Development of Microsatellite Markers for Vanda Orchid

Prattana Phuekvilai, Pradit Pongtongkam and Surin Peyachoknagul*

ABSTRACT

The aim of this research was to develop microsatellite (SSR) markers for the Vanda orchid from the enriched library using dinucleotide repeats [(CA)₁₅ and (GA)₁₅] and trinucleotide repeats $[(ACC)_{10}]$ and $(CCT)_{10}]$ as probes. Positive clones were selected using dot blot hybridization. The results showed that 82.45% of dinucleotide-enriched libraries but only 9.91% of trinucleotide-enriched libraries gave positive signals. After sequencing, 83.12% of the positive clones contained microsatellite repeats. The four most frequently found sequences were the compound repeats of $(GA)_n(GT)_n$ (45.19%), $(GA)_n$ (22.59%), $(CA)_n$ (15.93%) and $(CCT)_n$ (9.26%). Fifty-six pairs of primers were designed and nine primer pairs could amplify the DNA giving the expected PCR product with polymorphism. There was a range from 3 to 9 alleles per locus and the expected heterozygosity (H_e) range was 0.3150-0.7438. Based on the nine loci of these microsatellite markers, the probability of identity (PI) of any two Vanda and related orchid cultivars having the same genotype was approximately 1 in 1,000,000. Therefore, these markers could be used for identification of the Vanda orchid samples studied. After analyzing the genetic relationships of 33 Vanda and related orchid cultivars using NTSYS-pc 2.1m, the result indicated that the Vanda and related orchid cultivars could be divided into four groups. The first three groups were strap-leaved Vanda, while the fourth one was terete Vanda, which was clearly clustered separately from the other Vanda groups. This study showed the isolation efficiency of the enrichment procedure, the abundance of microsatellites in Vanda orchids and their potential use for the individual identification of Vanda and related orchid samples.

Key words: microsatellite markers, SSR markers, orchid, Vanda

INTRODUCTION

Microsatellites or simple sequence repeats (SSRs) are short, tandemly repeated DNA sequences spreading throughout the genome. The repetitive unit of microsatellites is generally one to six bases long. Dinucleotide repeats are the most common category of repeat found in the majority of organisms (Jurka and Pethiyagoda, 1995; Tóth *et al.*, 2000; Katti *et al.*, 2001) and are usually associated with non-coding regions of the genome (Young *et al.*, 2000; Temnych *et al.*, 2001). Trinucleotide repeats are often found within open reading frames (ORFs) (Young *et al.*, 2000) due to their triplet structure. However, in plants, trinucleotide microsatellites are relatively infrequent (Lagercrantz *et al.*, 1993; Ma *et al.*, 1996), compared to vertebrates and some other organisms. The variable length of microsatellites is caused by changes in the number of repetitive units (Weber and May, 1989).

Microsatellites are polymorphic among

Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

^{*} Corresponding author, e-mail: fscisrp@ku.ac.th

and within species, multi-allelic and codominantly inherited molecular markers, which become the marker of choice in plant genetic studies (Morgante and Olivieri, 1993; Powel *et al.*, 1996). They have been efficiently applied in genetic diversity studies, population analysis, genotyping and fingerprinting of individuals, genetic mapping and marker-assisted selection in many plant species.

There are several ways to obtain microsatellite markers. Screening genomic libraries by hybridizing with SSR probes and sequencing the hybridized positive clones is the traditional but laborious and costly approach. In recent years, several strategies for microsatellite isolation have been developed. The most popular method is SSR-enrichment, which can significantly reduce time and cost (Billotte et al., 2001). Enrichment methods are based on selective hybridization, capturing microsatellite sequences with biotin-labeled probes that are either captured by magnetic beads coated with streptavidin or fixed on nitrate filter (Edwards et al., 1996). The eluted portion after removing non-hybridized DNA was highly enriched for microsatellite isolation, with enrichment efficiency between 50-90% (Butcher et al., 2000).

