

Original article

Facile derivative UV spectroscopy method: simultaneous estimation of tinidazole and fluconazole in combined tablet dosage form

Saurabh Pandey*, Preeti Pandey, Shaifali Dubey, Udisha Chaturvedi and Awani K. Rai

Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti (Kanpur, UP), India

**Corresponding author: Tel: 094-1570-4650; E-mail address: 23.pandey@gmail.com*

Abstract:

Two derivative spectrophotometric methods have been developed for simultaneous determination of tinidazole and fluconazole in pharmaceutical formulations. The first method depends on utilization of first derivative UV spectrophotometry, with zero-crossing and peak-to-base measurement at 260.57 & 264.23 nm for fluconazole and 263.86 & 318.85 nm for tinidazole. The second method, compensation technique depends on first derivative of the ratio-spectra by measurements of the amplitudes for tinidazole and fluconazole. Calibration graphs were established for tinidazole and fluconazole in the range of 10-100 $\mu\text{g ml}^{-1}$ and 2-20 $\mu\text{g ml}^{-1}$, respectively. All proposed methods have been extensively validated. The results were found to be precise and free from interferences. The described methods can be readily utilized for analysis of pharmaceutical formulations. There was no significant difference between the performances of all of the proposed methods regarding the statistical values.

Keywords: Tinidazole; Fluconazole; Derivative spectroscopy; Simultaneous determination

Introduction

Derivative spectrophotometry has been found to be a useful technique, in the identification and quantification of drugs in combination formulations even when the drugs have overlapping spectra, and in eliminating interference from formulation matrices by using the zero crossing technique [1]. However, in the absence of zero crossing point (ZCP) or when the zero crossing wavelengths are very close, the estimation of two drug combinations cannot be achieved easily. In such cases, the compensation technique (CT) is found to be valuable in the estimation of two-component drug mixtures [2].

Fluconazole (FZ, α -(2, 4-difluorophenyl)- α -(1*H*-1,2,4-triazol-1-yl-methyl)-1*H*-1,2,4-trizol-1-ethanol) (Figure 1A) is a broad spectrum antifungal agent and recommended for the treatment and prophylaxis of disseminated and deep organ candidiasis and used against trichomoniasis, giardiasis, and amoebiasis. Tinidazole (TZ, 1-[2-(ethylsulfonyl)-ethyl]-2-methyl-5-nitroimidazole) (Figure 1B) belongs to the group of 5-nitroimidazoles, which are used in the chemotherapy of infectious diseases such as amoebiasis, giardiasis, and trichomoniasis and against anaerobic bacteria. Both the drugs are now used in treatment of systemic fungal infection either as two different tablets in a form of a kit or as combined dosage form tablet.

The official monographs describe the procedure for the individual assay of FZ and TZ [3]. Literature survey has revealed various methods for estimation of FZ in biological fluids and in pharmaceutical formulations, such as IR spectroscopy [4], UV spectrophotometry [5-9], microbiology [10-11], HPLC in human plasma [11-16], TLC [17] and HPTLC [18]. Couple of individual methods reported for assay of TZ by using potentiometry

[19-20]. Similarly, various literature revealed spectrophotometric methods for the estimation of TZ [21-25], an electrochemical method based on single-wall carbon nanotubes [26], HPLC [27], TLC [28] and HPTLC [29] methods reported in literature.

Though literature reports various methods for simultaneous estimation of TZ with other drugs by using spectrophotometer [30-32], but currently there is no such spectrophotometric method reported for simultaneous estimation of TZ and FZ from tablet dosage forms. The present paper describes simultaneous estimation of TZ and FZ from tablet dosage form by UV spectrophotometry. The developed method is validated and found to be rapid and sensitive.

Experimental

Chemicals and reagent

FZ was obtained as a gift sample from Sunrise International Labs Ltd., Hyderabad, India, and TZ was kindly supplied by Alkem Laboratories, Mumbai, India. Dipotassium Hydrogen Phosphate, Disodium hydrogen phosphate, Orthophosphoric acid from Qualigens, Mumbai, India. All chemicals and solvents were of analytical-reagent grade. The combination formulations are procured from a local pharmacy.

