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Abstract
Power and the assessing goodness of fit of cumulative models for ordinal response data with two nominal

interaction term of explanatory variables are investigated. The magnitude of goodness-of-fit statistics, the
coefficients of determination or R2 analogs, the likelihood ratio statistic,GM, AIC (Akaike Information Criterion,
Akaike, 1973),and BIC (Bayesian Information Criterion, Schwarz, 1978) are calculated. The simulations have
been conducted for the multinomial logit models with K=3 response categories and two random explanatory
variables X1 and X2 whose joint distribution of (X1, X2) is assumed to be multinomial with probabilities π1 π2

π3and π4, corresponding to (X1, X2) values of (0, 0), (0,1), (1, 0), (1, 1), respectively. Three sets of (π1, π2, π3,
π4 ) are studied to represent different distributional shapes, which were chosen to induce possibly strong effects
such that β1= log 2, β2= log3, and β12= 0.0 - 4.5 (increment 0.3), namely (X1, X2)~multinomial
(0.10,0.35,0.45,0.10), (X1, X2)~ multinomial (0.50,0.30,0.10,0.10), and (X1, X2)~multinomial (0.25,0.25,
0.25,0.25). Four sets of the three ordered category distributing corresponding with the (X1, X2) were again
generated through the models under the proportions of (p1, p2, p3), namely Y~multinomial(p1, p2, p3):
(0.05,0.20,0.75), (0.25,0.50,0.25), (0.5,0.20,0.25), and (0.33,0.33,0.33) from which it follows that the true
model  intercepts  are   α1 = log    p1       ,   α2 = log  p1 + p2     , corresponding  to the proportions of Y = 1, 2, 3

respectively. Four sample sizes of 600, 800, 1,000, and 1,500 units were performed. Each condition was carried
out for 1,000 repeated simulations using the developed macro program run with the Minitab Release 11.

The results under the distribution conditions of (X1, X2)~ multinomial (0.1,0.35,0.45,0.1) and Y ~(0.55,
0.20, 0.25) show that all goodness-of-fit statistics perform better than those of the distribution conditions of
which Y~(0.25,0.5,0.25) and Y~(0.33,0.33,0.33) in term of the power of the tests, means and standard devia-
tions of goodness-of-fit statistics. These results are also similar to the condition when (X1, X2)~ (0.50,0.30,0.1,0.1).
However, when the distribution conditions are symmetric such that (X1, X2)~ (0.25,0.25,0.25,0.25) and
Y~ (0.33,0.33,0.33) all statistics are much generally improved the model fits. In conclusion it probably is
recommended to use large sample sizes in the analysis of ordinal categorical responses when the distributions of
variables are asymmetric, except only when the distribution of the response categories is clearly increasing in
order.  Besides this, there is also a tendency to improve the model fit by using the models with an interaction term
when the correlated structures between the explanatory variables are evident.
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Introduction
Statistical modeling is generally an iterative

process. A minimal/initial model is developed, and
fitted to a data set and examined. Further models for
the data may then be proposed and specified, with
the form of the current model being based on the
information provided by the previous models.
Throughout the last thirty or so years, statistical
modeling has been centered around the classical
linear models (LMs) which have focused on the
normal distribution properties and homogeneity
(constant variance), for example, regression models,
ANOVA models (Aitkin et al., 1989). In the present
texts, statistical  modeling for categorical data
analyses are widely used and are developing rapidly
so that applying generalized linear models (GLMs)
become common and well known statistical models
under the impetus of application in disciplines as
widely varied as the following: agriculture,
demography, ecology, economics, education,
engineering, environmental studies and pollution,
geography, geology, health science, history, computer,
medicine, political science, psychology and sociology
(Lindsey, 1997; Lawal, 2003). GLMs appeared on the
statistical scene in the path breaking article of
Nelder and Wedderburn (1972). They generalize
the classical linear models based on the normal
distribution to involve two aspects: a variety of
distributions from continuous to discrete or
categorical, exponential family distribution models
and they also involve transformations of mean,
through the link functions, linking the systematic
part of models to the mean of one of the distributions.
Thus, GLMs are now a mature data-analytic
methodology. They are developed to handle the
correlated structures and overdispersion known as
Generalized Estimating Equations (GEEs) by
Liang and Seger (1986), as well as, ways to handle
Generalized Additive Models (GAMs) by Hastie
and Tibshirani (1990). GLMs have also been
developed further by, for example, Jorgensen (1997)
for modifications of exponential families, Heyde (1997)

