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ABSTRACT 

This study proposed new estimators for shrinkage and ridge parameters to overcome the multicollinearity 

problem in Liu-type logistic regression using the bootstrapping method. Moreover, we compared the performance of 

four methods for logistic regression coefficient estimation with multicollinearity present: the maximum likelihood 

estimator, ridge logistic regression, Liu logistic regression, and Liu-type logistic regression, all performed with the 

bootstrapping method. A simulation study was conducted to compare the performance of the four different 

estimation methods using the estimated mean square error. The results from both the simulation study and a real 

data application showed that the Liu-type logistic regression with the bootstrapping method performed best, among 

the four methods, with a high correlation coefficient. Moreover, the proposed estimators for the shrinkage parameter 

and ridge parameter showed good performance. In addition, the use of Liu-type logistic regression together using the 

bootstrapping method was the most robust for correcting the multicollinearity problem.  
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1. INTRODUCTION 

Logistic regression analysis is increasingly used 

in medical and public health research. It’s mainly 

applied to evaluate the relationships between independent 

and dependent variables, as well as to predict the future 

value of the dependent variable. For example, in the 

case where researchers want to study the risk factors for 

the lymphatic metastasis of malignant bone and soft-

tissue tumors, the independent variables of interest 

include gender, age, location of the primary tumor, and 

the tumor size, while the dependent variable would 

simply be coded as 1 (lymph node metastasis) or 0 (non-

metastasis). The most commonly used statistical method 

in such research is binary logistic regression analysis 

(Hosmer and Lemeshow, 2000; Petrie and Sabin, 2009; 

Kleinbaum and Klein, 2010). A critical problem that 

commonly arises in statistical analysis in medical and 

public health research is multicollinearity. Multicollinearity 

is a condition in regression analysis in which some of 

the independent variables are highly correlated, which 

can lead to inflating the variance of at least one of the 

estimated logistic regression coefficients (Petrie and 

Sabin, 2009; Kleinbaum and Klein, 2010). To solve this 

problem, we typically exclude some independent variables 

from the logistic regression model. The choice of which 

independent variables to select in the model is typically 
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based on statistical significance, but for some studies, 

this choice might be difficult if all the independent 

variables have clinical importance (Petrie and Sabin, 

2009). Consequently, several biased estimators have been 

proposed as alternatives to the maximum likelihood 

estimator to solve the effect of multicollinearity. For 

example, Schaefer et al. (1984) proposed a ridge estimator. 

Later, Urgan and Tez (2008) proposed a Liu estimator, 

based on the work of Liu (1993). More recently, Huang 

(2012) proposed a Liu-type estimator involving a 

combination of two different estimators. Farghali and 

Abo-El-Hadid (2017) compared the performance of the 

Liu estimator with that of the maximum likelihood and 

Stien and ridge estimators, and reported that the Liu 

estimator was mostly preferred for solving the 

multicollinearity problem. Also, since the shrinkage 

parameter (d) is an important value for estimating the 

coefficients in Liu logistic regression, Månsson et al. 

(2012) proposed five estimators for d. Their results 

showed that their proposed quantiles’ shrinkage 

estimator performed best.  

Another problem of using logistic regression 

analysis in medical and public health research is the 

typical small sample sizes involved. The bootstrap 

method is the technique most widely applied to remedy 

the effect of the small sample sizes (Chernick and La 

Budde, 2011; Efron, 1979). Sudjai and Duangsaphon 

(2019) proposed a shrinkage estimator and compared 

the performance of four methods for performing logistic 

regression coefficient estimation with the multicollinearity 

problem present: Liu logistic regression, Liu logistic 

regression with bootstrapping, almost unbiased Liu 

logistic regression, and almost unbiased Liu logistic 

regression with bootstrapping. The results showed that 

Liu logistic regression with bootstrapping performed 

best. The shrinkage estimators proposed by Månsson et 

al. (2012) and Sudjai and Duangsaphon (2019) also 

performed well. However, the authors did not introduce 

the exact method for evaluating a single value of 𝑑 and 

some results showed that the shrinkage estimators are 

often equal to zero. Therefore, 𝑑 must be appropriately 

chosen for each data item.  

Furthermore, to the best of our knowledge, no study 

has yet been performed to compare the performance of 

Liu-type estimators with the Liu estimator in logistic 

regression under varying situations and when applied to 

small sample size data.  

Consequently, in this study, we proposed new 

estimators for the shrinkage and ridge parameters to use 

with the Liu-type estimator in a logistic regression 

model using the bootstrapping method under the case 

with multicollinearity problem present together with 

small sample sizes. Moreover, the performance of four 

methods for logistic regression coefficient estimation 

using the bootstrapping method: the maximum likelihood, 

ridge, Liu, and Liu-type estimators were compared with 

the mean square error (MSE) value obtained from Monte 

Carlo simulations. Furthermore, the applicability of the 

proposed estimators was demonstrated on a practical 

data set. 

 

2. MATERIALS AND METHODS  

Binary logistic regression analysis is used to 

estimate the logistic regression coefficient. The model 

is as follows: 

 

𝑌𝑖 = 𝜋𝑖 + 𝜀𝑖                           (1) 

 

where the dependent variable (𝑌𝑖) is a dichotomous 

variable that has a Bernoulli distribution with the  

parameter value 𝜋𝑖, where 𝜋𝑖 =
𝑒𝑥̰𝑖𝛽̰

1+𝑒𝑥̰𝑖𝛽̰
 ; 𝑖 = 1,2,3, … , 𝑛.  