Instrument

A Shimadzu UV 1700 double beam spectrophotometer equipped with 1.0 cm quartz cells with a fixed slit width (2 nm) was used, coupled a Dell-PC computer running spectrophotometric software UV Probe Version 2.33 (Schimadzu). A scan speed of 480 nm min⁻¹ and a chart speed of 10 nm min⁻¹ were maintained. Ordinate maximum and minimum were adjusted to the magnitude of derivative values. Analytical balance (XS 205 from

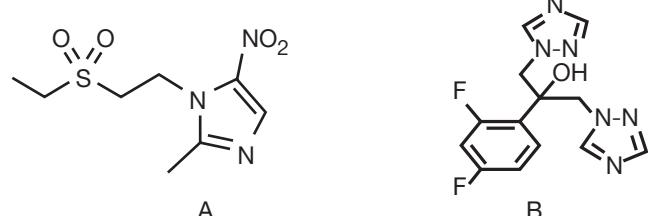


Figure 1 Chemical structures of A) tinidazole and B) fluconazole

Mettler Toledo), autopipette (100-1000 μL from Eppendorf), Oven (VA1, VA3 from SHEL LAB) were used.

Standard solution

The stock solutions of pure TZ (1000 $\mu\text{g ml}^{-1}$) and FZ (75 $\mu\text{g ml}^{-1}$) were prepared by dissolving appropriate amount of the pure drugs in phosphate buffer (PB) of pH 6.8. A series of dilutions for TZ in the range of 10-100 $\mu\text{g ml}^{-1}$ and FZ in the range of 2-20 $\mu\text{g ml}^{-1}$ were prepared separately. Similarly, two series of 10 ml of each mixture solution were also prepared in buffer from the stock solutions. The first series contained a constant concentration of TZ (60 $\mu\text{g ml}^{-1}$) and a varying concentration of FZ (3.75, 4.5 and 5.25 $\mu\text{g ml}^{-1}$). The second series contained a constant concentration of FZ (4.5 $\mu\text{g ml}^{-1}$), and a varying concentration of TZ (50, 60 and 70 $\mu\text{g ml}^{-1}$).

Sample preparation

Ten tablets labeled to claim 1000 mg of TZ and 75 mg FZ and excipients were accurately weighed and powdered. The powder weight equivalent to 10 mg of TZ (corresponds to 0.75 mg of FZ) was dissolved in PB by mixing and made up to volume in a 50 ml volumetric flask. The sample was filtered through Whatman filter paper No. 1. After filtration, appropriate solutions were prepared by taking suitable aliquots of clear filtrate and diluting with PB in order to obtain a final solution of 60 $\mu\text{g ml}^{-1}$ TZ (corresponding amount of FZ 4.5 $\mu\text{g ml}^{-1}$).