The orchid genus *Vanda* belongs to the vandaceous family and grows naturally from southern Australia, all the way to India, and north of China. This genus includes more than 40 wild species and numerous hybrids (Anupansakul, 1999). The *Vanda* orchid is considered the most popular and has the highest demand in the orchid family. However, because of various new hybrids produced for the horticultural industry, it is difficult to identify each type of *Vanda* orchid based only on morphological traits. The SSR marker should be a useful tool for genotype identification of these orchid cultivars.

The objectives of this study were to develop microsatellite markers from the *Vanda* orchid using an enrichment method and to identify

the selected samples of *Vanda* and related orchid cultivars using these novel microsatellite markers by PCR.

MATERIALS AND METHODS

Plant materials

DNA from *Vanda* Robert's Delight was used for the development of microsatellite libraries. Thirty-three *Vanda* and related orchid samples were used to screen for microsatellite polymorphism (Table 1). Plant materials were provided by Assistant Prof. Chitrapan Piluek, Faculty of Agriculture, Kasetsart University, Bangkok.

DNA extraction

Genomic DNA from 33 Vanda and related orchid samples (Table 1) was isolated from the fresh youngest leaves using the method of Dellarporta et al. (1983) with some modification. Approximately 3.0 g of young leaves was ground in liquid nitrogen to fine powder and mixed with the extraction buffer (10 mM Tris-HCl, 5 mM EDTA, 50 mM NaCl, 0.2% \beta-mercaptoethanol and 1.3% SDS). The mixture was incubated at 65°C for 20 min, then 5 M potassium acetate was added and the mixture was further incubated at -20°C for 20 min. After centrifugation at 12 000 g for 20 min, the supernatant was transferred and extracted with chloroform: isoamyl alcohol (24:1 v/v). Isopropanol was used to precipitate nucleic acids and the pellets obtained were dissolved in 2 M NaCl. The total DNA was then precipitated using cold absolute ethanol. The precipitates were washed twice with 70% ethanol and the pellets were dissolved in 300 µl of TE buffer. DNA samples were stored at -20°C.

Enriched library construction

Two DNA libraries were constructed: one was enriched for dinucleotide repeats and the other for trinucleotide repeats by the modified method

Table 1	vanua and related orenna samples used in	uns su	idy.
No.	Vanda orchid samples	No.	Vanda orchid samples
1.	Vanda Robert's Delight	19.	Vanda Robert's Delight 'Black'
2.	Vanda Gordon Dillon	20.	Rhynchovanda Colmari
3.	Vanda Golamco's Blue Magic	21.	Ascocenda Princess Mikasa Pink
4.	Vanda Manuvadee	22.	Ascocenda Princess Mikasa Blue
5.	Vanda Yellow	23.	Vanda Sansai Blue
6.	Vascostylis Pine River Blue	24.	Vanda Bangkok White
7.	Vanda denisoniana	25.	Vanda Rasri Gold
8.	Vanda Thanuntes x Manuvadee	26.	Vanda coerulea 'Red'
9.	Vanda Lumpini Red x Manuvadee	27.	Vanda teres (terete vanda)
10.	Vanda (Rattana x Siriluk) x Manuvadee	28.	Vanda Miss Joaquim (terete vanda)
11.	Vanda Dares x Kultana	29.	Vanda Doctor Anek
12.	Vanda Pachara Delight	30.	Aranda Christine
13.	Vanda Wirat	31.	Aranda Woleco (Vanda Doctor
14.	Vanda Robert's Delight '#31'		Anek x Aranda Christine)
15.	Vanda Robert's Delight '#56'	32.	Vanda sanderiana
16.	Vanda Robert's Delight '#358'	33.	Vanda Doctor Anek x Vanda sanderiana
17.	Vanda Robert's Delight '#888'		
18.	Vanda Robert's Delight 'Krugao'		