The random error (𝜀𝑖) has a distribution with zero mean 

and a variance equal to 𝜋𝑖(1 − 𝜋𝑖). The independent 

variable can be both categorical and continuous data 

(Hosmer and Lemeshow, 2000). We let 𝑋 be an 𝑛 ×(𝑝 +1) 

data matrix with 𝑝 independent variables, where 𝑥̰𝑖 

represents the independent variables for the 𝑖𝑡ℎ row  

of 𝑋, 𝛽̰ is a (𝑝+1)×1 coefficient vector, and 𝑛 is the 

sample size.  
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The general method used for coefficient estimation 

in the logistic regression model is the maximum 

likelihood method. Here, letting Yi be coded as 1 or 0, 

the conditional probability that Yi is equal to one is 

given by 𝑥𝑖, which can be denoted as 𝑃(𝑌𝑖 = 1|𝑥̰𝑖). On 

the other hand, 𝑃(𝑌𝑖 = 0|𝑥̰𝑖) is the conditional 

probability that 𝑌𝑖 is equal to zero, given as 𝑥̰𝑖. For a set 

of observations (𝑦𝑖 , 𝑥̰𝑖), if 𝑦𝑖  is equal to 1, then the 

contribution to the likelihood function is 𝜋𝑖 as well, as 

if 𝑦𝑖 is equal to zero, then the contribution to the 

likelihood function is 1 − 𝜋𝑖. Thus, the contribution to 

the likelihood function for the set of observations 

(𝑦𝑖 , 𝑥̰𝑖) can be written as: 

𝑃(𝑌𝑖 = 𝑦𝑖) = {
𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖)

1−𝑦𝑖       , 𝑦𝑖 = 0,1       

0                                 , otherwise.  
 

When the observations are assumed to be independent, 

the likelihood function can be obtained as follows:  

𝑙(𝛽̰) = ∏ 𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖)

1−𝑦𝑖𝑛
i=1      (2) 

and the maximum likelihood estimator can be defined 

as follows: 

𝛽̰̂𝑀𝐿 = (𝑋
′𝑊̂𝑋)−1(𝑋′𝑊̂𝑧̰̂)     (3) 

where 𝛽̰̂𝑀𝐿is a (𝑝+1)×1 vector of the maximum 

likelihood estimator; 𝑋 is an 𝑛 × (𝑝+1) data matrix; 

𝑊̂is a diagonal matrix of the order (𝑛×𝑛) with the 𝑖𝑡ℎ 

diagonal element equal to 𝜋̂𝑖(1 − 𝜋̂𝑖) ;  𝑖 = 1,2,3, . . . , 𝑛; 

and 𝑧̰̂ is an 𝑛×1 vector with the 𝑖𝑡ℎ element and is 

defined by:  

𝑧̂𝑖 = 𝑙𝑜𝑔( 𝜋̂𝑖) +
𝑦𝑖−𝜋̂𝑖

𝜋̂𝑖(1−𝜋̂𝑖)
;  𝑖 = 1,2,3, . . . , 𝑛    (4) 

where 𝑦𝑖 is the 𝑖𝑡ℎ value of the dependent variable and 

𝜋̂𝑖 is the estimator of 𝜋𝑖. 

The mean square error (MSE) of the maximum 

likelihood estimator can be used to assess the performance 

of logistic regression coefficient estimators. The MSE of 

𝛽̰̂𝑀𝐿 can be written as follows: 

MSE(𝛽̰̂𝑀𝐿) = 𝑡𝑟[(𝑋
′𝑊̂𝑋)−1] = ∑

1

𝜆𝑗

𝑝+1
𝑗=1     (5) 

where 𝜆𝑗 is the 𝑗𝑡ℎ eigenvalue of matrix 𝑋′𝑊̂𝑋; 

𝑡𝑟[(𝑋′𝑊̂𝑋)−1] is the trace of matrix (𝑋 ′𝑊̂𝑋)−1; j = 

1,2,3,..., 𝑝+1; and 𝛽̰̂𝑀𝐿 is an unbiased estimator. 

Therefore, MSE(𝛽̰̂𝑀𝐿) shows the variance of the estimator.   

2.1 Ridge estimator 

In 1984, Schaefer et al. (1984) proposed a ridge 

estimator, which is a biased estimator, for solving 

multicollinearity in the logistic regression model. The 

ridge estimator can be determined as follows: 

 

𝛽̰̂𝑅𝐸 = (𝑋
′𝑊̂𝑋 + 𝑘𝐼)−1(𝑋′𝑊̂𝑋)𝛽̰̂𝑀𝐿    (6) 

where 𝛽̰̂𝑅𝐸 is a (𝑝+1)×1 vector of the ridge estimator 

and 𝑘 is the ridge parameter (𝑘 > 0). 

The MSE of the ridge estimator is as follows:  

 

MSE(𝛽̰̂𝑅𝐸) = ∑
𝜆𝑗

(𝜆𝑗+𝑘)
2 + 𝑘

2∑
𝛼𝑗
2

(𝜆𝑗+𝑘)
2

𝑝+1
𝑗=1

𝑝+1
𝑗=1   

                    = 𝑓1(𝑘) + 𝑓2(𝑘)       (7) 

 

where 𝜆𝑗 is the 𝑗𝑡ℎ eigenvalue of matrix 𝑋′𝑊̂𝑋 and j = 

1,2,3,...,𝑝+1. Further, 𝛼𝑗
2 is the 𝑗𝑡ℎ element of 𝛾𝛽𝑀𝐿 and 

𝛾 is an eigenvector of matrix 𝑋′𝑊̂𝑋. In equation (7), 

𝑓1(𝑘) is the variance function and 𝑓2(𝑘) is the square 

bias. 

Several methods can be used for estimating the 

ridge parameter. However, the choice of the ridge 

parameter follows no definite rule. In previous studies, 

various estimators of 𝑘 have been used in simulation 

studies (Muniz and Kibria, 2009; Kibria et al., 2012), 

including the following:   

𝑘̂1 = 𝑚𝑎𝑥

(

 
 1

√
𝜎̂2

𝛼̂𝑗
2

)

 
 

                                 (8) 
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𝑘̂2 = median (
1

𝑞𝑗
)     (9) 

 

𝑘̂3 = ∏ (
1

𝑞𝑗
)

𝑝
𝑗=1

1

𝑝
  (10) 

 

where 𝜎̂2 =
∑ (𝑦𝑖−𝜋̂𝑖)

2𝑛
𝑖=1

𝑛−𝑘−1
 , 𝑞𝑗 =

𝜆max

{(𝑛−𝑝)𝜎̂2}+{𝜆max𝛼̂𝑗
2}

,  

and 𝜆𝑚𝑎𝑥 is the maximum eigenvalue of matrix 𝑋′𝑊̂𝑋.  