Method

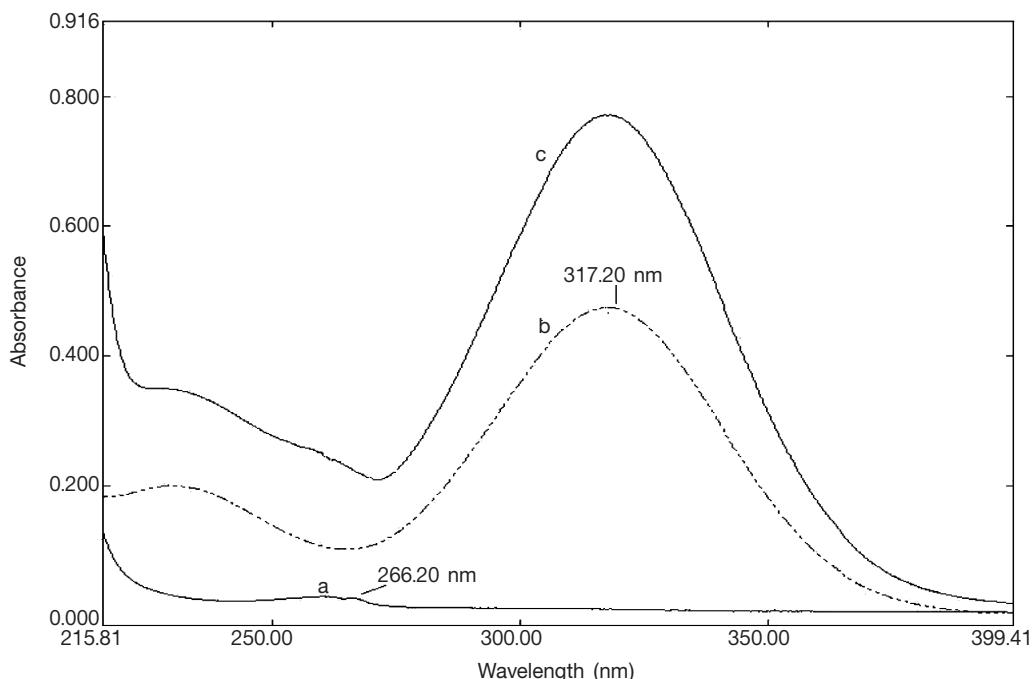
In the ZCP technique, the absorbance of the sample and standard solutions of TZ and FZ were recorded from 200-400 nm against the blank solution. The first derivative absorption spectra for each set of solutions were subsequently recorded and were measured at the zero crossing wavelengths of the other drug. The values of the λ^1 amplitudes were measured at 318.85 nm & 263.86 nm (zero-crossing of TZ) and 260.57 & 264.23 nm (zero-crossing of FZ) for the determination of both drugs, respectively.

For the CT, the sample cell contained the TZ (60 $\mu\text{g ml}^{-1}$) and FZ (4.5 $\mu\text{g ml}^{-1}$) mixture and the

reference cell contained a series of standard solutions (TZ and FZ) with different concentrations. By using an appropriate wavelength range (296.26 & 341.06 nm for TZ, 268.13 & 265.09 nm for FZ) and set parameters mentioned in ZCP technique, the derivative spectra were recorded. The derivative spectra of standard solutions were recorded against a blank in each instance. Different ratios of wavelengths i.e. maxima to minima or vice versa for the pure drugs and mixture were calculated. At the exact balance point (isosbestic point) the concentration of one of the analyte components of a mixture becomes equal to that of the reference solution and ratios should be equal. The procedure was repeated to obtain concentration of the analytes in the mixture at the balance point.

Both proposed methods were validated as to linearity (evaluated by regression equations), ruggedness and precision (reported as the relative standard deviation i.e. % RSD in same and different days), detection limit (LOD) and determination limits (LOQ) were calculated according to the 3 s/m and 10 s/m criterions, respectively, where s is the standard deviation of the absorbance ($n = 5$) of the sample and m is the slope of the corresponding calibration curve, accuracy (evaluated by recovery studies). The validation data for both methods are shown in Table 1.

Result and Discussion


ZCP method

Since the zero-order spectra of pure drug combinations of both the drug were found to overlap (Figure 2), derivative spectroscopy was used for their simultaneous determination. The first derivative curve of both drug shows zero crossing point. The ZCP is found to be 318.85 nm and 263.86 nm for TZ, and 260.57 and 264.23 nm for FZ (Figure 3). The derivative curves plotted for 6 pairs of solutions ($n = 6$) in both cases, showed linear response to selected analyte concentration at the definite wavelengths (Figures 3, 4). The presence of distinct isosbestic points suggested no interferences in the estimation of TZ and FZ. The statistical analysis of the data obtained is shown in Table 1. The ZCP technique was compared with the CT and validated against each other.