 Table 1
 Vanda and related orchid samples used in this study.

of Yaish and Vega (2003). Briefly, the genomic DNA of Vanda Robert's Delight was digested with the restriction enzyme MseI followed by ligation to the MseI adapter. The adapter-ligated DNA fragments were then PCR-amplified with M1 (5' GACGATGAGTCCTGAG 3') primer. Both dinucleotide and trinucleotide repeats were sequentially enriched by hybridization to biotinylated (CA)₁₅, (GA)₁₅ and (CCT)₁₀, (ACC)₁₀ probes, and were captured using streptavidincoated magnetic beads. The captured DNA was eluted and then PCR-amplified with M1 primer. The PCR products were cloned into pGEM-T vector (Promega) and transformed into the bacterial competent cells. The cells were plated on LB-agar containing 100 µg/ml ampicillin, 40 µg/ml IPTG and 40 µg/ml X-Gal.

Colony screening

White colonies were selected and the inserted DNAs were amplified with M13 forward and M13 reverse primers. The positive clones were

confirmed by dot blot hybridization (Pierce Biotechnology) using oligonucleotide probes.

Sequencing of inserts and primers design

All positive clones were cultured overnight and their plasmids were extracted using QIA prep[®] Spin Miniprep (QIAGEN) for sequencing. The obtained sequences were classified according to the type and the presence or absence of microsatellite repeats. PCR primers were designed from the flanking regions of the repeat sequences. All primers were tested and optimized against 14 samples of *Vanda* orchid cultivars.

Amplification of microsatellite loci

The selected PCR primers were used for DNA typing of 33 cultivars of the *Vanda* orchid. The total volume of each PCR reaction was 15 μ l, consisting of 50 ng of genomic DNA, 1xPCR buffer, 5 pmol of each primer, 200 μ M dNTP and 0.5 U *Taq* DNA polymerase. The PCR program

was: 94°C for 3 min, followed by 35 cycles of 94°C for 30 s, annealing temperature (depending on the primer) for 1 min, and 72°C for 30 s, and final extension of 72°C for 5 min and hold at 4°C. PCR products were then electrophoresed in 6% denaturing polyacrylamide gel for 3.5-4 hours at 300 voltage and visualized by silver staining.

Data analysis

The observed heterozygosity (H_o) of each microsatellite locus was calculated as the number of heterozygotes at a locus divided by the total number of individuals surveyed. Expected heterozygosity (H_e) was calculated with Equation 1:

$$H_{e} = 1 - \sum_{i=1}^{k} p_{i}^{2}$$
(1)

where p_i is the frequency of the i^{th} allele of the locus.

Effective number of allele (n_e) was calculated with Equation 2:

$$n_{e} = 1 / \sum_{i=1}^{k} p_{i}^{2}$$
(2)

Probability of identity (PI) was obtained using Equation 3:

$$PI = \sum_{i=1}^{k} (p_i^2)^2 + \sum_{i=1}^{k} \sum_{j=i+1}^{k} (2p_i p_j)^2$$
(3)

where p_j is the frequency of the $(i+1)^{th}$ allele of the locus.

The genetic relationship of the studied *Vanda* and related orchid samples was also analyzed by the NTSYS-pc 2.1m program (Rohlf, 2000).

RESULTS AND DISCUSSION

Development of microsatellite markers

The microsatellite-enriched libraries were constructed from the genomic DNA of Vanda Robert's Delight using the enrichment procedure with some modification. A total of 429 clones were collected from the dinucleotide repeats library $[(CA)_{15} and (GA)_{15}]$, and checked for the presence of DNA insert using PCR, resulting in 342 positive clones (79.72%). These positive clones were further tested for the presence of microsatellite repeats using dot blot hybridization and 282 positive clones (82.45%) were obtained (Table 2). The high outcome percentage indicated that the development of microsatellite markers using the enrichment procedure was more efficient than using the un-enriched library screening method that only produced less than 1% of positive clones (Tang et al., 2003).