 

2.2 Liu estimator 

In the 1990s, Liu (1993) proposed the Liu 

estimator, which is also a biased estimator, for solving 

the multicollinearity problem, while more recently, 

Urgan and Tez (2008) proposed an updated Liu 

estimator. The Liu estimator in logistic regression is 

defined as follows:  

 

𝛽̰̂𝐿𝐸 = (𝑋
′𝑊̂𝑋 + 𝐼)−1(𝑋′𝑊̂𝑋 + 𝑑𝐼)𝛽̰̂𝑀𝐿  (11) 

 

where 𝑑 is the shrinkage parameter (0 < 𝑑 < 1). 

In the case where 𝑑 equals one, 𝛽̰̂𝐿𝐸 = 𝛽̰̂𝑀𝐿. If 

𝑑 is less than one, then‖𝛽̰̂𝐿𝐸‖ ≤ ‖𝛽̰̂𝑀𝐿‖, where 

‖𝛽̰̂𝐿𝐸‖ = (∑ 𝛽̂𝐿𝐸,𝑗
2𝑝+1

𝑗=1 )

1

2
 and ‖𝛽̰̂𝑀𝐿‖ = (∑ 𝛽̂𝑀𝐿,𝑗

2𝑝+1
𝑗=1 )

1

2
.  

The MSE of the Liu estimator is then as follows:  

 

MSE(𝛽̰̂𝐿𝐸) = ∑
(𝜆𝑗+𝑑)

2

𝜆𝑗(𝜆𝑗+1)
2 + (𝑑 − 1)

2∑
𝛼𝑗
2

(𝜆𝑗+1)
2

𝑝+1
𝑗=1

𝑝+1
𝑗=1   

                    = 𝑓1(𝑑) + 𝑓2(𝑑)                 (12) 

 

where 𝑓1(𝑑) is the variance function and 𝑓2(𝑑) is the 

square bias.  

Since 𝑑 is an important value that is commonly 

applied to remedy multicollinearity, Månsson et al. (2012) 

proposed five estimators for the shrinkage parameter 

(𝑑̂). These estimators were based on the work of Hoerl 

and Kennard (1970), Kibria (2003), and Khalaf and 

Shukur (2005) and could be used to obtain the individual 

parameter 𝑑𝑗 from: 𝑑𝑗 = (𝛼𝑗
2 − 1)/((1/𝜆𝑗) + 𝛼𝑗

2 ), 

 𝑗 = 1,2,3, . . . , 𝑝 + 1. This individual parameter can 

then be used to estimate a single value 𝑑̂. The results 

showed that 𝑑̂1, which can be considered using quantiles, 

is the best shrinkage estimator for use in cases involving 

the presence of multicollinearity. The shrinkage parameter 

(𝑑̂1) is given below. 

 

𝑑̂1 = 𝑚𝑎𝑥

(

 0,𝑚𝑖𝑛

(

 
𝛼̂𝑗
2 − 1

1

𝜆̂𝑗
+ 𝛼̂𝑗

2

)

 

)

 , 𝑗 = 1,2,3, . . . , 𝑝 + 1  

In 2019, Sudjai and Duangsaphon (2019) 

proposed two estimators for the shrinkage parameter. 

The first estimator was based on the work of Hoerl and 

Kennard (1970), and is as follows:  

 

𝑑̂2 = 𝑚𝑎𝑥 (0,
𝛼̂𝑚𝑖𝑛
2 −1

1

𝜆̂𝑚𝑖𝑛
+𝛼̂𝑚𝑖𝑛

2 )                    (14) 

 

where 𝛼̂𝑚𝑖𝑛
2 is the minimum element of 𝛾𝛽𝑀𝐿, 𝛾 is the 

eigenvector of matrix 𝑋′𝑊̂𝑋, and 𝜆𝑚𝑖𝑛 is the minimum 

eigenvalue of matrix 𝑋′𝑊̂𝑋. As shown in equation 

(14), 𝛼̂𝑚𝑖𝑛
2  and 𝜆̂𝑚𝑖𝑛 can be applied to compute 𝑑̂2 

rather than computing with 𝛼̂𝑚𝑎𝑥
2  and 𝜆̂𝑚𝑎𝑥 as 

proposed by Hoerl and Kennard (1970). 

The second estimator was based on the work of 

Månsson et al. (2012), whereby the estimator is computed 

from: 

 

𝑑̂3 = 𝑚𝑎𝑥

(

 
 
0, 1 −

∑ {
1

𝜆𝑗(𝜆𝑗+1)
}

𝑝+1
𝑗=1

∑ {
1+𝜆𝑗𝛼𝑗

2

𝜆𝑗(𝜆𝑗+1)
2}

𝑝+1
𝑗=1

)

 
 
, 𝑗 = 1,2,3, . . . , 𝑝 + 1  

 

2.3 Liu-type estimator 

In 2012, Huang (2012) proposed a new Liu-type 

estimator, which involved a combination of two  

different estimators and is defined by: 

 

𝛽̰̂𝐿𝑇𝐸 = (𝑋
′𝑊̂𝑋 + 𝑘𝐼)−1(𝑋′𝑊̂𝑋 + 𝑘𝑑𝐼)𝛽̰̂𝑀𝐿 (16) 

(13) 

(15) 
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where 𝑘 > 0 and 0 < 𝑑 < 1. It was shown that if 𝑘 = 1, 

then 𝛽̰̂𝐿𝑇𝐸 = 𝛽̰̂𝐿𝐸; while if 𝑑 = 1 or 𝑘 = 0, then 𝛽̰̂𝐿𝑇𝐸 =

𝛽̰̂𝑀𝐿.  