Table 1 Statistical data for the validation of tinidazole and fluconazole by zero crossing point technique and compensation technique (N=5)

Drug	λ (nm)	Linearity ($\mu\text{g ml}^{-1}$)	Slope	Correlation coefficient	LOD ($\mu\text{g ml}^{-1}$)	LOQ ($\mu\text{g ml}^{-1}$)	Repeatability	Reproducibility
TZ	318.85	10-100	0.00048	0.9988	0.231	0.386	0.31	0.50
(ZCP)	263.86	10-100	0.00023	0.9990	0.341	0.484	0.21	0.42
FZ	264.23	2-20	0.00082	0.9997	0.645	1.010	0.58	0.81
(ZCP)	260.57	2-20	0.00076	0.9989	0.882	1.210	0.69	0.91
TZ	341.06	10-100	0.009	0.9991	0.208	0.518	0.18	0.23
(CT)	296.26	10-100	0.011	0.9994	0.223	0.591	0.24	0.30
FZ	268.13	2-20	0.005	0.9994	0.608	0.932	0.39	0.46
(CT)	265.09	2-20	0.006	0.9993	0.701	0.991	0.40	0.52

LOD = limit of detection; LOQ = limit of quantification; ZCP = zero crossing point technique; CT = compensation technique; TZ = tinidazole; FZ = fluconazole; N = repetition of experiment

Figure 2 Zero order absorption spectra of a) fluconazole ($4.5 \mu\text{g ml}^{-1}$), b) tinidazole ($60 \mu\text{g ml}^{-1}$), and c) a mixture of both drugs in phosphate buffer

Compensation technique

To optimize the CT, for simultaneous estimation of TZ and FZ, it is significant to test the influence of the variables such as divisor standard concentration, wavelength and smoothing function. The influence of $\Delta\lambda$ for obtaining the first derivative of the ratio-spectra was tested and $\Delta\lambda = 2 \text{ nm}$ was selected as an optimum value. An accurate choice of divisor standard concentration is fundamental for couple of reasons [33,34] hence; the method was trialed with various divisor concentrations. The results of all the tests do not add to the scientific value

of the work and not shown. A standard spectrum of $60 \mu\text{g ml}^{-1}$ of TZ was considered as suitable for the FZ determination and a standard spectrum of $4.5 \mu\text{g ml}^{-1}$ of FZ as divisor was considered as suitable for the TZ determination.

Similarly, the λ_1 values at zero crossing wavelengths for TZ ($60 \mu\text{g ml}^{-1}$) and FZ ($4.5 \mu\text{g ml}^{-1}$) and, the ratios of standard solutions of TZ ($60 \mu\text{g ml}^{-1}$) and FZ ($4.5 \mu\text{g ml}^{-1}$) given in Table 1, were used in the determination of TZ and FZ in their combined tablet formulation. Results obtained from proposed methods of the analysis of both drugs in

Table 2 Recovery analysis of tinidazole (TZ) and fluconazole (FZ) in commercial tablet dosage forms using first derivative ZCP (λ^1); first derivative of the ratio-spectra, CT ($\lambda\lambda^1$)