For the trinucleotide repeats library $[(ACC)_{10} \text{ and } (CCT)_{10}]$, 323 clones from 340 clones contained inserted DNA (95%). After confirming with dot blot hybridization, only 32 (9.91%) clones were positive for microsatellite repeats (Table 2). The low number of trinucleotide repeats obtained here could have been due to the fact that most of trinucleotide repeats in the *Vanda* orchid are short and imperfect so trinucleotide

 Table 2
 Number of clones from each stage in marker development.

Successive stages in marker development	Libra	ry
	Dinucleotide repeats	Trinucleotide repeats
1. Transformed colonies	429	340
2. Inserted clones checked by PCR	342	323
3. Positive clones confirmed by dot blot hybridization	282	32
4. Clones sequenced	278	30
5. Primers designed	56	0

probes may be easily removed during the highly stringent washing phase in the hybridization process.

The 308 positive clones from the two DNA libraries were cultured overnight and their plasmids were extracted for sequencing. The obtained sequences were classified into four types according to the presence or absence of microsatellite repeats. The first type was a perfect repeat with both flanking sequences. This type was composed of 121 dinucleotide repeat sequences and 2 trinucleotide repeat sequences. Specific PCR primers could be designed from these sequences. The second type was a sequence having a microsatellite repeat close to the cloning site (114 dinucleotide repeat sequences and 22 trinucleotide repeat sequences), which could not be used to design primers. Perhaps the recognition site of the enzyme MseI is 5'TTAA 3' and the flanking region of the microsatellite sequence was extremely AT-rich, so the flanking region of the microsatellite was cut out. The third type was sequences without a microsatellite repeat (9 from the dinucleotide repeat libraries and 3 from the trinucleotide repeat

Table 3	Types	of	microsatellite	repeats.
	~			

libraries) and the last type was unreadable and short sequences (34 from the dinucleotide repeat libraries and 3 from the trinucleotide repeat libraries).

The microsatellite sequences were classified as dinucleotide, trinucleotide and compound repeats (Table 3). The $(GA)_n$ sequence was the most abundant in the dinucleotide repeats (22.59%) followed by the $(CA)_n$ sequence (15.93%). This agreed with earlier reports suggesting an abundance of dinucleotide repeats in plants such as peanut (He et al., 2003) and avocado (Ashworth et al., 2004). Furthermore, Wang et al. (1994) surveyed short tandem repeats in many plants and reported that (AT)_n was the most abundant repeat followed by those of $(GA)_n$ and $(CA)_n$. In this study, the $(AT)_n$ probe was not used due to secondary configuration resulting from pairing between A and T nucleotides so this type of repeat was not found except in the compound repeats. For trinucleotide repeats, the $(CCT)_n$ sequence was the most abundant (9.26%) followed by the $(ACC)_n$ sequence (0.74%), which had not been reported before, while (GA)_n(GT)_n was the

Type of microsatellite repeats	Number of clones	Percent
Dinucleotide repeats		
(CA) _n	43	15.93
(GA) _n	61	22.59
Trinucleotide repeats		
(CCT) _n	25	9.26
(ACC) _n	2	0.74
Compound repeats		
$(CA)_n(TA)_n$	3	1.11
$(GA)_n(CA)_n$	2	0.74
$(GA)_n(GT)_n$	122	45.19
$(GA)_n(TA)_n$	1	0.37
$(CA)_n(CT)_n(GT)_n$	1	0.37
$(CA)_n(TA)_n(CA)_n$	1	0.37
$(GA)_n(GT)_n(TA)_n$	4	1.48
$(GA)_n(GT)_n(CT)_n$	4	1.48
$(GA)_n(GT)_n(GA)_n$	1	0.37
Total	270	100

most abundant sequence in the compound repeats (45.19%).