The MSE of this Liu-type estimator can be 

computed from: 

MSE(𝛽̰̂𝐿𝑇𝐸) = ∑
(𝜆𝑗 + 𝑘𝑑)

2

𝜆𝑗(𝜆𝑗 + 𝑘)
2

𝑝+1

𝑗=1

 + ∑
𝑘2(𝑑 − 1)2𝛼𝑗

2

(𝜆𝑗 + 𝑘)
2

𝑝+1

𝑗=1

 

                   =  𝑓1(𝑘, 𝑑) + 𝑓2(𝑘, 𝑑)                        (17) 

where 𝑓1 (𝑘, 𝑑) is the variance function and 𝑓2 (𝑘, 𝑑) is 

the square bias.  

In 2016, Asar (2016) proposed an optimal 

shrinkage parameter (𝑑̂𝑜𝑝𝑡), which can be defined by:  

𝑑̂𝑜𝑝𝑡 =
∑ {

𝑘𝛼𝑗
2−1

(𝜆𝑗+𝑘)
2}

𝑝+1
𝑗=1

∑ {
1+𝜆𝑗𝛼𝑗

2

𝜆𝑗(𝜆𝑗+𝑘)
2}

𝑝+1
𝑗=1

 , 𝑗 = 1,2,3, . . . , 𝑝 + 1   (18) 

where −∞ < 𝑑̂𝑜𝑝𝑡 < ∞ and 𝑘 is the ridge parameter.  

2.4 New estimators for the shrinkage and ridge 

parameters 

Considering the previous studies, Schaefer et al. 

(1984) proposed that 𝛽̰̂𝑅𝐸 will have a smaller MSE than 

𝛽̰̂𝑀𝐿 for some ridge parameters (𝑘) when the data are 

collinear and the sample size is sufficiently large. 

Recently, Urgan and Tez (2008) proposed that 

MSE(𝛽̰̂𝐿𝐸) < MSE(𝛽̰̂𝑀𝐿) when the shrinkage parameter is 

fixed, 0 < 𝑑 < 1, and the sample size is sufficiently large. 

Furthermore, Huang (2012) proposed that 𝛽̰̂𝐿𝑇𝐸 will 

have a smaller MSE than 𝛽̰̂𝑀𝐿 when 𝑘 > 0 and 0 < 𝑑 < 1.  

Therefore, we can see that both 𝛽̰̂𝐿𝐸 and 𝛽̰̂𝐿𝑇𝐸 will 

perform better than 𝛽̰̂𝑀𝐿 when 𝑑 ∈ (0,1). Sudjai and 

Duangsaphon (2019) performed a simulation study that  

showed that 𝛽̰̂𝐿𝐸 performs well when the estimated 

value of 𝑑 is close to zero. Moreover, the proposed 

estimators of 𝑑 in Månsson et al. (2012) as well as in 

Sudjai and Duangsaphon (2019) perform well, but have 

a limitation in that the shrinkage estimators often end up 

equaling zero based on a 1,000 times simulation.  

In this study, we propose a new estimator of 𝑑. 

This estimator was developed based on the work of 

Sudjai and Duangsaphon (2019). Here, to show the 

optimal parameter 𝑑, we take the first derivative  

MSE(𝛽̰̂𝐿𝐸) with respect to 𝑑 and then equate the derivative 

to zero. Solving the equation for 𝑑, we can obtain the 

estimated value of 𝑑, which is always less than one. For 

some points, 𝑑 may be a negative value because 𝜆𝑗 > 0.  

Hence, we replace 𝛼𝑗
2 with (𝛼̂𝑀𝐿

2 )𝑗 −
1

𝜆𝑗
 , and then letting  

𝑑 have a value between zero and one, we obtain: 

𝑑̂4 = 𝑚𝑎𝑥

(

 
 
 
 

0, 1 −
∑ {

1

𝜆𝑗(𝜆𝑗+1)
}

𝑝+1
𝑗=1

∑

{
 
 

 
 1+(𝜆𝑗(𝛼𝑗

2−(1/𝜆𝑗)))

𝜆𝑗(𝜆𝑗+1)
2

}
 
 

 
 

𝑝+1
𝑗=1

)

 
 
 
 

  , 0 < 𝑑̂4 < 1                                      (19) 

 

where 𝜆𝑗 is the 𝑗𝑡ℎ eigenvalue of matrix 𝑋′𝑊̂𝑋 and 

𝑗 = 1,2,3, . . . , 𝑝 + 1; 𝛼𝑗
2 is the 𝑗𝑡ℎ element of 𝛾𝛽𝑀𝐿; and 

𝛾 is the eigenvector of matrix 𝑋′𝑊̂𝑋.  

After determining 𝑑̂𝑜𝑝𝑡 and 𝑑̂4 for 𝑑, the 

parameter 𝑘 must be selected. In this study, we 

propose a new estimator of 𝑘 based on the work of 

Asar (2016). It is easy to find the optimal parameter 

𝑘 by differentiating MSE(𝛽̰̂𝐿𝑇𝐸) with respect to 𝑘 and 

then by equating the derivative to zero. Solving the 

equation for 𝑘, we obtain the individual parameter as  

𝑘𝑗 =
𝜆𝑗

𝜆𝑗𝛼𝑗
2−𝑑(𝜆𝑗𝛼𝑗

2+1)
, 𝑘̂𝑗 > 0, and 𝑗 = 1,2,3, . . . , 𝑝 + 1. 

This individual parameter (𝑘𝑗) was used to 

estimate a single value (𝑘̂𝐿𝑇𝐸), based on the works of 

Hoerl and Kennard (1970) and Månsson et al. (2012). 

Then, 𝑘̂𝐿𝑇𝐸 is as follows: 



Sudjai, N. and Duangsaphon, M. 

208 

𝑘̂𝐿𝑇𝐸 = 𝑚𝑎𝑥 (0,
𝜆̂𝑚𝑖𝑛

𝜆̂𝑚𝑖𝑛𝛼̂𝑚𝑖𝑛
2 −𝑑̂(𝜆̂𝑚𝑖𝑛𝛼̂𝑚𝑖𝑛

2 +1)
 )     (20) 

 

where 𝛼̂𝑚𝑖𝑛
2 is defined as the minimum element of 𝛾𝛽𝑀𝐿 

and 𝛾 is the eigenvector of matrix 𝑋′𝑊̂𝑋. Also, 𝜆𝑚𝑖𝑛 is 

defined as the minimum eigenvalue of matrix 𝑋′𝑊̂𝑋. 