for the theory of quasi-likelihood, and McCulloch and
Searle, 2001 for Generalized Linear and Mixed
Models (GLMMs).

More recently, log-linear models and logit models
for discrete, categorical data become well known in
the social sciences, applied science, and medicine. The
cumulative logit models such as the proportional odds
models (Walker and Duncan, 1967; McCullagh, 1980)
and the continuation-ratio models for ordinal response
(Fienberg, 1980) have been the primary focus in
epidemiological and biomedical applications
(Amstrong and Sloan,1989; Peterson and Harrell,
1990; Lipsitz et al., 1996; Cole et al., 2003)  while
other  models for the analysis of ordinal outcomes have
received less attention.

This paper presents a synthesized GLMs,
generalized logit models for analyzing ordinal
responses corresponding to the nominal explanatory
variables, with and without two-factor interaction.
However, many models for ordinal response are
developed under rather strong assumption such as
the proportional odds assumption, which becomes a
popular model for analyzing studies with an ordered
categorical outcome. Departures from these
assumptions may well result in the incorrect model
formulation. Thus, the purpose of this research is to
analyze the performance of the proportional odds
ratio models, which contain only the main effects
and that the interaction effect using goodness-of-fit-
statistics and the power of tests.

The Cumulative Logit Models
The cumulative logit model was originally

proposed by Walker and Duncan (1967) and later
called the proportional odds model by McCullagh
(1980). The cumulative logits are defined (Agresti,
2002) as

P( Y ≤ j | x )  =  p1 + p2 +……+ pj,  j = 1,…., K.
Then,

logit [P(Y ≤ j | x )] = log [                          ]P(   |  )    
 1 - P(    |  ) 

Y j
Y j
≤

≤
x

x
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= log [                        ]

= log [                               ],

j = 1, 2, ……, K-1.
A model that simultaneously uses all cumulative

logit is

logit P(Y ≤ j | x  )  =  αj+ x′β ,   j= 1,…., K-1.

This model, which extends the logistic model for
binary responses to allow for several ordinal responses,
has often involved modeling cumulative logits,
generalized cumulative logit models (Cole et al.,
2003) and also those models often used in repeated
measurement modeling (Mc.Culloch, 2000, Mc.
Culloch and Searle, 2001). Consider a multinomial
response variable Y with categorical outcomes,
denoted by 1, .…, K and let Xi denote a p-dimensional
vectors of explanatory variables or covariates. The
dependence of the cumulative probabilities of Y on
X’s for the proportional odds model is often of the
form in (1).

log [  ] = αj+ x′β,  j = 1,…, K-1. .....(1)

It can be expressed in the form

log [                                  ] = αj+ x′β , j = 1,…, K-1.

Each cumulative logit has its own intercept. The
{αj } are increasing in j, since P(Y ≤ j | x ) increases in
j for fixed x, and the logit is an increasing function of
this probability and each cumulative logit uses all K
response categories.

Hence, for K=3, and j = 1,…,K-1=2, the model
(1) consists of two simultaneously cumulative
link-functions for solving the model parameters in the
following equations:

log [                  ]   = αj+ x′β,   for j = 1,

log [                   ]  = αj+ x′β,   for j = 2, i = 1,2,...n

Where, αj  are the intercept parameters.

β = (β1, β2, ..., βp)′ is a vector of coefficients

corresponding to X’s, and
P(Y ≤ j | x ) = p1 + p2 +.....+ pj, and

P(Y > j | x ) = pj-1 + p2+.....+ pK,  j =1, ..., K-1.

Similarly to (1), we have (2) and (3).