Fifty-six PCR primer pairs were designed from the dinucleotide repeat sequences but no PCR primer pairs could be designed from the trinucleotide repeat sequences. This was possibly due to the non-unique flanking regions of the designated sequence, e.g., being extremely AT-rich or due to self-complementarity. Subsequently, the PCR reactions were optimized and seven primer pairs (C32, C106, C208, C225, C268, C359 and C364 (Table 4)) were selected as they could amplify the fragments with the right size and they had polymorphic band patterns. Furthermore, two additional primer pairs developed from the Mokara orchid (a related orchid genus) were also used as markers to clearly identify these orchid cultivars. The sequences of all DNA clones used for primer designation were submitted to the GenBank with the accession numbers shown in Table 4.

DNA typing for identification of *Vanda* orchid cultivars

All nine primer pairs were used to examine microsatellite polymorphism in 33 cultivars of the *Vanda* and related orchid samples. The results showed that the number of alleles ranged from 3 to 9 with an average of 6 alleles per locus (Table 5). The primers C106, C208, C225, C268, C359, MOK 26 and MOK29 could amplify DNA from all samples of the *Vanda* and related orchids and had polymorphic DNA fragments (alleles) due to the deletion or insertion of microsatellite DNA caused by slippage or unequal crossing over (Levinson and Gutman, 1987).

The primer C32 could not amplify DNA from some samples of the *Vanda* orchid (null alleles). This may have been due to the deletion of all microsatellite regions in that position (Callen *et al.*, 1993) or the mutation of the flanking region (Lehman *et al.*, 1996). Moreover, the primers C32 and C364 could not amplify DNA from *Vanda*

No.	Marker	Primer sequences (5'-3')	Repeat	$T_a(^{\circ}C)$	GenBank
					Accession number
1.	C32	F: AAT GGA CCT TCT TTG CAT TAC	(GT) ₄₀ (GA) ₂₇	46	FJ539050
		R: ATT ACC GTT CAT TTC TGG TGC			
2.	C106	F: AAG TCT AGC TTT TGG TTG AGG	(TA) ₅ (GT) ₄₅ (GA) ₂₅	44	FJ539051
		R: ATC GAT GGT TTG TTC TTC TAG C			
3.	C208	F: TCA TTG ATG TTG GGA GCC TAA	(TA) ₃ (GT) ₄₂ (GA) ₁₀	50	FJ539052
		R: CTT GCC CTC TAT CTT TCT CTT			
4.	C225	F: AGA ACT AGA TGA CTT CAA AAC G	(GT) ₆ (GA) ₂₄	47	FJ539053
		R: GAA CTC AGA AAA ATT ACC GCG			
5.	C268	F: TGG AAA TGC ATG TTG CCC GA	(GT) ₁₇ (GA) ₃₉	46	FJ539054
		R: ACT GAG TGA CCT TGG AAG AC			
6.	C359	F: CTT TGA GTA ATG TCT CTC AGT G	(GA) ₁₅ (GT) ₁₅	45	FJ539055
		R: CCC TCA CGC ACT CTC TAC C			
7.	C364	F: AGC ATT ATA GAA CTA GAT GAC	(GT) ₂₁	44	FJ539058
		R: GAA TAC TCA AGC TAT GCA TC			
8.	MOK26	F: AGA ATG AGG GAG GTA TAG GG	(CCT) ₁₇	52	FJ539056
		R: TGC CTT GGA TGT GCG TTC G			
9.	MOK29	F: TTC AGC GTT TCC ATG TCG AAG	(GA) ₁₃	52	FJ539057
		R: AGT AAA GCC GCC ATC TTG G			

 Table 4
 Characteristics of nine microsatellite markers.