We substitute the unknown parameters with 𝛼̂𝑚𝑖𝑛
2  and 

𝜆̂𝑚𝑖𝑛 in line with ideas taken from Hoerl and Kennard 

(1970) and Sudjai and Duangsaphon (2019).    

 

2.5 Bootstrapping method  

Multicollinearity and a small sample size are key 

problems in logistic regression coefficient estimation, 

and can lead to a poor performance of the estimators 

(Kleinbaum and Klein, 2010; Stoltzfus, 2011). To remedy 

the effects of these problems, we constructed biased 

estimators, namely, the maximum likelihood, ridge, 

Liu, and Liu-type estimators, under the bootstrapping 

technique. There are two approaches for bootstrapping: 

the first approach involves resampling the random 

error term (𝜀𝑖), while the second approach resamples 

from the observations. In this study, we chose the 

second approach. Hence, the proposed process for 

bootstrapping is as follows.   

Step 1. Creating a bootstrap sample of size 𝑛 

(𝑧̰1
∗, 𝑧̰2

∗, . . . , 𝑧̰𝑛
∗) from the original data with the 

replacement giving 
1

𝑛
 probability for each 𝑧̰𝑖

∗. Thus, we 

can obtain the following: 𝑧̰𝑖
∗ = (𝑦𝑖

∗, 𝑥̰𝑖
∗) , 𝑖 ꞊ 1,2,3,…,𝑛. 

Step 2. Estimating 𝛽̰ for the logistic regression 

model using the four different estimation methods:  

maximum likelihood method; Liu logistic regression 

together with the shrinkage parameters 𝑑̂1, 𝑑̂2, and 𝑑̂3; 

ridge logistic regression together with the ridge 

parameters 𝑘̂1, 𝑘̂2, and 𝑘̂3; and Liu-type logistic 

regression together with 𝑘̂1𝑑̂𝑜𝑝𝑡 and 𝑘̂𝐿𝑇𝐸𝑑̂4.         

Step 3. Repeating steps 1 and 2 for 𝐵 times, where 

𝐵 is the number of repetitions. We can thus obtain 

bootstrap estimates of the parameter 𝛽̰ for each estimator. 

Step 4. Using the resulting bootstrap estimates in 

step 3 (e.g., 𝛽̰̂𝑀𝐿
∗(1)

, 𝛽̰̂𝑀𝐿
∗(2)

, . . . , 𝛽̰̂𝑀𝐿
∗(𝐵)

) to compute the 

average estimate for each parameter. We can thus obtain 

the estimated value of the parameters for use with the 

bootstrapping method as follows: 

 

* *( )

1

1ˆ ˆ
B

b

ML ML

bB
 

=

=     (21), 

1 1

* *( )

ˆ ˆ( ) ( )
1

1ˆ ˆ
B

b

RE k RE k
bB

 
=
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RE k RE k
bB
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=

=   (23), 
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* *( )

ˆ ˆ( ) ( )
1

1ˆ ˆ
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=
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=

=   (25), 
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* *( )

ˆ ˆ( ) ( )
1

1ˆ ˆ
B

b
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 
=
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3 3

* *( )

ˆ ˆ( ) ( )
1

1ˆ ˆ
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b

LE d LE d
bB

 
=

=   (27),  

1 1

* *( )

ˆ ˆ ˆ ˆ( , ) ( , )
1

1ˆ ˆ
opt opt

B
b

LTE k d LTE k d
bB

 
=

=   (28),  

4 4

* *( )

ˆ ˆ ˆ ˆ( , ) ( , )
1

1ˆ ˆ
LTE LTE

B
b

LTE k d LTE k d
bB

 
=

=   (29). 

where 𝛽̰̂𝑀𝐿
∗(𝑏)

 is the bootstrap estimates of the maximum 

likelihood estimator, 

𝛽̰̂
𝑅𝐸(𝑘̂)

∗(𝑏)
is the bootstrap estimates of the ridge 

estimator, 

𝛽̰̂
𝐿𝐸(𝑑̂)

∗(𝑏)
 is the bootstrap estimates of the Liu 

estimator, 

𝛽̰̂
𝐿𝑇𝐸(𝑘̂,𝑑̂)

∗(𝑏)
 is the bootstrap estimates of the Liu-

type estimator and 𝑏 = 1,2,3, . . . , 𝐵.  

2.6 Monte Carlo simulation  

The key factors that can affect the performance 

of the estimation methods are the number of 

independent variables, the sample size, and the degree 
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of correlation among the independent variables. 

These factors were thus varied in the simulation study.  

In this study, Monte Carlo simulations were 

performed using 2 and 4 independent variables (𝑝) 

(Månsson et al., 2012). The sample size (𝑛) was equal 

to 50, 100, 200, and 400. For 𝑛 < 30𝑝, the sample size 

(𝑛) is regarded as a small sample case (Kerlinger and 

Pedhazur, 1973). Therefore, the situation was either 𝑛 = 

50 when 𝑝 = 2 or 𝑛 = 50 or 100 when 𝑝 = 4, referring 

to a small sample case. The degree of correlation (𝜌) 

was varied at 0.1, 0.3, 0.5, 0.75, 0.85, and 0.95, which 

represent positive correlations. The independent variables 

were generated from: 

𝑥𝑖𝑗 = (1 − 𝜌
2)