The proportional odds ratio model (minimal):

log

……….(2)

The proportional odds ratio with two-factor-
interaction model (Interaction):

log

….(3)

The model (1) for any K ≥ 3 is often called the
proportional odds model (McCullagh, 1980). It is
based on the assumption that the effects of the
explanatory variables X1, ..., Xp are the same for all
categories, on the logarithmic scale. It probably also
represents the most widely used ordinal categorical
model at the present time.

Simulation and Statistical Analyses
The simulations have been conducted for

the multinomial logit models with K=3 response
categories and two random explanatory variables X1

and X2 whose joint distribution of (X1, X2) is assumed
to be multinomial with probabilities π1, π2, π3, and π4,
corresponding to (X1, X2) values of  (0, 0), (0,1),
(1, 0), (1, 1), respectively. Three sets of ( π1, π2, π3,
π4) are studies to represent different distributional
shapes, which were chosen to induce possibly strong
effects such that β1 = log2, β2 = log3, and β12= 0.0 -
4.5, namely (X1, X2)~multinomial(0.10, 0.35, 0.45,
0.10), (X1, X2)~ multinomial (0.50,0.30,0.10,0.10),
and (X1, X2)~multinomial (0.25,0.25,0.25,0.25).
Four sets of the three ordered category distributing
corresponding with the (X1, X2) were again generated
through the models studies in the form of (1.1)-(1.2)
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under the proportions of (p1, p2, p3), namely
Y~multinomial(p1, p2, p3): (0.05,0.20,0.75), (0.25,
0.50,0.25), (0.5,0.20,0.25), and (0.33,0.33,0.33)
from which it follows that the model parameters
to  be  used  in  each  condition  are

        β1 = log 2, and β2 = log 3 for varied

β12 from 0-4.5 (increment 0.3), corresponding  to the
proportion of  Y = 1, 2, 3 respectively. Consequently,
the categorical responses are corresponded with X’s
under the true models, will be random at each setting
of fixed values of the explanatory variables (X1, X2)
through the cut points and the specified proportions.
Four sample sizes were specified to vary from
n = 600, 800, 1,000 and 1,500 units. All results were
performed for 768 (=4 x 3 x 4 x 16) conditions. Each
of which for each model was carried out 1,000
replicates of data sets.

Statistical analyses in assessing goodness of fit
of models consist of several statistics which were
computed for each combination of the model
conditions. The likelihood ratio statistics, the
generalized coefficients of determination or R2

analogs, the percentage correct classification (PCC)
of predictive efficiency, the power of the tests, AIC
(Akaike Information Criterion, Akaike, 1973), BIC
(Baysian Information Criterion, Schwarz, 1978) are
evaluated.

All the statistics were computed using the
following formulae:

GM = -2 [ln(LO)-ln(LM)] (The model chi-square
statistic)

The Coefficients of  Determination , R2 analogs:

R2
C  =                (The contingency coefficient R2,

Aldrich & Nelson, 1984.)

R2
L  =                            =

(The log likelihood ratio R2, McFadden, 1974;
Menard, 1995)

R2
M = (The geometric mean squared

improvement per observation
R2, Cox & Snell, 1989;
Maddala, 1983; Ryan, 1997)

R2
N  =  (The  adjusted geometric

 mean squared improvement
 R2, Nagelkerke, 1991; Ryan,
 1997)

PCC = The average percentage correct classified
       of model from 1,000 data  sets.

AIC = GM - 2 (Δdf),  BIC =  GM - (log(n))(Δdf),
      (Lawal, 2003).

The power of the test is the percentage
corresponding to the rejection of H0 when H0 is
false in 1,000 simulations.

Whereas,
n = sample size
LO = the likelihood function for the model

      containing only the intercept.
LM = the likelihood function for the model

      containing all of the predictors.
GM = -2 [ln(LO) - ln(LM)] = the model chi-square

   statistic.
All computer simulation programs were developed

using the MINITAB macro language and run by
MINITAB release 11 on Pentiums IV.

