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Sliding Plate Rheometer and Its Applications
 

ChanyutKolitawong1*andA.J.Giacomin2


1.  Introduction

Rheology †, a study of flow and deformation

ofmatter,describedtheinterrelationbetweenforce,

deformation, and time. It is a wide discipline

includingclassicalfluidmechanicsandelasticityof

Newtonian fluid such as water and small

deformationsofhardsolidssuchaswoodandsteel.

However, the word “rheology” normally refers to

the flow and deformation of “non-classical”

materials such as rubber, molten plastics, polymer

solutions, slurries and pastes, electrorheological

fluids,blood,muscle,composites,soils,andpaints.

These materials exhibit varies and striking

rheologicalpropertiesthatclassicalfluidmechanics

andelasticitycannotdescribe.

There are two fundamental catagories of

rheology[1].Oneisthedevelopmentofcorrelation

between deformation and force for a material of

interest from experimental measurements. For

example, we may observe that force requiring to

compress a rubber ball for a certain distance is

proportionaltothedistance.Thusonecanestablish

ageneralrelationfromthisobservation.Thiskindof

relation is known as “constitutive equation.” In

simplematerialssuchasalinearelasticmaterialora

Newtonianfluid,aconstitutiveequationisgenerally

established. However, for more complex materials

such as molten plastics, the developments of a

constitute equation is more difficult and requires

manytypesofexperiment.

The second catagory is to relate the material

properties such as material structure, composition,

temperature, and pressure to the constitutive

equation.Thatis,wecanrelatetheviscosityandthe

relaxation modulus to molecular structure,

composition, temperature, and pressure. This has

onlylittlesuccessforthecomplexmaterials.

Because constructing the constitute equation

need a simple measurement for the complex

materials to correlate the material behavior to the

equation.A sliding plate rheometer incorporated a

localshearstresstransducer[2]hasbeendeveloped

tosuitawiderangeofviscoelasticmaterialssuchas

moltenplastics,concentratedpolymersolution,and


1 AssistantProfessor,DepartmentofMechanicalEngineering,KingMongkut’sUniversityofTechnology

NorthBangkok.
2 Professor, Department of Mechanical Engineering and Rheology Research Center 1513 University

Avenue,UniversityofWisconsin,MadisonWI53706-1572

* CorrespondingAuthor,Tel.0-2913-2500Ext8308,E-mail:ckw@kmutnb.ac.th
†  Thoughrheologyisanolddiscipline,theword“rheology”wascoinedin1929byProfessorMarcusReiner

 andProfessorEugeneBingham.Itmeans“everythingflowsdependingontimeinterval.”

Received February 12, 2008; Accepted August 8, 2008 



110

วารสารวิชาการพระจอมเกล้าพระนครเหนือ ปีที่ 19 ฉบับที่ 1 ม.ค. - เม.ย. 2552
The Journal of KMUTNB., Vol. 19, No. 1, Jan - Apr. 2009 

rawelastomers.Itcangeneratesteadyshearratesup

to500s-1andnotonlycanbeusedtomeasurelinear

viscoelasticity,butalsocanbeusedtomeasurenon-

linearone,alargedeformationwithveryshorttime.

For instance, the sliding plate rheometer can

generatetotalstrainsof10inabout10milliseconds,

whichisnormallyusedintheindustrialprocesses.

From those two study aspects, many

researchers are trying to find a developed

constitutive equation model that predicts many

kinds of experimental data in complex flows.

Certainlyslidingplaterheometerisoneofthekeyto

study these correlations. For example, Jeyaseelan

[3] successfully uses data from modified sliding

platerheometertostudybiaxialshearbehaviorofa

polybutylene and a low density polyethylene by

using kinetic network theory. Later, Giacomin and

his coworkers [4]-[6] using the sliding plate

rheometerasamainapparatustostudythenetwork

theorytopredictmanykindsofflowssuchaslarge

amplitude oscillatory shear, exponential shear, and

stepstrain.

Since molten polymer behaviors in the

workingconditionsofprocessingprocessessuchas

highstrainrateofthemoltenpolymersinextrusion

or injection are far beyond current rheometrical

techniques, because the material properties in the

working ranges are highly nonlinear, to closely

predictthoseprocessingprocesses,itisnecessaryto

generate a large uniform, transient deformation

involving high strain rate for a broad spectrum of

nonlinear viscoelastic properties.A sliding plate

rheometer incorporated with a local shear stress

transducerisapossiblesolutionforthosenonlinear

problems.This paper intends to review the sliding

platerheometeranditsapplicationsinthepast.

