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Introduction
A lattice L is a non-empty ordered set in which

each pair of elements a, b of L has the least upper
bound denoted by a ∨b and the greatest lower bound
denoted by a ∧b. Whitman, P.M. (1946) proved that
for each lattice L there exists a set X such that L can
be embedded into the lattice of all equivalence
relations on X. One can show that the set Sub(G) of
all subgroups of a group G forms a lattice in which
H ∨K = <H UK> and H ∧K = H IK for each pair of

elements H, K of Sub(G). We call Sub(G), the lattice
of subgroups. Birkhoff, G. (1967) proved that every
lattice of all equivalence relations on a set X is
isomorphic to the lattice Sub(G) of a group G. These
results answered a well-known open question that for
each lattice L whether there exists a group G such
that L can be embedded into Sub(G).
       A lattice L is said to be distributive if it satisfies
the distributive law; that is, (a ∧b) ∨(a ∧c) = a ∧(b
∨c) for all a,b,c ∈L. Zembery, I. (1973) answered
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the open question in a special class of lattices by
proving that every finite distributive lattice can be
embedded into Sub(G) for some abelian group G.
Further, Gratzer, G.(1978) has characterized that G is
a finite cyclic group if and only if Sub(G) is a finite
distributive lattice; and he also proved that Sub(G) of
a finite cyclic group G is isomorphic to a product of
finite chains. We can conclude that for each finite
distributive lattice L there exists a finite cyclic group
G such that L can be embedded into Sub(G). A lattice
L is said to be modular if it satisfies the modular law;
that is, a≥c implies that a ∧(b ∨c) = (a ∧b) ∨c for all
a,b,c ∈ L. It is well-known that if L is distributive
then L is modular. Let m≥3 be a positive integer and
let Mm be the set {0,1,a1,a2 . . . , am} satisfying 0≤x≤1
for all x∈Mm and has no other comparabilities. It is
obvious that Mm is a finite modular lattice which is not
distributive for each m≥3. It is also proved by Fraleigh,
J. B. (1982) that if G is a group whose Sub(G)
is isomorphic to Mm for some m≥3 then G is not
cyclic. It is known that if G is an abelian group
then Sub(G) is modular; but the converse is not
always true; for instance, Sub(D3) the set of all
subgroups of the dihedral group D3 is isomorphic to
M4. Ratanaprasert, C. and Chantasartrassmee, A.
(2004) have characterized all groups G whose Sub(G)
is isomorphic to Mm for some m≥3. We proved the
following theorems.
Theorem 1.1 : Let m ≥3 be a positive integer. Then
there is a group G whose Sub(G) is isomorphic to Mm

if and only if m = p+1 for some prime p.
Theorem 1.2 : Let G be a group. Then Sub(G) is
isomorphic to M3 if and only if G is isomorphic to
Z2 × Z2.
Theorem 1.3 : Let G be a group and p be a prime
number. Then Sub(G) is isomorphic to Mp+1 if and
only if either G is isomorphic to Zp × Zp or G is a

non-abelian group of order pq, where q is a prime
number with q divides p–1, generated by elements c,
d such that cp = dq = e, where e denotes the identity of
G and dc = csd where s is not congruence to 1 modulo
p and sq ≡ 1 (mod p).
Corollary 1.4 : Let G be a non-abelian group whose
Sub(G) is isomorphic to Mp+1 for some prime p. Then
(i)  p is an odd prime  and  (ii)  G is of order pq where
q is a prime number with q divides p–1 and G contains
exactly one subgroup of order p and p subgroups of
order q.

Groups whose lattices of subgroups are n-M3

chains
By the Structure Theorems for Finite Abelian

Groups and Theorem 1.2, we look for the diagram of
the lattice Sub( 222 ZZ × ) of all subgroups of the
abelian p-group 222 ZZ × where 22

Z := {0, 1, 2, 3} be
the (additive) group of integers modulo 4. One can
see that all subgroups of the direct product 222 ZZ × =
{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1), (3,0), (3,1) } are
a03:= {(0,0)} = <(0,0)>, a11:= {(0,0), (0,1)} = <(0,1)>,
a12:= {(0,0), (2,1)} = <(2,1)>, a13:= {(0,0), (2,0)} =
<(2,0)>, a21:= {(0,0), (0,1), (2,0), (2,1)} = <(0,1), (2,0)>,
a22:= {(0,0), (1,1), (2,0), (3,1)} = <(1,1)>, a23:= {(0,0),
(1,0), (2,0), (2,1)} = <(1,0)> and a31:= 222 ZZ ×  =
<(1,0), (0,1)> ; and the diagram of the lattice
Sub( 222 ZZ × ) is shown in Figure 1(a). For general
case, we have the following proposition.
Proposition 2.1 : For each integer n≥2, all subgroups
of 22