Research Results
Several models for analyzing data with ordinal

responses have been fitted and also are examined their
goodness-of-fits. The mean and standard deviation,
based on 1,000 simulations, of each goodness-of-fit
statistic (RN, BIC, PCC) are summarized in Table 1 –
Table 3 (appendix 5-7).  All statistics are classified by
Y’s and X’s distributions, β12 , and the different sample
sizes. For β12 = 0, it corresponds with the cumulative
model with main effects or without interaction,
whereas, for β12 ≠ 0, it do corresponds with the model
with two-factor interaction.

,log 
3

21
2 p

pp +
=α

( )nG
G

M

M

+

)ln(
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O
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The results are shown that the magnitude of
goodness-of-fit statistics, the coefficients of
determination or R2 analogs, and the percentage
correct classification (PCC) increase as both the
sample sizes and the parameter β12 increase. For other
R2 analogs, results are all quite similar. We then report
only the RN or the Nagelkerke’s R2 analog and BIC
statistics. The likelihood ratio statistic, and the BIC
statistic tend to decrease as the sample sizes and β12

are large. Thus, statistics do vary dependently upon
the distributions of Y and X’s (Table 1-3).

Under the distribution conditions of (X1, X2)
~(0.1,0.35,0.45,0.1) and Y~(0.55,0.20,0.25). Most
goodness-of-fit statistics perform better than those
of distribution conditions of which Y~ (0.25,0.5,0.25)
and Y~(0.33,0.33,0.33), except for RN statistic (Table
1).  These results are also similar to the condition when
(X1, X2) ~ (0.50,0.30,0.1,0.1) (Table2).  However when
the distribution conditions are symmetric, such that
(X1, X2) ~ (0.25, 0.25, 0.25, 0.25), all statistics for Y~
(0.33,0.33,0.33) are much generally improved the
model fits (Table3).

Therefore, in terms of goodness-of-fit statistics,
BIC and R2 analog, the results indicate that when
both distributions of Y’s and X’s are symmetric,
they give good fits, especially when X’s are most
correlated or when β12 is large (Table3). However,
when considering in term of PCC, the results are
different. This is also possible because the conclusions
based on R2 analogs are not necessarily consistent
with the conclusions based on the predictive efficiency,
with respect to which of several outcomes is better
predicted by a given model.

The comparisons in term of the power of the tests,
all results concerning with power plots between power
and the parameter β12 are compared among the four
sample sizes: 600, 800, 1,000 and 1,500 for each
combination of Y’s and X’s distributions (Figure 1-12
in appendix 1-4). It is found that the results do
confirm the previous ones that the power of the tests
varies according to the distributions of Y’s and X’s,
β12 and the increasing sample sizes. Moreover,

the power of the tests when the distributions are
symmetric, provide more and rapidly approach to
1.00 than those of the distributions are asymmetric,
excepting the case when the distribution of Y is in
increasing order, Y~(0.05,0.20,0.75)(Figure 1, 5, 9 in
Appendix 1-4).

Conclusion and Recommendation
The results are concluded that the goodness-of-

fit statistics and tests perform well and do vary
according to different distributions of Y’s and that
of X1, X2, β12 and the sample sizes of 600, 800, 1,000,
and 1,500 units. In addition, good performance in
terms of power of the test and their means and
standard  deviations occur when the distributions of
Y’s and (X1, X2) probably have symmetric shapes
(Figure 12 and Table 3) as well as when the
distribution of Y is in increasing order (Figure 9).