Table 5	Number of al	lleles, allele size	e range (bp), observed	heterozygosity (H _o)), expected heterozy	gosity (H _e), effe	ective number of a	illeles (n _e) and
	probability of	identity (PI) for	und in Vanda samples.					
No.	Primer	Number of	Size range (bp)	Observed	Expected	Effective	Probability of	Combined
		alleles		heterozygosity	heterozygosity	number of	identity (PI)	ΡΙ
				(H_o)	(H_e)	alleles (n _e)		
-	C32	3	193-204	0.4828	0.5684	2.3168	0.2502	0.2502
2	C106	4	193-205	0.6364	0.5394	2.1710	0.3163	0.0791
3	C208	8	153-190	0.7273	0.6012	2.5077	0.2070	0.0164
4	C225	6	206-263	0.3030	0.4839	1.9377	0.2783	4.5590×10^{-3}
5	C268	5	187-212	0.4242	0.5495	2.2197	0.2430	1.1078×10^{-3}
9	C359	9	152-167	0.8788	0.7394	3.8369	0.1114	1.2341×10^{-4}
7	C364	9	296-316	0.9355	0.7438	3.9031	0.1105	1.3637×10^{-5}
8	MOK26	8	212-272	0.8484	0.6877	3.2023	0.1460	1.9910×10^{-6}
6	MOK29	5	155-175	0.3030	0.3150	1.4598	0.4843	9.6425×10^{-7}
Average		9		0.6155	0.5809	2.6172	0.2386	

teres and Vanda Miss Joaquim, a terete Vanda. This may have been due to the differences in the genetic background between terete Vanda and strap-leaved Vanda.

The observed heterozygosity (H_0) for individual loci ranged from 0.3030 to 0.9355, with an average of 0.6155. The expected heterozygosity (H_e) ranged from 0.3150 to 0.7438, with an average of 0.5809 (Table 5). These values were comparable to those found in other orchid microsatellite markers, such as Gymnadenia conopsea (Gustafsson and Thorân, 2001; Campbell et al., 2002) and Serapias vomeracea (Pellegrino et al., 2001). The effective number of alleles (ne) ranged from 1.4598 to 3.9031, with an average of 2.6172. Some markers had a low value of ne, for example, primer MOK29 had five alleles but its heterozygosity and ne were the lowest because some alleles were found in almost all samples (common allele) while some alleles were rare (rare allele). Therefore, these kinds of primers were not appropriate to use in the identification of the Vanda orchid because of low polymorphism.

The probability of identity, PI was the lowest (0.1105) in primer C364. Thus, the possibility of finding any two samples having the same genotype at this locus is about 1 in 9 samples. The more markers used, the lower the value of probability of identity that will be obtained. Considering the nine loci of these microsatellite markers, the probability of identity (PI) of any two samples having the same genotype was 9.6425× 10⁻⁷ or approximately 1 in 1,000,000. Therefore, these markers could be used with a very high level of confidence in the identification of Vanda and related orchid samples.

Genetic relationship of Vanda orchids used

The genetic relationship of 33 Vanda and related orchid samples was analyzed by the NTSYS-pc 2.1m program. The dendrogram (Figure 1) based on shared alleles clearly differentiated all of the samples tested. With a

Figure 1 Genetic relationship of 33 *Vanda* and related orchid cultivars analyzed by the NTSYS-pc 2.1m program.

similarity index value of 0.75, the Vanda and related orchid samples could be divided into four groups. The first three groups were strap-leaved Vanda. The first group was the main group composed of 25 Vanda and 2 Ascocenda samples. The second and third groups were distinctively separated from the main group, indicating that Vascostylis Pine River Blue, Vanda denisoniana, Rhynchovanda Colmari and Vanda Bangkok White had little genetic relationship with the other Vanda samples. The fourth group was terete Vanda composed of 2 Vanda samples (Vanda teres and Vanda Miss Joaquim). This group was clearly clustered out from the other Vanda and related orchid cultivars because terete Vanda has little genetic relationship with the strap-leaved Vanda and has been re-classified in the genus Papilionanthe (Sin et al., 2002). This result confirmed the grouping based on morphological or botanical characteristics, showing the distinctive difference between strap-leaved Vanda and terete leaved Vanda, and at the same time further distinguished the closely related cultivars of the Vanda orchid.

