
performed. The problem statement and the
sketch of the flow behavior are shown in Fig. 7.
The flow behavior is more complex than that in
the previous example. The flow field includes a
bow shock detached in front of the cylinder.
The flow is subsonic near the centerline
between the bow shock and the cylinder. Away
from this region, the flow behind the weaker
part of the bow shock becomes supersonic with
variation of all flow variables.

The analysis is first performed by using a
nonadaptive finite element mesh as shown in
Fig. 8(a). The mesh consists of 400 elements
and 231 nodes. The corresponding predicted
density distribution represented by contour lines
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Table 2. Comparative CPU times needed by
nonadaptive and adaPtive meshes
for flow past a cylinder.
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Fig.  I  -  Mach3f lowpastawedge.
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(a) Nonadaptive mesh (b) Density contours
Fig. 2 - Nonadaptive finite element mesh and corresponding density contours

for Mach 3 flow past a wedge.
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(a) First adaptive mesh (b) Density contours

Fig.3 - First adaptive finite element mesh and corresponding density contours
for Mach 3 flow past a wedge.

(a) Second adaptive mesh (b) Density contours

Fig. 4 - Second adaptive finite element mesh and corresponding density contours
for Mach 3 flow past a wedge.

(a) Third adaptive mesh @) Density contours

Fig. 5 - Third adaptive finite element mesh and corresponding density contours
for Mach 3 flow past a wedge.
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0.5
Section A-A

Fig. 6 - Comparative density distributions along section A-A of
Fig. I between the exact, the nonadaptive mesh, and
the third adaptive mesh solutions.

Computational
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Fig. 7 - Mach 6 flow past acylinder.
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Finite Element

(a) Nonadaptive mesh (b) Density contours

Fig. 8 - Nonadaptive finite element and corresponding density
contours for Mach 6 flow past a cylinder.

(a) First adaptive mesh (b) Density contours

Fig.9 - First adaptive finte element mesh and corresponding density
contours for Mach 6 flow past a cylinder.

(a) Second adaptive mesh (b) Density contours

Fig.f0 - Second adaptive finte element mesh and corresponding density
contours for Mach 6 flow past a cylinder.
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(a) Third adaptive mesh (b) Density contours

Fig. ll - Third adaptive finte element mesh and corresponding density
contours for Mach 6 flow past a cylinder.

0.5
Distance along centerline

Fig. 12 - Comparative density distributions along the flow centerline
between the exact, the nonadaptive mesh, and the third
adaptive mesh solutions.
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