Due to the above results, it is recommended
that in practice for the situations encountered with the
asymmetric distributions of Y’s and X’s, it is possibly
safety to use large sample sizes for analysis of
ordered categorical data in order to gain some power
of the tests.  Moreover, for the correlated structures of
the explanatory variables, there is a tendency to
improve a model fit with two-factor inter action to
get a better fit of a model with ordinal response
categories and their corresponding nominal
explanatory variables (Figure 9 and Table 3).
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Appendix 1:
Figure 1-3 Power plots versus β12 for each condition of

X1, X2 and Y distributions under 4 sample sizes

Figure 1 Power under (X1,X2) ~ multinomial (0.10,0.35,
0.45,0.10) and Y~ multinomial (0.05,0.20,0.75)

Figure 2 Power under (X1,X2) ~ multinomial (0.10,0.35,
0.45,0.10) and Y~ multinomial(0.55, 0.20, 0.25)

Figure 3 Power under (X1,X2) ~ multinomial (0.10,0.35,
0.45,0.10) and Y ~ multinomial (0.25,0.5,0.25)

Appendix 2:
Figure 4-6 Power plots versus β12 for each  condition of

X1, X2 and Y  distributions under 4 sample sizes

Figure 4 Power under (X1,X2) ~ multinomial (0.10,0.35,
0.45,0.10) and Y ~ multinomial (0.33,0.33,0.33)

Figure 5 Power under (X1,X2) ~ multinomial (0.50,0.30,
0.10,0.10) and  Y~ multinomial (0.05,0.20,0.75)

Figure 6 Power under (X1,X2) ~ multinomial (0.50,0.30,
0.10,0.10) and Y~multinomial(0.55, 0.20, 0.25)



36

V. Pongsapukdee and S. SukgumphaphanSilpakorn U Science & Tech J Vol.1(2), 2007

Appendix 3:
Figure 7-9 Power plots versus β12 for each condition of

X1, X2 and Y distributions under 4 sample sizes

Figure 8 Power under (X1,X2) ~ multinomial (0.50,0.30,
0.10,0.10) and Y ~ multinomial (0.33,0.33,0.33)

Figure 9 Power under (X1, X2) ~ multinomial (0.25,0.25,
0.25,0.25) and Y~ multinomial (0.05,0.20,0.75)

Appendix 4:
Figure 10-12 Power plots versus β12for each condition of

X1, X2  and Y  distributions under 4 sample
sizes

Figure 10 Power under (X1,X2) ~ multinomial (0.25, 0.25,
0.25, 0.25) and Y~multinomial (0.55,0.20, 0.25)

Figure 11 Power under (X1,X2) ~ multinomial (0.25,0.25,
0.25,0.25) and Y ~ multinomial (0.25,0.5,0.25)

Figure 12 Power under (X1,X2) ~ multinomial (0.25,0.25,
0.25,0.25) and Y ~ multinomial (0.33,0.33,0.33)

Figure 7 Power under (X1,X2) ~ multinomial (0.50,0.30,
0.10,0.10) and Y ~ multinomial (0.25,0.5,0.25)
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Appendix 5: Table 1 Means and standard-deviations of RN, BIC, PCC classified by β12, sample sizes, distributions of
Y’s and (X1,X2) ~ multinomial (0.10,0.35,0.45,0.10)

Appendix 6: Table 2 Means and standard-deviations of RN, BIC, PCC classified by β12, sample sizes, distributions of
Y’s and (X1,X2) ~ multinomial  (0.50,0.30,0.10,0.10)

                          Y~(0.05, 0.20, 0.75)               Y~(0.25, 0.5, 0.25)                                           Y~(0.55, 0.20, 0.25)                Y~(0.33, 0.33, 0.33)

βββββ 12       RN     BIC     PCC       RN     BIC     PCC       RN      BIC     PCC        RN       BIC     PCC

Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

0.0 0.058679 1083.98 56.7395 0.060107 1142.01 49.6400 0.052387 876.30 73.4033 0.063811 1141.69 55.1912

(0.0194721) (25.6156) (1.95122) (0.0194673) (21.6940) (1.92469) (0.0194498) (37.7953) (1.83238) (0.0196229) (23.1956) (1.91238)

2.1 0.212123 1051.40 59.0148 0.142682 1086.00 51.8870 0.093214 837.13 74.3300 0.155567 1061.33 57.5280

(0.0295858) (27.8443) (2.02051) (0.0229250) (22.3357) (1.96330) (0.0207315) (935.4929) (1.74841) (0.0228078) (23.9920) (1.89971)