1

2𝑧𝑖𝑗 + 𝜌𝑧𝑖𝑝 ,  

𝑖 ꞊ 1,2,3,…, 𝑛, and 𝑗 ꞊ 1,2,3,…, 𝑝              (30) 

where 𝑧𝑖𝑗 are pseudo-random numbers generated from 

the standard normal distribution. The dependent 

variable was generated from a Bernoulli distribution 

with the parameter 𝜋𝑖, where 𝜋𝑖 =
𝑒𝑥̰𝑖𝛽̰

1+𝑒𝑥̰𝑖𝛽̰
. The values 

of parameter 𝛽 were chosen so that , 𝛽̰′𝛽̰ ꞊ 1 where 𝛽0꞊ 0 

and 𝛽1, 𝛽2, . . . , 𝛽𝑝 =
1

√𝑝
 based on Newhouse and Oman 

(1971), who explained that if the MSE is a function of 

the parameters 𝛽, 𝜎2, and 𝑘 and the number of 

independent variables are fixed, then the MSE is 

minimized when we choose the coefficient vector 

(𝛽̰′𝛽̰ ꞊ 1). Moreover, the intercept value (𝛽0) is another 

important factor because it equals the average value of 

the log odds ratio. So, if 𝛽0 = 0, then there is an equal 

average probability of obtaining one and zero (Månsson 

and Shukur, 2011). A simulation study was conducted 

to compare the performance of the four different 

estimation methods with the estimated MSE. In this 

study, the experiment was repeated 1,000 times by 

generating new original data based on Inan and Erdogan 

(2013), while the bootstrap replication (𝐵) was 

performed 500 times based on Davidson and Mac 

Kinnon (2000) and Pattengale et al. (2010). The 

estimated MSE could be computed from:  

MSE =
1

1,000
∑ (𝛽̰̂ − 𝛽̰)

′
(𝛽̰̂ − 𝛽̰)1,000

𝑖=1                (31) 

where 𝛽̰̂ is a (𝑝+1)×1 vector of the logistic regression 

coefficient estimator and 𝑖 is the experiment number, in 

which i = 1,2,3,...,1,000. 

The estimation method with the lowest estimated 

MSE is considered the best option for solving the 

multicollinearity problem in the logistic regression 

model.      

 

3. RESULTS AND DISCUSSION 

3.1 Simulation study 

The estimated MSE values for all the methods 

when 𝑝 = 2 and 4, 𝜌 =0.1, 0.3, 0.5, 0.75, 0.85, and 0.95, 

and for different 𝑛 are listed in Tables 1 and 2, 

respectively. The effect of increasing 𝑛 while holding 𝜌 

and 𝑝 fixed was most commonly a decrease in the 

estimated MSE. While with an increase in the 𝜌 level, 

the estimated MSE values of all the methods increased 

when 𝑛 and 𝑝 were fixed. In the cases of 𝜌 = 0.1, 0.3, 

and 0.5 in Table 1, we found that the estimated MSE 

values of the maximum likelihood estimator were less 

than for the ridge, Liu, and Liu-type logistic regressions 

with the bootstrapping method. For 𝜌 =0.75, 0.85, and 

0.95 in Table 1, the inflation of the estimated MSE values 

for the Liu-type logistic regression was less than for the 

maximum likelihood estimator and ridge logistic 

regression with the bootstrapping method for some 𝑘, 

and for the Liu logistic regression with the bootstrapping 

method. However, there were some differences between 

the performance of the Liu-type logistic regression with 

the bootstrapping method, which depended on the 

estimators of 𝑑 and 𝑘. We can see that 𝑘̂𝐿𝑇𝐸𝑑̂4 was the 

best option for all situations. Comparing the performance 

of this method with the other methods, Liu-type logistic 

regression with 𝑘̂𝐿𝑇𝐸𝑑̂4 based on the bootstrapping 

method was mostly preferred for correcting the 

multicollinearity with small sample sizes (𝑛 < 30𝑝) 

problem in the logistic regression model.  
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Table 1 Estimated MSE values for different 𝑘 and 𝑑, when 𝑝 = 2 

 

𝝆  𝒏  BML BRE BLE BLTE 

    𝒌̂𝟏    𝒌̂𝟐    𝒌̂𝟑    𝒅̂𝟏    𝒅̂𝟐    𝒅̂𝟑 𝒌̂𝟏𝒅̂𝒐𝒑𝒕 𝒌̂𝑳𝑻𝑬𝒅̂𝟒 

0.10 50 0.4171 0.4584 0.4312 0.4323 0.4327 0.4327 0.4324 0.4498 0.7335 

 100 0.3606 0.3727 0.3651 0.3657 0.3658 0.3658 0.3658 0.3715 0.6618 

 200 0.3502 0.3582 0.3548 0.3550 0.3553 0.3553 0.3553 0.3581 0.6044 

 400 0.3408 0.3441 0.3427 0.3428 0.3429 0.3429 0.3429 0.3441 0.5503 

0.30 50 0.5462 0.6125 0.5832 0.5853 0.5859 0.5859 0.5858 0.6092 0.8730 

 100 0.4570 0.4739 0.4661 0.4664 0.4674 0.4674 0.4674 0.4735 0.7259 

 200 0.3988 0.4061 0.4025 0.4028 0.4033 0.4033 0.4033 0.4060 0.6867 

 400 0.3875 0.3902 0.3892 0.3893 0.3894 0.3894 0.3894 0.3902 0.6198 

0.50 50 0.7586 0.7775 0.7628 0.7632 0.7689 0.7689 0.7691 0.7779 0.9390 

 100 0.4944 0.5135 0.5036 0.5042 0.5068 0.5068 0.5068 0.5134 0.7969 

 200 0.4718 0.4830 0.4787 0.4790 0.4808 0.4808 0.4808 0.4830 0.7873 

 400 0.4380 0.4408 0.4397 0.4398 0.4400 0.4400 0.4400 0.4408 0.5864 

0.75 50 1.1713 1.0398 1.0749 1.0697 1.0798 1.0798 1.0816 1.0484 1.0074 

 100 0.8552 0.6629 0.7397 0.7356 0.7509 0.7509 0.7560 0.7016 0.6068 

 200 0.6173 0.5946 0.6033 0.6027 0.6044 0.6044 0.6045 0.5968 0.5741 

 400 0.6035 0.5886 0.5952 0.5951 0.5945 0.5945 0.5945 0.5892 0.5595 

0.85 50 1.8986 1.3368 1.4321 1.4128 1.5239 1.5237 1.5337 1.3847 1.1279 

 100 1.3660 0.8922 1.0322 1.0254 1.0833 1.0833 1.0893 0.9372 0.8244 

 200 0.8082 0.7520 0.7750 0.7736 0.7783 0.7783 0.7792 0.7622 0.6795 

 400 0.7188 0.7029 0.7094 0.7090 0.7094 0.7094 0.7094 0.7037 0.6663 

0.95 50 2.0969 1.5144 1.5559 1.5432 1.6948 1.6859 1.7662 1.6691 1.4612 

 100 1.5876 1.2492 1.2712 1.2694 1.3353 1.3344 1.3520 1.2972 1.1481 

 200 1.1911 0.8498 0.9081 0.9101 0.9655 0.9654 0.9699 0.8745 0.8442 

 400 0.7987 0.7669 0.7754 0.7765 0.7795 0.7795 0.7795 0.7666 0.7320 

Note: BML = maximum likelihood estimator with the bootstrapping method, BRE = Ridge logistic regression with the bootstrapping method, 