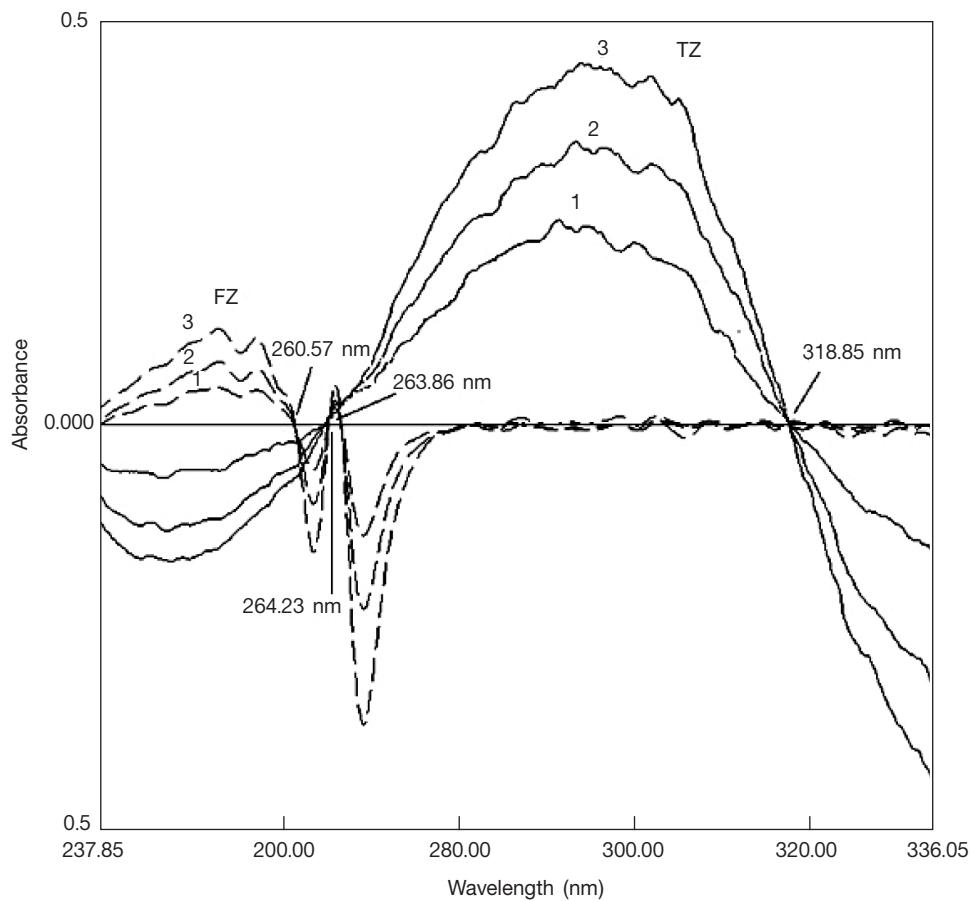
Tablet Brand	Drug (Method)	Labelled claim ($\mu\text{g ml}^{-1}$)	Pure drug added ($\mu\text{g ml}^{-1}$)	λ (nm)	% Mean labelled amount recovered \pm SD (n=3)	% RSD
Fluier TZ [®]	TZ (ZCP)	1000	50	318.85	99.81 \pm 0.62	0.13
			60	263.86	99.21 \pm 0.54	0.19
			70			
	FZ (ZCP)	75	3.75	264.23	98.64 \pm 0.23	0.21
			4.50	260.57	96.43 \pm 0.81	0.29
			5.25			
Flucoti [®]	TZ (CT)	1000	50	341.06	99.91 \pm 0.19	0.05
			60	296.26	99.51 \pm 0.31	0.21
			70			
	FZ (CT)	75	3.75	268.13	99.89 \pm 0.28	0.09
			4.50	265.09	97.49 \pm 0.32	0.17
			5.25			

ZCP = zero crossing point technique; CT = compensation technique; RSD = relative standard deviation; n = repetition of experiment

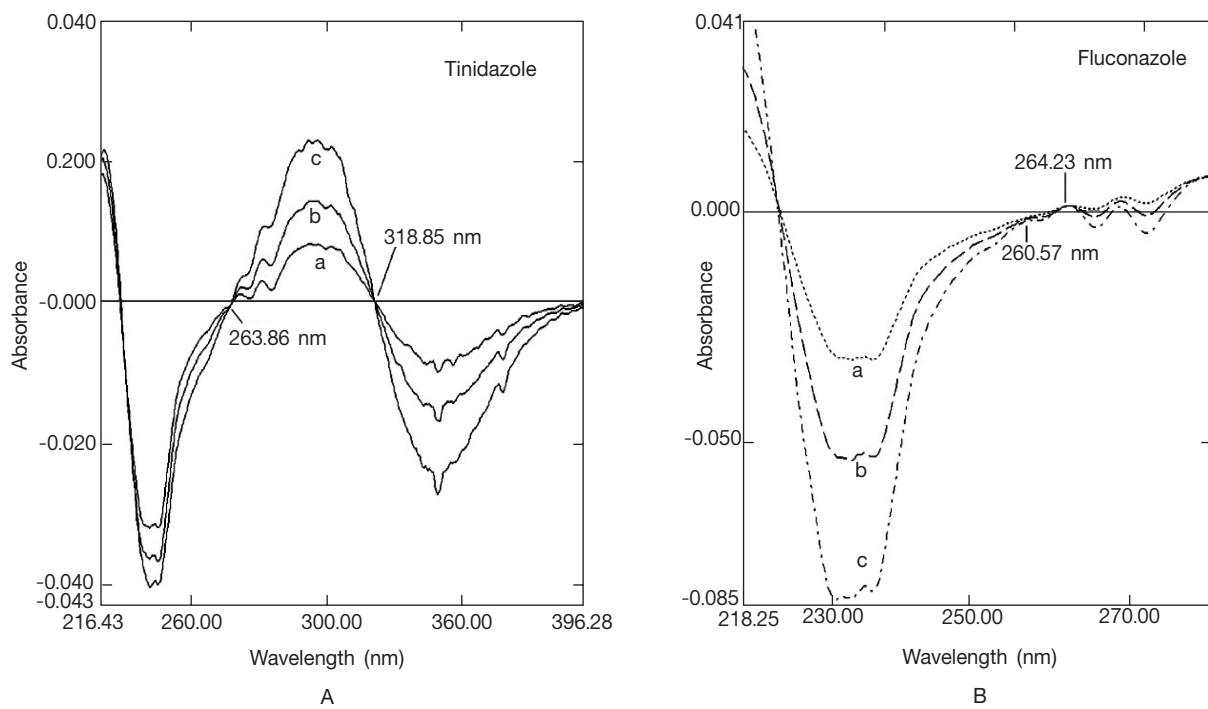
Table 3 Comparison of proposed method (N=3) to reported HPLC method for drug analysis