CONCLUSION

This study reported on the development of microsatellite markers from an enriched-DNA library of the Vanda orchid. From the dinucleotide repeat library, 82.45% of clones were positive from dot blot hybridization and from the trinucleotide repeat library, 9.91% of clones were positive. After sequencing, 83.12% of the positive clones contained microsatellite sequences, and the $(GA)_n(GT)_n$ repeat was the most abundant microsatellite sequence in the Vanda orchid (45.19%) followed by the $(GA)_n$ repeat (22.59%)and the $(CA)_n$ repeat (15.93%). Fifty-six primer pairs were designed and nine primer pairs (including two primer pairs developed from the Mokara orchid) were used. After testing the microsatellite polymorphism in 33 samples of the Vanda orchid, the numbers of alleles ranged from 3 to 9, with an average of 6 alleles per locus. The observed heterozygosity (H_o) ranged from 0.3030 to 0.9355, with an average of 0.6155 and the expected heterozygosity (He) ranged from 0.3150 to 0.7438, with an average of 0.5809. Considering nine loci of these microsatellite markers, the probability of identity (PI) was 9.6425×10⁻⁷, which means that the probability of any two samples having the same genotype was approximately 1 in 1,000,000. PI was the lowest in primer C364, indicating that this was the best primer for identification of the *Vanda* and related orchid samples. Based on the genetic relationships of 33 *Vanda* and related orchid samples analyzed by NTSYS-pc 2.1m, the *Vanda* and related orchid samples could be divided into four groups. The first three groups were strap-leaved *Vanda*. The fourth group was terete *Vanda*, which was clearly clustered out from the other *Vanda* and related orchid samples.

The results clearly indicated that these microsatellite markers have high potential in cultivar identification, the evaluation of cultivar purity in commercial samples and other applications.

ACKNOWLEDGEMENTS

The authors would like to thank the Kasetsart University Research and Development Institute for financial support. Special thanks is extended to Associate Prof. Dr Amara Thongpan for her suggestions in the preparation of this manuscript.

LITERATURE CITED

- Anupansakul, M. 1999. **Orchids**. Kaset Book Publication Press, Nonthaburi.
- Ashworth, V.E.T.M., M.C. Kobayashi, M. de la Cruz and M.T. Clegg. 2004. Microsatellite markers in avocado (*Persea americana* Mill.): development of dinucleotide and trinucleotide markers. Scientia Hort. 101: 225-267.
- Billotte, N., A.M. Risterucci, E. Barcelos, J.L. Noyer, P. Amblard and F.C. Baurens. 2001. Development, characterization, and acrosstaxa utility of oil palm (*Elaeis guineensis* Jacq.) microsatellite markers. Genome 44:

413-425.