BLE = Liu logistic regression with the bootstrapping method, and BLTE = Liu-type logistic regression with the bootstrapping method 

 

From Table 2, in the case of 𝑝 = 4, 𝜌 = 0.1 and 0.3, 

the inflation of the estimated MSE values with the ridge 

logistic regression with the 𝑘̂1 bootstrapping method was 

less than for the maximum likelihood estimator, and Liu 

and Liu-type logistic regressions with the bootstrapping 

method. For 𝜌 = 0.5, 0.75, 0.85, and 0.95, the inflation 

of the estimated MSE values with the Liu-type logistic 

regression with the bootstrapping method was less than 

for the maximum likelihood estimator and ridge logistic 

regression with the bootstrapping method for some 𝑘, 

and for the Liu logistic regression with the bootstrapping  

method. However, there were differences between 

the performances of Liu-type logistic regression with 

the bootstrapping method, which depended on the 

estimators of 𝑑 and 𝑘. We can see that 𝑘̂𝐿𝑇𝐸𝑑̂4 was the 

best option for all situations. Thus, Liu-type logistic 

regression with 𝑘̂𝐿𝑇𝐸𝑑̂4 based on the bootstrapping 

method under the multicollinearity problem with 

small sample sizes showed the best performance when 

compared with the other methods. For 𝑛 = 50, 𝜌 =

0.95, and 𝑝 = 4, the estimated MSE values for the 

ridge logistic regression with 𝑘̂1 based on the 
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bootstrapping method was close to the estimated MSE 

values for Liu-type logistic regression with 𝑘̂𝐿𝑇𝐸𝑑̂4 

based on the bootstrapping method. Furthermore, 

increasing the number of independent variables caused 

an increase in the estimated MSE values of all methods 

when 𝜌 and 𝑛 were fixed. 

 

Table 2 Estimated MSE values for different 𝑘 and 𝑑, when 𝑝 ꞊ 4 

 

𝝆 𝒏  BML BRE BLE BLTE 

   𝒌̂𝟏    𝒌̂𝟐    𝒌̂𝟑    𝒅̂𝟏    𝒅̂𝟐    𝒅̂𝟑 𝒌̂𝟏𝒅̂𝒐𝒑𝒕 𝒌̂𝑳𝑻𝑬𝒅̂𝟒 

0.10 50 0.7856 0.6079 0.6958 0.6899 0.6793 0.6793 0.6809 0.6197 0.7910 

 100 0.6586 0.6049 0.6302 0.6282 0.6271 0.6271 0.6271 0.6062 0.7697 

 200 0.5084 0.4845 0.4965 0.4956 0.4952 0.4952 0.4952 0.4848 0.6508 

 400 0.4591 0.4557 0.4571 0.4570 0.4569 0.4569 0.4569 0.4558 0.6630 

0.30 50 1.0807 0.9283 0.9900 0.9847 0.9863 0.9863 0.9870 0.9356 0.9450 

 100 0.8502 0.7889 0.8201 0.8181 0.8149 0.8149 0.8149 0.7910 0.8180 

 200 0.6630 0.6467 0.6547 0.6541 0.6528 0.6528 0.6528 0.6468 0.7910 

 400 0.4787 0.4765 0.4773 0.4773 0.4771 0.4771 0.4771 0.4766 0.7026 

0.50 50 1.2371 0.9942 1.0933 1.0839 1.0864 1.0864 1.0896 1.0151 0.9740 

 100 1.0522 0.8396 0.9496 0.9420 0.9340 0.9340 0.9341 0.8438 0.8333 

 200 0.8717 0.7899 0.8388 0.8363 0.8295 0.8295 0.8295 0.7946 0.7542 

 400 0.7417 0.7255 0.7350 0.7346 0.7323 0.7323 0.7323 0.7256 0.6930 

0.75 50 1.6975 1.1999 1.3392 1.3267 1.3791 1.3790 1.3976 1.2387 1.0208 

 100 1.3885 0.9287 1.1645 1.1553 1.1417 1.1417 1.1436 0.9627 0.8458 

 200 1.0563 0.8653 0.9718 0.9643 0.9533 0.9533 0.9542 0.8853 0.8159 

 400 0.8601 0.7977 0.8381 0.8356 0.8272 0.8272 0.8272 0.8014 0.7581 

0.85 50 2.0154 1.4542 1.6291 1.6085 1.7199 1.7198 1.7567 1.5346 1.1342 

 100 1.5301 1.1101 1.2890 1.2753 1.2885 1.2885 1.2992 1.1628 0.9817 

 200 1.0653 0.9434 1.0016 0.9989 0.9932 0.9932 0.9940 0.9519 0.9410 

 400 0.9342 0.8971 0.9165 0.9154 0.9120 0.9120 0.9120 0.8974 0.8432 

0.95 50 4.6803 1.9512 2.2069 2.1792 2.7193 2.7071 3.0694 2.3924 1.9509 

 100 2.1355 1.2544 1.4107 1.3946 1.5416 1.5412 1.6231 1.3689 1.1484 

 200 1.9152 1.1665 1.3980 1.3724 1.4589 1.4589 1.4959 1.2685 1.0406 

 400 1.1655 0.9516 1.0478 1.0421 1.0438 1.0438 1.0493 0.9785 0.8455 

Note: BML = maximum likelihood estimator with the bootstrapping method, BRE = Ridge logistic regression with the bootstrapping method, 