	ZCP		CT		HPLC*	
	Wavelength (nm)		Wavelength (nm)		TZ	FZ
Drug	318.85	264.23	341.06	268.13		
Linearity ($\mu\text{g ml}^{-1}$)	10-100	2-20	10-100	2-20	79.98-186.62	6-14
LOD ($\mu\text{g ml}^{-1}$)	0.231	0.645	0.208	0.608	4.39	0.30
LOQ ($\mu\text{g ml}^{-1}$)	0.386	1.01	0.518	0.932	14.64	0.99
Recovery %	99.81	98.64	99.91	99.89	99.04	100.06

*From ref [35]


TZ = tinidazole; FZ = fluconazole; ZCP = zero crossing point technique; CT = compensation technique; LOD = limit of detection; N = repetition of experiment; LOQ = limit of quantification

tablets indicate that the proposed techniques can be used for simultaneous quantitation and routine quality control analysis of this binary mixture in pharmaceuticals (Table 2). The method is found to be precise and reproducible. The ZCP method is more rapid and simple than the CT method, while the proposed CT method has greater sensitivity and accuracy. No such method was reported for simultaneous estimation of both drugs in official pharmacopoeias and literature so far, so comparison of proposed methods has not been possible. A reported HPLC results [35] were then compared with the proposed spectrophotometric methods (Table 3). The quantification of TZ and FZ by both proposed methods shows lower


LOD and LOQ values than HPLC method. The recovery values found were similar for all methods.

Conclusion

The two proposed methods for simultaneous estimation of TZ and FZ are suitable for quality control laboratories, where economy and time are essential. All validation parameters were found to be highly satisfactory, indicating linearity, precision and adequate detection and quantification limit. High percentage recovery shows that the methods are free from the interferences of the commonly used excipients and additives in the formulations of drugs.

Figure 3 First derivative absorbance spectra of fluconazole (dotted line) (1) $3.75 \mu\text{g ml}^{-1}$, (2) $4.5 \mu\text{g ml}^{-1}$ and (3) $5.25 \mu\text{g ml}^{-1}$; tinidazole (continuous line) (1) $50 \mu\text{g ml}^{-1}$, (2) $60 \mu\text{g ml}^{-1}$ and (3) $70 \mu\text{g ml}^{-1}$

Figure 4 First derivative of the ratio-spectra for different concentrations of A) tinidazole i.e. 50 (a), 60 (b), 70 (c) $\mu\text{g/ml}$ (divisor fluconazole of $4.75 \mu\text{g ml}^{-1}$, and B) fluconazole i.e. 3.75 (a), 4.50 (b), 5.25 (c) $\mu\text{g ml}^{-1}$ (divisor tinidazole of $60 \mu\text{g ml}^{-1}$). The working wavelengths are indicated