4.5 0.322947 992.86 61.2027 0.175407 1067.04 52.0597 0.103920 826.22 74.5938 0.185940 1037.27 57.9532

(0.0235552) (27.2899) (1.90744) (0.0163322) (20.4318) (2.03190) (0.0169255) (34.6365) (1.73321) (0.0175835) (21.0078) (2.00314)

0.0 0.057409 1463.52 55.9934 0.058316 1527.46 49.6187 0.052828 1172.94 73.3881 0.058012 1528.82 55.1961

(0.0173530) (29.3851) (1.78811) (0.0163818) (26.4722) (1.67847) (0.0170042) (42.3975) (1.55030) (0.0167889) (26.9957) (1.70611)

2.1 0.226641 1412.36 58.7626 0.140179 1455.15 51.6619 0.097928 1115.07 74.4141 0.136609 1438.84 57.1176

(0.0251799) (30.2102) (1.69537) (0.0189626) (26.4239) (1.74502) (0.0171776) (39.8367) (1.46499) (0.0188202) (25.6481) (1.61679)

4.5 0.346772 1325.27 61.0455 0.172824 1426.87 52.1307 0.111255 1104.13 74.4792 0.164936 1412.32 57.4703

(0.0199513) (31.4083) (1.68968) (0.0153550) (23.7003) (1.84894) (0.0144289) (39.3336) (1.50219) (0.0147591) (23.7066) (1.59498)

0.0 0.057858 1826.36 56.3663 0.059951 1905.22 49.8860 0.049243 1458.03 73.8108 0.053304 1938.15 54.1414

(0.0158284) (33.6037) (1.58360) (0.0151307) (27.2895) (1.45662) (0.0150582) (48.2379) (1.36713) (0.0141273) (29.6395) (1.52324)

2.1 0.230354 1759.94 59.2585 0.159612 1793.69 52.4905 0.093715 1384.13 74.8933 0.111015 1856.88 55.4964

(0.0235285) (35.4838) (1.55560) (0.0184981) (30.2849) (1.67781) (0.0158669) (44.7641) (1.30335) (0.0158306) (28.7404) (1.49588)

4.5 0.353092 1646.95 61.6079 0.199785 1748.35 52.8810 0.106758 1368.58 75.0236 0.131566 1834.23 55.6743

(0.0183483) (35.6761) (1.53995) (0.0141490) (26.3860) (1.79294) (0.0127857) (45.6898) (1.36235) (0.0121908) (26.4756) (1.49857)

0.0 0.057337 2753.04 56.1112 0.058683 2869.97 49.7353 0.048043 2191.54 73.8900 0.060091 2880.40 55.0222

(0.0126415) (40.3654) (1.28269) (0.0127037) (35.2233) (1.28694) (0.0114475) (58.5107) (1.11701) (0.0128690) (36.6007) (1.25008)

2.1 0.233535 2646.73 59.1850 0.156734 2704.91 52.4080 0.089488) 2088.94 74.8891 0.147409 2693.48 57.1747

(0.0189032) (42.4766) (1.22881) (0.0146075) (35.0644) (1.41484) (0.0129840) (54.3407) (1.05884) (0.0144207) (36.1457) (1.17295)

4.5 0.356469 2475.62 61.6158 0.194259 2642.49 52.7633 0.103027 2067.81 74.9665 0.178252 2636.77 57.5903

(0.0148378) (44.9474) (1.25630) (0.0114830) (31.7753) (1.55896) (0.0104999) (53.1326) (1.05052) (0.0109603) (33.3704) (1.23399)

Distribution

 n

Sample size

600

Sample size

800

Sample size

1000

Sample size

1500

                               Y~(0.05, 0.20, 0.75)                    Y~(0.25, 0.5, 0.25)                   Y~(0.55, 0.20, 0.25)                  Y~(0.33, 0.33, 0.33)

βββββ 12       RRN     BIC     PCC       RN      BIC     PCC       RN      BIC     PCC        RN       BIC     PCC

Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

0.0 0.092791 1002.20 61.9600 0.096472 1164.43 50.1710 0.081008 971.28 67.4578 0.092754 1199.72 48.1515