2.  Sliding Plate Rheometry

Figure1illustratestheoperatingprincipleofa

slidingplate rheometer incorporating a shear stress

transducer (7). By using the simple Couette flow

fundamental, a molten plastics sample (1) is

squeezedbetweenparallelplates:onefixed(4)and

theothermovingatacontrolledspeed(8).Whenthe

movingplate isoperatedby the linearactuator, the

sample senses the move and then propagates the

deformation to the local shear stress transducer (7)

thatisflush-mountedinthestationaryplate.Finally,

Figure 1 Cross section showing the essential

elements of a sliding plate rheometer

incorporating an elastic type shear stress

transducer [17]. (1) sample; (2) moving

plate; (3) back support; (4) stationary

plate; (5) end frame; (6) gap spacer; (7)

shear stress transducer incorporating a

rigid beam supported by a steal

diaphragm;(8)linearactuator;(9)oven.

2

total strains of 10 in about 10 milliseconds, which is 
normally used in the industrial processes. 

From those two study aspects, many researchers 
are trying to find a developed constitutive equation 

model that predicts many kinds of experimental data 
in complex flows. Certainly sliding plate rheometer 
is one of the key to study these correlations. For 

example, Jeyaseelan [3] successfully uses data from 
modified sliding plate rheometer to study biaxial 
shear behavior of a polybutylene and a low density 

polyethylene by using kinetic network theory. Later, 
Giacomin and his coworkers [4-6] using the sliding 
plate rheometer as a main apparatus to study the 

network theory to predict many kinds of flows such 
as large amplitude oscillatory shear, exponential 
shear, and step strain. 

Since molten polymer behaviors in the working 
conditions of processing processes such as high 
strain rate of the molten polymers in extrusion or 

injection are far beyond current rheometrical 
techniques, because the material properties in the 
working ranges are highly nonlinear, to closely 

predict those processing processes, it is necessary to 
generate a large uniform, transient deformation 
involving high strain rate for a broad spectrum of 

nonlinear viscoelastic properties. A sliding plate 
rheometer incorporated with a local shear stress 
transducer is a possible solution for those nonlinear 

problems. This paper intends to review the sliding 
plate rheometer and its applications in the past. 

2.  Sliding Plate Rheometry 

Figure 1 illustrates the operating principle of a 
sliding plate rheometer incorporating a shear stress 
transducer (7). By using the simple Couette flow 

fundamental, a molten plastics sample (1) is squeezed 
between parallel plates: one fixed (4) and the other 
moving at a controlled speed (8). When the moving 
plate is operated by the linear actuator, the sample 

senses the move and then propagates the 
deformation to the local shear stress transducer (7) 
that is flush-mounted in the stationary plate. Finally, 

the capacitance proximeter [Capacitec, Ayer, MA] at 
the transducer tail detects deflection proportional to 
the shear stress on the active face.  

Figure 1 Cross section showing the essential elements 

of a sliding plate rheometer incorporating 
an elastic type shear stress transducer [17]. 
(1) sample; (2) moving plate; (3) back 

support; (4) stationary plate; (5) end frame; 
(6) gap spacer; (7) shear stress transducer 
incorporating a rigid beam supported by a 

steal diaphragm; (8) linear actuator; (9) 
oven. 
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thecapacitanceproximeter[Capacitec,Ayer,MA]at

thetransducertaildetectsdeflectionproportionalto

theshearstressontheactiveface.

Giacominet al. [7], [8] firstbuilt thiskindof

rheometer incorporated with a US patented local

shear stress transducer [9] at McGill University in

1987.Next,therheometerhasbeencommercialized

byInterlakenTechnologyCorporation[10].Later,a

high-pressure version has been developed to study

the influence of pressure on the viscoelastic

properties and on shear induced crystallization of

moltenpolymersandelastomers.Thehigh-pressure

onecanbeoperatedatpressuresupto70MPaand

temperatures up to 225oC [11], [12].Another high

pressureversionisalsousedinanon-linerheometer

to be mounted directly on plastics manufacturing

equipment[13]-[15].Recently,McKinleyetal.[16]

develops the rheometer formicroparticles forup to

200μmflexure-basedmicrogap.

Because the sliding plate rheometer uses

rectilinear shearing action, so it is useful for

constructing material functions in both steady and

unsteady shear flow, which is normally studied

betweentworectangularplates.

Forthisreasontheslidingplaterheometercan

be used for various conventional experiments such

as steady shear flow, small amplitude oscillatory

shear, stress growth, stress relaxation, and creep

[18]. Moreover, it also can be used in complicated

experiments such as interrupted shear [19], large

amplitude oscillatory shear, exponential shear [20],

The examples of rheological properties of linear

viscoelastic fluids, usually described in terms of

material function, that can be measured by the

sliding plate rheometer [21], are the viscosity,

η(γ), the storage,G´(ω), and loss,G˝(ω),modullior

therelaxationspectrum,gi,λi[22].