References

- [1] B. Morelli. Second derivative spectrophotometric assay of mixtures of dicloxacillin sodium and ampicillin sodium in pharmaceuticals, *J. Pharm. Sci.* 17: 1042-1045 (1988).
- [2] A.M. Wahabi, F.A. El-Yazabi, M.H. Barary, and S.M. Sabri. Derivative spectrophotometric analysis of two component mixtures using a compensation technique, *Analyst* 117: 785-789 (1992).
- [3] British Pharmacopoeia Commission. *British Pharmacopoeia* 1998, The Stationery Office, London, 2006.
- [4] O. Atay, and F. Selcuk. Quantitative determination of fluconazole by infrared spectrophotometry, *Anal. Lett.* 29: 2163-2176 (1996).
- [5] F. Lu, H. Fang, and Y. Wu. Investigation of drug compatibility by convolution spectrometry. *Zhongguo Yiyuan Yaoyue Zazhi* 16: 505-506 (1996).
- [6] D. He, and X. Dongzhou. Determination of fluconazole content in fluconazole injection by UV spectrophotometry, *Guangdong Yaoyueyuan Xuebao* 13: 107-108 (1997).
- [7] N.G. Goger, and H.Y. Aboul-Enein. Quantitative determination of fluconazole in capsules and IV solutions by UV spectrophotometric methods, *Anal. Lett.* 34: 2089-2098 (2001).
- [8] H.Y. Aboul-Enein, N.G. Goger, and A. Turkalp. Quantitative determination of fluconazole in syrups by first order derivative spectrophotometry, *Anal. Lett.* 35: 1193-1204 (2002).
- [9] R.M. Anand, T.R. Kumar, N. Nandakumar, D. Saravanan, K.G. Lalitha, and V. Murugan. Spectrophotometric method for estimation of fluconazole in capsules, *Indian Drugs* 43: 320-322 (2006).
- [10] R.T. Sane, A. Fulay, and A.A. Joshi. Quantification of fluconazole from its pharmaceutical preparations by simple microbiological method, *Indian Drugs* 31: 207-210 (1994).
- [11] F.K. Hurtado, M.J. Souza, J.D. Melo, and C.M.B. Rolim. Microbiological assay and HPLC method for the determination of fluconazole in pharmaceutical injectable formulations, *Lat. Am. J. Pharm.* 27: 224-228 (2008).
- [12] J.E. Wallace, S.C. Harris, J. Gallegos, G. Foulds, T.J.H. Chen, and M.J. Rinaldi. Assay of fluconazole by high-performance liquid chromatography with a mixed-phase column, *Antimicrob. Agents Chemother.* 36: 603-606 (1992).
- [13] P.J. Dentinger, and C.F. Swenson. Stability of reconstituted fluconazole oral suspension in plastic bottles and oral syringes, *Ann. Pharmacother.* 43: 485-489 (2009).
- [14] T. Wattananat, and W. Akarawut. Validated HPLC method for the determination of fluconazole in human plasma, *J. Pharm. Biomed. Anal.* 20: 1-3 (2006).
- [15] N.M. Aloudah, and M.A. Radwan. HPLC assay of fluconazole and its application to patients with early septic shock, *J. Liq. Chromatogr. Relat. Technol.* 28: 591-600 (2005).
- [16] S.R.C.J. Santos, I.E.V. Campos, C. Sanches, Gomez, and M.C. Ferreira. Fluconazole plasma concentration measurement by liquid chromatography for drug monitoring of burn patients, *Clinics* 65: 237-243 (2010).
- [17] D.B. Meshram, S.B. Bagade, and M.R. Tajne. A simple TLC method for analysis of fluconazole in pharmaceutical dosage forms, *J. Planar. Chromatogr.* 21: 191-195 (2008).
- [18] D.H. Shewiyo, E. Kaale, P.G. Risha, H.B. Sillo, B. Dejaegher, J. Smeyers-Verbeke, and Y.V. Heyden. Development and validation of a normal-phase HPTLC-densitometric method for the quantitative analysis of fluconazole in tablets, *J. Planar. Chromatogr.* 6: 529-533 (2011).
- [19] M. Slamik. Determination of tinidazole in tablets by dc polarography, *J. Pharm. Sci.* 65: 736-738 (1976).
- [20] S.N. Sanyal, A.K. Datta, and A. Chakrabarti. Stability indicating method for the quantification of tinidazole in pharmaceutical dosage form-i.v. fluid, *Drug Dev. Ind. Pharm.* 18: 2095-2100 (1992).
- [21] L. Lopez-Martinez, F.J.L. Vazquez, and P.L. Lopez-de-Alba. Simple spectrophotometric determination of tinidazole in formulation and serum, *Anal. Chimica Acta* 340: 241-244 (1997).
- [22] R.K. Maheshwari, M.S. Rajput, and S. Sinha. Eco-friendly spectrophotometric estimation of tinidazole in tablets using lignocaine hydrochloride as a hydrotropic solubilizing agent, *Asian J. Pharm.* 3: 319-321 (2009).
- [23] K. Maheshwari, S. Gupta, A. Gharia, S.K. Garg, and R.S. Rajesh. Simple ecofriendly spectrophotometric estimation of tinidazole tablets by application of mixed-solvency techniques, *Bull. Pharm. Res.* 1: 22-25 (2011).
- [24] J.P. Salo, and H. Salomies. Two stability-indicating UV spectrophotometric methods for the analysis of hydrolyzed tinidazole, *J. Pharm. Biomed. Anal.* 31: 523-536 (2003).
- [25] L.O. Okunrobo. Titrimetric and spectrophotometric determination of tinidazole tablets, *World J. Chem.* 2: 63-66 (2007).
- [26] C. Yang. Voltammetric determination of tinidazole using a glassy carbon electrode modified with single-wall carbon nanotubes, *Anal. Sci. Technol.* 20: 821-824 (2004).
- [27] H. Salomies, and J.P. Salo. An HPLC study of tinidazole hydrolysis, *Chromatographia* 36: 79-82 (1993).
- [28] S.N. Sanyal, A.K. Datta, and A. Chakrabarti. Stability indicating TLC method for the quantification of tinidazole in pharmaceutical dosage form-i.v. fluid, *Drug Dev. Ind. Pharm.* 18: 2095-2100 (1992).
- [29] M.H. Guermouche, D. Habel, and S. Guermouche. Assay of tinidazole in human serum by high-performance thin-layer chromatography comparison with high-performance liquid chromatography, *J. AOAC Int.* 82: 244-247 (1992).