(0.0249670) (29.4729) (1.93637) (0.0249224) (21.1333) (1.98898) (0.0229454) (31.7605) (1.81016) (0.0239711) (19.2019) (1.70600)

2.1 0.234714 972.45 63.9847 0.172185 1117.85 51.8897 0.116830 939.52 68.2015 0.147693 1158.46 49.3832

(0.0295569) (30.8879) (2.05978) (0.0246705) (20.6846) (2.09187) (0.0223893) (30.1370) (1.75682) (0.0240838) (18.9061) (1.78699)

4.5 0.330918 924.25 65.5607 0.199730 1101.15 52.0578 0.124169 933.49 68.3213 0.164782 1146.38 49.6292

(0.0231105) (30.2801) (2.17406) (0.0198486) (19.8181) (2.21288) (0.0205579) (31.0240) (1.84684) (0.0208048) (17.1964) (1.76365)

0.0 0.095893 1346.15 61.7759 0.098667 1553.21 50.4211 0.094352 1296.73 67.1509 0.110945 1590.57 48.2617

(0.0216321) (32.8055) (1.65129) (0.0207859) (23.7019) (1.73304) (0.0221618) (37.0235) (1.56177) (0.0210603) (22.4673) (1.41924)

2.1 0.265161 1295.56 64.2446 0.193330 1474.51 52.4574 0.140867 1242.37 68.0613 0.186667 1511.54 49.9919

(0.0272259) (36.4604) (1.83537) (0.0220534) (25.3943) (2.01253) (0.0210232) (36.5469) (1.60113) (0.0222109) (22.5013) (1.48101)

4.5 0.376119 1215.86 66.1289 0.226971 1443.93 52.7596 0.154078 1227.56 68.2813 0.211336 1487.02 50.3789

(0.0214634) (36.3283) (2.07333) (0.0178454) (22.5117) (1.96677) (0.0176620) (34.7135) (1.58109) (0.0185546) (19.7665) (1.54499)

0.0 0.117160 1672.38 61.9885 0.119330 1938.14 51.6015 0.092974 1644.05 66.4587 0.113630 1984.51 48.5029

(0.0212601) (38.8353) (1.46849) (0.0204980) (28.1741) (1.54358) (0.0183353) (42.6551) (1.47894) (0.0202277) (26.9013) (1.36610)

2.1 0.311074 1597.65 64.5490 0.232552 1818.12 54.0941 0.138355 1576.73 67.4059 0.196920 1874.05 50.4194

(0.0254571) (42.0316) (2.03852) (0.0218374) (29.0475) (1.55212) (0.0188405) (38.8972) (1.42174) (0.0195033) (24.9741) (1.36017)

4.5 0.437604 1467.59 65.5483 0.273434 1772.13 54.6431 0.151304 1561.95 67.5155 0.224653 1839.20 50.7908

(0.0194316) (40.4446) (2.10619) (0.0159401) (25.1155) (1.45673) (0.0159873) (34.8796) (1.30967) (0.0166215) (22.4471) (1.41253)

0.0 0.094653 2517.92 62.2669 0.103104 2933.07 50.6379 0.078734 2452.18 67.4458 0.095011 3011.83 48.0757

(0.0152618) (44.7128) (1.18737) (0.0155899) (32.0622) (1.27516) (0.0144625) (52.1990) (1.16080) (0.0153593) (31.5818) (1.14890)

2.1 0.257192 2434.43 64.6352 0.202582 2776.60 52.5267 0.115188 2368.67 68.2650 0.159471 2888.93 49.4591

(0.0195606) (49.0412) (1.34606) (0.0167081) (34.9614) (1.51676) (0.0146244) (47.4650) (1.11806) (0.0155562) (30.4591) (1.16885)

4.5 0.366935 2286.15 66.4197 0.238673 2716.21 52.8142 0.125701 2349.83 68.3757 0.180292 2851.71 49.6029