- Butcher, P.A., S. Decroocq, Y. Gray and G.F. Moran. 2000. Developmental, inheritance and across-species amplification of microsatellite markers from *Acacia mangium*. Theor. Appl. Genet. 101: 1282-1290.
- Callen, D.F., A.D. Thompson, Y. Shen, H.A. Phillips, R.I. Richards, J.C. Mulley and G.R. Sutherland. 1993. Incidence and origin of null allele in the (AC)_n microsatellite markers.
 Am. J. Hum. Genet. 52: 922-927.
- Campbell, V.V., G. Rowe, T.J.C. Beebee and M.J. Hutchings. 2002. Isolation and characterization of microsatellite primers for the fragrant orchid *Gymnadenia conopsea* (L.) R. Brown (Orchidaceae). Cons. Genet. 3: 209-210.
- Dellaporta, S.L., J. Wood and J.B. Hicks. 1983.A plant DNA minipreparation: version II.Plant Mol. Biol. Rept. 1: 19-21.
- Edwards, K.J., J.H.A. Barker, A. Daly, C. Jones and A. Karp. 1996. Microsatellite libraries enriched for several microsatellite sequences in plants. **Biotechniques** 20: 758-760.
- Gustafsson, S. and P.A. Thorân. 2001. Microsatellite loci in *Gymnadenia conopsea*, the fragrant orchid. **Mol. Ecol. Notes** 1: 81-82.
- He, G., R. Meng, M. Newman, G. Gao, R.N. Pittman and C.S. Prakash. 2003. Microsatellite as DNA markers in cultivated peanut (*Arachis hypogaea* L.). PMC Plant Biol. 3: 1-6.
- Jurka, J. and C. Pethiyagoda. 1995. Simple repetitive DNA sequences from primates: compilation and analysis. J. Mol. Evol. 40: 120–126.
- Katti, M.V., P.K. Rangekar and V.S. Gupta. 2001. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol. 18: 1161–1167.
- Lagercrantz, U., H. Ellegren and L. Anderson. 1993. The abundance of various polymorphic microsatellite motifs differs between plants

and vertebrates. **Nucl. Acids Res.** 21: 1111–1115.

- Lehman, T., W.A. Hawley and F.H. Collins. 1996. An evolution of evolutionary constraints on microsatellite loci using null alleles. Genetics 144: 1155-1163.
- Levinson, G. and G.A. Gutman. 1987. High frequencies of short frameshifts in poly-CA/ TG tamdem repeats borne by bacteriophage M13 in *Echerichia coli* K-12. Nucl. Acids Res. 15: 5323-5338.
- Ma, Z.Q., M. Roder and M.E. Sorrells. 1996. Frequencies and sequence characteristics of di-, tri- and tetra-nucleotide microsatellites in wheat. Genome 39: 123-130.
- Morgante, M. and A.M. Olivieri. 1993. PCRamplified microsatellites as markers in plant genetics. **Plant J.** 3: 175–182.
- Pellegrino, G., D. Cafasso, A. Widmer, M. Solina,
 A. Musacchio and S. Cozzolino. 2001.
 Isolation and characterization of microsatellite
 loci from orchid *Serapias vomeracea* (Orchidaceae) and cross-priming to other *Serapias* species. Mol. Ecol. Notes 1: 279-280.
- Powell, W., G.C. Machray and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222.
- Rohlf, F.J. 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Setanket, New York.
- Sin, H. C., Y. T. Wing and J. Arditti. 2002. Biology of Vanda Miss Joaquim. 1st ed. National University of Singapore Press, Singapore.

- Tang, B., Y.H. Huang, L. Lin, X.X. Hu, J.D. Feng, P. Yao, L. Zhang and N. Li. 2003. Isolation and characterization of 70 novel microsatellite markers from ostrich (*Struthio camelus*) genome. Genome 46: 833-840.
- Temnych, S., G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour and S. McCouch. 2001. Computational and experimental analysis of microsatellites in rice (*Oryza sativa* L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452.
- TÛth, G., Z. G·sp·ri and J. Jurka. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10: 967-981.
- Wang, Z., J.L. Weber, G. Zhong and S.D. Tanksley. 1994. Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 88: 1-6.
- Weber, J.L. and P.E. May. 1989. Abundant class of human DNA polymorphisms which can be typed using polymerase chain reaction. Am. J. Hum. Genet. 44: 388-396.
- Yaish, M.W.F. and M. Pârez de la Vega. 2003. Isolation of $(GA)_n$ microsatellite sequences and description of a predicted MADS-box sequence isolated from common bean (*Phaseolus vulgaris* L.). **Genet. Mol. Biol.** 3: 337-342.
- Young, E.T., J.S. Sloan and K.van Riper. 2000. Trinucleotide repeats are clustered in regulatory genes in *Saccharomyces cerevisiae*. Genetics 154: 1053-1068.