[30] C.V.N. Prasad, V. Sripriya, R.N. Saha, and P. Parimoo. Simultaneous determination of tinidazole, furazolidone and diloxanide furoate in a combined tablet preparation by second-derivative spectrophotometry, *J Pharm. Biomed. Anal.* 21: 961-968 (1999).

[31] C.V.N. Prasad, V. Bharadwaj, and P. Parimoo. Derivative spectrophotometric determination of tinidazole and furazolidone in combined tablet preparations, *Pharm. Sci.* 2: 255-258 (1996).

[32] C.V.N. Prasad, C.P.K. Sunil, and P. Parimoo. Simultaneous determination of tinidazole-clotrimazole and tinidazole-norfloxacin in combined tablet preparations by derivative spectroscopy, *Pharm. Pharmacol. Commu.* 3: 337-341 (1997).

[33] S.A. Ozkan, C. Akay, S.Z. Cevheroglu, M.M. Shabana, and Senturk. Rapid and accurate simultaneous determination of fosinopril sodium and hydrochlorothiazide in tablets by HPLC, *J. Liq. Chromatogr. Rel. Technol.* 24: 983-991 (2001).

[34] A. El-Gindy, B. El-Zeany, and T. Awad. Spectrophotometric determination of trifluoperazine HCl and isopropamide iodide in binary mixture using second derivative and second derivative of the ratio spectra methods, *J. Pharm. Biomed. Anal.* 26: 203-210 (2001).

[35] D.B. Meshram, S.B. Bagade, and M.R. Tajne. Simple HPLC method for simultaneous estimation of fluconazole and tinidazole in combined dose tablet, *J. Chromatogr. Sci.* 47: 885-888 (2009).