In unsteady shear flow, for example, the

material functions are the viscosity, η(γ), the

first, Ψ1(ω), and second, Ψ2(ω), normal stress

coefficients‡. In addition, transient shear flow

hasthestraindependentrelaxationmodulus,G(t, γ),the

shear stress growth coefficient, η+(t,γ), and the

tensile stress growth coefficient, η+
E(t,γ). Because

of the rheological complexity in nonlinear

viscoelastic fluids, no complete pictures from a

material function to describe the flow behavior. In

practice,aninterestedmaterialfunctiondependson

the working conditions.Thus, one has to design a

test thatcansimulate theworkingprocess.For this

reason, the most versatile rheometer such as the

slidingplaterheometerisneeded.



3.  Shear Stress Transducer in the Rheometer

To measure the viscoelastic properties of

viscous liquids, a shear stress transducer is

incorporated in a shearing fixture.The transducer,

flush mounted and centered on the fixed plate,

serves to circumvent uncontrollable flows near the

sample’sedges.

Intherheometer,alocalshearstresstransducer

is used in materials characterization. Specifically,

theseare incorporated in shear fixtureswhenevera

totalforce(ortorque)measurementfails.Considera

slabofpolymerbetweenslidingplates,forexample.

Thoughthemiddleofthesampleundergoessimple

shear,theendsandedgesdonot.Thesefreeboundary

errors corrupt the total force measurement.This is


‡ Thefirstandsecondnormalstresscoefficients

are very difficult to measure and cannot be

obtainedfromtheslidingplaterheometer.
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whymany flush-mount a shear stress transducer in

the fixed plate [3], [21], [23]-[28]. This type of

transducerwaspatentedin1986byDealy[9].More

details on its configuration and limitation can be

foundelsewhere[7].

This is one way that plastics engineers

characterize molten plastics [29], [30]. Those

interested in the large shear strain behavior are

especiallyreliantonshearstresstransduction,asthe

free boundary error corruption worsens with strain

amplitude.



4.  Calibration

4.1 Static Calibration

Static calibration is performed at the working

temperature to ensure linear response between the

measuredwallshearstressandthetransducer’soutput

voltage.Toachieve this,adeadpan ishungfromthe

transducerasFigure2shows.Themechanicaldesign

ofthetransducerrelatesthiscalibrationweighttothe

equivalent shear stresson theactive face.Thus,one

canadjusttheoutputvoltagerelatedtothecalibration

weight. The static calibration is described in the

rheometerusermanual[31].



4.2 Dynamic Calibration

Tostudymaterialviscoelasticity(ordamping),

staticcalibrationisnotenough.Heretheshearstress

must be tracked accurately in time.Thus dynamic

calibration is performed to see how much phase

delay the transducer introduces. Figures 3 and 4

show dynamic calibration fixtures. When the

actuatordisplacessinusoidallywithtime,



 da=daosin(ωt) (1)



where dao is the actuator displacement

amplitude,andωisafrequency.



When the spring exerts a sinusoidal force on

thecantilever,thecantileverbeammovestowardthe

givensignalwithaphaseshift,δ.Wethencompare

the actuator displacement with the measured

cantileverdisplacement,

Figure 2 Static calibration for the shear stress

transducerinaslidingplaterheometer.

Figure 3 The ex situ dynamic calibration with

appliedsinusoidalforcetothebeam.

4
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 dc=dcosin(ωt+δ) (2)



wheredcoisthecantileverdisplacementamplitude.

Ashearstresstransducercanbecalibratedwith

asampleintherheometer(in situ)[32]orjustafter

scraping itout (ex situ) [23]. Ineithercase, for the

dynamiccalibrationtobemeaningful,theremustbe

polymeringress.

Whenscrapingamoltenpolymersampleoffthe

transducer(ex situ calibration),onecaninadvertently

remove some fluid ingress. In situ calibration

circumventsthis,butitsanalysisismorecomplicated.

By leaving the sample in, cantilever displacement

shears the sample between the transducer’s active

faceandthefixedopposingplate.

Through the sliding plate rheometer is

convincingtouseforcharacterizingbothlinearand

non-linearmaterial functionsofpolymermelts, the

ingress in the transducer housing may affect

measurement data. Recently, Kolitawong and

Giacomin [33]-[35] study the ingress effects in the

slidingplaterheometer.Thoughtheingressissmall,

itcanmakemeasurementphaseerrorinthematerial

properties and the magnitude of the error depends

on thematerial viscosity.Thus, they suggest to fill

thetransducergapbyanelasticmaterial.



5.  Conclusion

Theslidingplaterheometerfortrainsient,large

deformation measurement is a solution for both

researchers and plastics engineers to simulate the

processing processes. Using the sliding plate

rheometer as a main apparatus to find a general

constituteequationtopredictthepolymerbehaviors

innonlinearviscoelasticity,trialanderrorprocesses

ofthepolymerprocessingcanbediminished.
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