ZZ ×n are (a) <(1,0), (0,1)>, (b) <(1,0)>, (c)
<(1,1) >, (d) <(2,0), (0,1) > or (e) a subgroup of <(2,0),
(0,1)>.
Proof : Let T be a subgroup of 22

ZZ ×n and for
i∈{1,2} let pi be the projection maps of 22

ZZ ×n  on

n2
Z and 2Z , respectively. Then each pi for i ∈{1,2}
is a homomorphism; hence, p1(T) and p2(T) are
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subgroups of n2Z and 2Z , respectively. If T= 2n+1

then T = 22 ZZ ×n = <(1,0), (0,1)>. Now, we consider
the case T= 2n. If p2(T) = {0} then p1(T) = n2Z ;
hence, T = }0{2 ×nZ  = <(1,0)>. We assume that p2(T)
= {0,1}  = 2Z . If 1∈p1(T) then (1,1) ∈T; so, T is a
cyclic subgroup <(1,1)> since the order of (1,1) is 2n

=T. But, if 1∉p1(T) then p1(T) is a subgroup of <2>
= }Z∈ a  a2{ n2 since every odd integer in n2Z is its

generator. Now, p1(T) = <2> and p2(T) = <1> imply
that (2,0) and (0,1) are in T; so, <(2,0), (0,1)> is a
subgroup of T. Since each element of <(2,0),(0,1)> is
a linear combination of the form s(2,0) + t(0,1) where
1≤s≤2n-1 and 1≤t≤2, the subgroup <(2,0),(0,1)>
contains 2(2n-1)= 2n distinct elements. So,T= 2n

= <(2,0),(0,1)>. Therefore, T = <(2,0), (0,1)>.
Finally, if T< 2n then p1(T) is a subgroup of <2>
since p1(T) = implies that T = }0{2 ×nZ or T =

22 ZZ ×n in which cases implyT= 2n >T, a
contradiction. Therefore, T is a subgroup of < (2,0),
(0,1) >.

We will generalize the lattice in Figure 1(b) in the
following proposition.
Proposition 2.2 : Let n be a positive integer and
let≤ * be the usual order on the set Z+ U{0} of all
nonnegative integers. If L := {aij 1≤ * i≤ * n and 1

≤ *  j≤ * 3 } U {a03, a(n+1)1} and≤⊆L×L is defined

by av3≤ aij≤ aij≤ au1 for all 0≤ *v < * i < * u≤ *

n+1 and all 1≤ * j≤ * 3 and there are no other
comparabilities, then L = (L;≤) is a lattice.
Proof : It is obvious from the definition of≤ that≤ is
reflexive. Let x, y ∈L satisfy x≤y and y≤x. Then
there are integers p,q,r,s ∈{0,1,2, ..., n+1} such that x
= apq and y = ars. If q = 3 and since ars= y≤x = apq,
we have s=3; but p ≠ r implies by the definition of

≤ that r < *p and p < *r which contradicts to the
trichotomy law for≤ *; hence, p = r; and so, x = apq=
ars = y. If q = 2 then ap2 = x≤y = ars implies that s=1
or s=2; but s = 1 implies ar1 = y≤x = ap2 which
contradicts to the definition of≤; so, s=2 = q. Also,
p ≠r implies a similar contradiction as above; hence,
p = r. Therefore, x= y. If q=1, then ap1= x≤y = ars

which shows s = 1 and p≤ *r. Now, ar1= y≤x = ap1

implies that r≤ *p. So, p = r. Hence, x = y. In any
cases, x = y  which shows that≤ is anti-symmetric.

Now, let x,y,z ∈L satisfy x≤y and y≤z. Then
there are integers p,q,r,s,u,v ∈{0,1, ..., n+1} such
that x = apq ,y = ars and z = auv; so, apq≤ars and ars≤auv.
Since apq= ars or ars = auv implies that x≤z, we
consider the case apq≠ars and ars≠auv which implies
by the definition of ≤that p < *r and r < *u; so, p < *u.
If q = 3 then x = ap3≤auv= z. And if q=2 then s=1;
and so ap3≤auv since p < * r implies that v = 1 and

                                            (a) (b)
Figure 1
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p< *u. Finally, if q =1 then s = v = 1; and so, apq≤auv

follows from p < * u. Hence, in which cases, x≤ z.
Therefore, ≤ is transitive.