BLE = Liu logistic regression with the bootstrapping method, and BLTE = Liu-type logistic regression with the bootstrapping method 

 

3.2 Real data application  

In this section, a real data application was 

presented to show the performance when using the new 

estimators for the shrinkage and ridge parameters to 

estimate the Liu-type estimator in the logistic regression 

model using the bootstrapping method under the case 

with the multicollinearity problem present and small 

sample sizes. A data set from the UCI machine learning 

repository (https://archive.ics.uci.edu/ml/index.php) was 

used fifty donors at random from the data set were 

selected and then the data were modeled using a binary 

logistic regression model. The dependent variable was 

coded as 1 if a blood sample from a donor had good 

quality blood components and 0 if the sample did not 
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have good quality blood components. The independent 

variables were the following: 

X1: frequency (total number of donations), 

X2: time (months since first donation). 

The correlation between X1 and X2 was equal to 

0.96 (high correlation coefficient).  

From Table 3, we estimated the standard errors of 

the different estimators obtained by the bootstrapping 

method. When looking at the standard errors, we can see 

that the lowest standard errors were obtained with the 

Liu-type logistic regression together with 𝑘̂𝐿𝑇𝐸𝑑̂4, while 

the largest were obtained with the maximum likelihood 

estimator. This means that the Liu-type logistic regression 

together with 𝑘̂𝐿𝑇𝐸𝑑̂4 using the bootstrapping method 

showed better performance than the other methods for 

solving the multicollinearity problem with small sample 

sizes in the logistic regression model, which corresponds 

to the results obtained from this simulation study. 

Table 3 Estimated parameters (𝛽̂) and standard errors (se) for each method 

 

Variables  BML BRE BLE BLTE 

   𝒌̂𝟏    𝒌̂𝟐    𝒌̂𝟑    𝒅̂𝟏    𝒅̂𝟐    𝒅̂𝟑 𝒌̂𝟏𝒅̂𝒐𝒑𝒕 𝒌̂𝑳𝑻𝑬𝒅̂𝟒 

X1          

     𝛽̂1  0.7135 0.5000 0.6813 0.6684 0.5982 0.5982 0.6460 0.6385 0.5385 

     𝑠𝑒 (𝛽̂1) 0.0091 0.0067 0.0081 0.0075 0.0074 0.0074 0.0088 0.0087 0.0062 

X2          

     𝛽̂2  -0.1494 -0.1116 -0.1438 -0.1416 -0.1292 -0.1292 -0.1374 -0.1357 -0.1124 

     𝑠𝑒 (𝛽̂2) 0.0019 0.0017 0.0018 0.0017 0.0018 0.0018 0.0019 0.0019 0.0012 

Note: BML = maximum likelihood estimator with the bootstrapping method, BRE = Ridge logistic regression with the bootstrapping method, 

BLE = Liu logistic regression with the bootstrapping method, and BLTE = Liu-type logistic regression with the bootstrapping method 

 

From the simulated MSE values in Tables 1 and 

2, it can be seen that the factors influencing the 

estimated MSE values were: the correlation coefficient 

level (𝜌), the sample size (𝑛), and the number of 

independent variables (𝑝). An increase in the correlation 

coefficient level led to an increase in the estimated MSE 

values for all methods, while holding 𝑝 and 𝑛 fixed. The 

worst case was obtained when the sample size was 

small (𝑛 = 50) and 𝜌 was high (𝜌 = 0.95). In the case 

when 𝜌 and 𝑝 were fixed, when the sample size 

increased, then the estimated MSE values of all the 

methods decreased in all situations. Moreover, an 

increase in the number of independent variables 

caused an increase in the estimated MSE values for all 

methods, while holding 𝑛 and 𝜌 fixed. Thus, if the 

number of independent variables is increased, one 

should also increase the sample sizes to obtain stable 

estimates. In this study, the method with the best 

performance was the Liu-type logistic regression 

together with 𝑘̂𝐿𝑇𝐸𝑑̂4 using the bootstrapping method 

for solving multicollinearity in the logistic regression 

model. However, if the data are very highly collinear 

and the sample size is very small, then the performance 

of ridge logistic regression with 𝑘̂1 is close to that of 

Liu-type logistic regression together with 𝑘̂𝐿𝑇𝐸𝑑̂4.   

 Finally, the estimation methods were applied to 

a real data set, where the effect of changing the total 

number of donations and months since the first donation 

on the quality of a blood sample was explored, and it 

was shown that the Liu-type logistic regression with 

𝑘̂𝐿𝑇𝐸𝑑̂4 using the bootstrapping method was the best 

method. 
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4. CONCLUSION  

The MSE was estimated for four logistic 

regression coefficient estimation methods with different 

𝜌, 𝑛, and 𝑝, and the results revealed that Liu-type 

logistic regression with the bootstrapping method 

performed better than Liu logistic regression with the 

bootstrapping method in the case of a high correlation 

coefficient. However, there were some situations where 

ridge logistic regression with the bootstrapping method 

for some 𝑘 showed better performance than Liu-type 

logistic regression with the bootstrapping method, and 

this depended on the estimators of 𝑑 and 𝑘. Thus, the 

choice of 𝑑 and 𝑘 must be appropriate. In the simulation 

study, the proposed estimators of the shrinkage 

parameter 𝑑̂4 and ridge parameter 𝑘̂𝐿𝑇𝐸 showed good 

performance when the data were highly collinear. 

Moreover, the Liu-type logistic regression together with 

𝑘̂𝐿𝑇𝐸𝑑̂4 using the bootstrapping method was the most 

robust for solving the multicollinearity problem. 

However, if the data are weakly/moderately collinear 

and 𝑝 = 2, then the performance of the maximum 

likelihood estimator with the bootstrapping method will 

be the best option. In addition, if the data are weakly 

collinear and 𝑝 = 4, then ridge logistic regression with 

the bootstrapping method will perform best.               
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