To show that L is a lattice, let x,y ∈L. If x≤y or
y≤x then x∨y and x∧y are in the set {x, y}. Let
x and y be non-comparable. Then there are integers
p,q,r,s ∈{0,1,2, ..., n+1} such that x = apq and y = ars.
We may assume that p≤ *r. Then, since apq and ars

are non-comparable, 1≤ *p≤ *n and 1≤ *r≤ *n.
If q = 1 then s ∈{2,3}. Since there are no

integers c and d with p–1 < *c < *p and r < *d < * r+1,
we have a(p-1)3pap1= x≤a(r+1)1 and a(p-1)3≤ars = y
pa(r+1)1 which shows x∧y = a(p-1)3 and x∨y = a(r+1)1.
If q = 2 and r = p then apq∧aps= a(p-1)3 and apq∨aps

= a(p+1)1; but if q = 2 and p < * r then s ∈{2,3}; so,
x∧y and x∨y will be as in the case q = 1. And if q = 3
then p = r; so, ap3≤ aij for all i with p < * i and for all
1≤ *j≤ *3; so x∧y and x∨y are as in the case q =2
and r = p.

Definition : The lattice defined as in Proposition 2.2
is called n-M3 chain.

Figure 1(b) shows the diagram of n-M3 chain for
n≥1. For a special case, we note that M3 is 1-M3

chain and Theorem 1.2 showed that Sub(Z2 × Z2) is
isomorphic to 1-M3 chain (which is M3). We now prove
in general case that Sub( 22

ZZ ×n ) is isomorphic to
n-M3 chain for each positive integer n.
Proposition 2.3 : Sub( 22

ZZ ×n ) is isomorphic to
n-M3 chain for each positive integer n.
Proof : We will prove the proposition by
mathematical induction. By Theorem 1.2, Sub(Z2×Z2)
is isomorphic to 1-M3 chain. We may assume that k
is a  positive integer such that Sub( 22k ZZ × ) is
isomorphic to k–M3 chain and we will prove the
proposition for k+1.

By Proposition 2.1, all the subgroups of 22 1k ZZ ×+

are 1 := <(1,0),(0,1)>, a := <(2,0),(0,1)>,  b := <(1,1)>,
c := <(1,0)> or a subgroup of <(2,0),(0,1)>. Since
<(2,0),(0,1)> is isomorphic to Sub( 22k ZZ × ), the
induction hypothesis implies that Sub(<(2,0),(0,1)>)
is isomorphic to k–M3 chain. It is clear that {1, a, b, c,
d }, where d = <(2,0)>, is isomorphic to M3. Hence,
Sub( 22 1k ZZ ×+ ) is isomorphic to (k+1)–M3 chain
which completes the proof.

Theorem 1.2 and Corollary 1.4(i) also showed that
there are no non-abelian groups G such that Sub(G) is
isomorphic to n-M3 chain for all n. We are going to
prove in the following theorem that it is also true in
the class of n-M3 chains for all positive integers n.
Theorem 2.4 : Let G be a group and n≥3 be an
integer. Then Sub(G) is an n-M3 chain if and only if  G
is isomorphic to 22

ZZ ×n .
Proof : The converse of the theorem follows by
Proposition 2.3. Let G be a group whose Sub(G) is an
n-M3 chain. Then G is finite and Theorem1.2  implies
that G cannot be non-abelian; and also, the Structure
Theorem of Finite Abelian Group implies that G is of
the form rt

r
2t

2
1t

1p pp
 .  .  . ××× ZZ where pi are primes for

1≤i≤r. Since an n-M3 chain is not distributive, G is
not a cyclic group; so, there exists a prime factor p of
Gsuch that Zp × Zp is a subgroup of G. So, Theorem
1.1 told us that Sub(Zp × Zp) has at least p+1 atoms.
Hence, Cauchy’s Theorem implies that all atoms of
Sub(Zp × Zp) are atoms of G and there are no other
prime q differ from p which is a divisor ofG. So,
p+1=3; that is, p=2 is the only prime factor ofG.
If Z2 × Z2 × Z2 is a subgroup of G, then one of M3 in
the n-M3 chain has at least 7 atoms since Z2 × Z2 × Z2

contains 7 distinct elements of order 2 which
contradicts to the form of an n-M3 chain that each M3

in the chain has exactly 3 non-comparable elements.
So, G is of the form mn 22

ZZ × for some positive
integers n and m. Suppose that n>1 and m>1. Then a

¯

¯
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subgroup 22 22
ZZ × of G contains 4 subgroups

<(1,0)>, <(0,1)>, <(1,1)> and <(2,0),(0,2)> of order 4
which are non-comparable in Sub( 22 22

ZZ × ) and also
are in Sub(G). Since G contains only 3 subgroups of
the same order which are non-comparable, we get a
contradiction. Hence, n =1 or m = 1. Therefore, G
is 22n ZZ ×  for some positive integers n which
completes the proof.
Corollary : A lattice L is isomorphic to Sub( 22n ZZ × )
for some positive integer n if and only if it is an n-M3

chain.

Groups whose lattices of subgroups are n-Mp+1

chains for some odd primes p
Let p be an odd prime number and n be a positive

integer. We will now give the definition of n-Mp+1

chains by extending the definition of n-M3 chains as
follows.

Let L := {aij 1≤ * i≤ * n and 1≤ * j≤ * p+1 }
U {a0(p+1) ,a(n+1)1} and≤⊆L×L be defined by av(p+1)≤

aij≤aij≤au1 for all 0≤ *v≤ * i≤ * u≤ * n+1 and all
1≤ * j≤ * p+1 and there are no other comparabilities.
Then one can repeat the proof in Proposition 2.2 with
p+1 in place of 3 to conclude that L = (L;≤) is a
lattice which will be called an n-Mp+1 chain.
       We begin to prove that there is no non-abelian
group G whose Sub(G) is isomorphic to an n-Mp+1

chain if n > 1 and p > 2.
Proposition 3.1 : If G is a group whose Sub(G) is
isomorphic to an n-Mp+1chain for some odd prime p
and some integer n > 1, then G is an abelian group of
the form ppn ZZ ×

Proof : Suppose that there is a non-abelian group G
whose Sub(G) is isomorphic to an n-Mp+1chain for
some integers n >1 and primes p > 2. Then Theorem
1.3 and Corollary 1.4(i) imply that the subgroup H :=
a21 of G which is the top of the first Mp+1 of the n-

Mp+1 chain must be either Zp × Zp or a non-abelian
group of order pq where q is a prime factor of p–1;
hence, the prime q must be a factor ofG. If H =
Zp × Zp, Cauchy’s Theorem implies thatGcannot
have other prime factors (except p); that is, G is of
order pt for some positive integer t. Since G is non-
abelian, G is not H = Zp × Zp; so the subgroup a31 of G
is of order p3. If a31 is abelian then a31 is Zp × Zp × Zp

(a31 cannot be 3p
Z since the cyclic group cannot have

Zp × Zp as its subgroup) and Sub(Zp × Zp × Zp) is not
2-Mpchain since it contains p3–1 (> p+1) distinct
elements of order p and each generates a subgroup
which is an atom of Sub(G). So, a31 is a non-abelian
group of order p3 which has elements of order p2 and
has no elements of order p3 (Qif all elements of a31

are of order p or there is an element of a31 of order p3

then either Sub(a31) contains p3–1 atoms which
implies that Sub(a31) is not a 2-Mpchain or a31 is
cyclic; in which cases imply a contradiction). Since
Sub(a31) contain p+1 co-atoms which are subgroups
of order p2, a31 must contain exactly (p+1)(p2-1)+1 =
p3+p2–p elements; so, p3+ p2– p = p3 which implies
that p = 0 or p = 1 which contradicts that p is prime.
Therefore, H is a non-abelian group of order pq where
q is a prime factor of p–1; and also, p and q are the
only prime factors of G. If n>1, Sub(a31) contains p
cyclic subgroups of order q and only one cyclic
subgroup of order p which is Zp. Since Sub(Zp × Zp) is
Mp+1, the a1(p+1) in Sub(G) must be Zp and a22, ... ,a2(p+1)

are cyclic subgroups 2p
Z . So, a31 must contain

exactly pq + p(p2– p) elements. By the First Sylow
Theorem and p, q are the only prime factors ofG,
we have pq + p(p2–p) = ptq where t >1 which implies
that p = q(pt-2+ ... +1); hence, p = q or p = q(pt-2+ ...
+1) > p which are impossible in both cases.
Therefore, G is an abelian group.

The above argument also shows that there is only
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one prime number p which is a factor of Gand G
cannot have Zp × Zp × Zp as its subgroup; so, G is of
the form mn pp

ZZ × for some positive integers n and
m. Hence, a similar proof in Theorem 2.4 implies that
G is of the form ppn ZZ × which completes the proof.

We can state a similar theorem as Theorem 2.4
as follows.
Theorem 3.2 : Let n >1 be an integer and p be a
prime number. Then a group G is ppn ZZ × if and only
if Sub(G) is  an n–Mp+1 chain.

One can note that both of the class of all n–M3

chains for all integers n and the class of all n–Mp+1

chains for all integers n >1 and all odd primes p are
subclasses of the class of all modular lattices which
are examples answering to the following open
problem.
Open Problem : Find a (maximum) subclass M of
modular lattices satisfying these 2 conditions :
(i)   G is a finite abelian group if and only if Sub(G) is
in M, and
(ii)  L is a lattice in M if and only if L is isomorphic to
Sub(G) for some finite abelian group G.
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