(0.0153704) (48.5000) (1.67674) (0.0128577) (31.0798) (1.43480) (0.0124415) (47.1991) (1.13745) (0.0128069) (26.9369) (1.20484)

Distribution

 n

Sample size

600

Sample size

800

Sample size

1000

Sample size

1500
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Appendix 7: Table 3 Means and standard-deviations of RN, BIC, PCC classified by β12, sample sizes, distributions of
Y’s and (X1,X2) ~ multinomial (0.25,0.25,0.25,0.25)

                               Y~(0.05, 0.20, 0.75)                    Y~(0.25, 0.5, 0.25)                   Y~(0.55, 0.20, 0.25)                  Y~(0.33, 0.33, 0.33)

βββββ 12       RN     BIC     PCC       RN      BIC     PCC       RN      BIC     PCC        RN       BIC     PCC

Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

0.0 0.116262 1073.23 57.0148 0.119802 1115.17 52.8920 0.097560 871.77 72.4897 0.119847 1118.68 55.1137

(0.0259284) (25.9330) (1.96910) (0.0258256) (22.6035) (1.91225) (0.0258256) (22.6035) (1.91225) (0.0261005) (24.1767) (1.77703)

2.1 0.408356 978.37 63.5365 0.311012 963.17 58.5035 0.189795 776.29 74.8463 0.282095 961.67 59.8110

(0.0305820) (29.4688) (2.31997) (0.0285471) (24.6236) (2.11907) (0.0285471) (24.6236) (2.11907) (0.0292620) (25.6108) (1.83640)

4.5 0.584123 817.59 69.0462 0.380440 906.53 59.4167 0.216386 755.09 75.1660 0.335963 914.03 60.6235

(0.0236428) (30.8072) (2.42113) (0.0223560) (19.7519) (1.99051) (0.0223560) (19.7519) (1.99051) (0.0217310) (18.6720) (1.75896)

0.0 0.124660 1430.32 57.2569 0.117021 1495.08 52.7146 0.099318 1167.42 72.4154 0.120732 1504.52 54.4674

(0.0238710) (29.9003) (1.68988) (0.0232368) (26.4045) (1.71580) (0.0232368) (26.4045) (1.71580) (0.0237038) (29.3145) (1.60880)

2.1 0.429295 1292.72 64.2092 0.311231 1287.55 58.4423 0.193366 1038.69 74.7671 0.276914 1307.51 58.8363

(0.0281143) (36.4556) (2.19489) (0.0255582) (29.8291) (1.82024) (0.0255582) (29.8291) (1.82024) (0.0242378) (26.8691) (1.53391)

4.5 0.608017 1059.36 70.0811 0.382902 1209.89 59.3836 0.220855 1011.17 75.0383 0.329991 1243.65 59.6665

(0.0208170) (37.2755) (2.35731) (0.0190446) (22.9146) (1.76076) (0.0190446) (22.9146) (1.76076) (0.0184614) (21.0025) (1.52066)

0.0 0.113219 1810.38 56.5247 0.118671 1872.84 52.7988 0.102035 1438.73 73.0800 0.122004 1875.77 54.7174

(0.0203673) (33.3417) (1.56050) (0.0201180) (29.7068) (1.53319) (0.0201180) (29.7068) (1.53319) (0.0203022) (31.8457) (1.42317)

2.1 0.414791 1642.97 63.5953 0.305482 1626.84 57.9488 0.204218 1260.43 75.6898 0.288977 1603.70 59.6693

(0.0247812) (39.2765) (1.76897) (0.0223053) (31.2972) (1.61880) (0.0223053) (31.2972) (1.61880) (0.0229061) (30.9311) (1.36628)

4.5 0.594478 1359.05 69.3568 0.375111 1532.73 58.8085 0.237176 1216.43 76.0926 0.345035 1520.09 60.6283

(0.0185410) (39.9071) (2.06045) (0.0168851) (27.1699) (1.58313) (0.0168851) (27.1699) (1.58313) (0.0175971) (23.1825) (1.29242)

0.0 0.118020 2703.23 57.1033 0.122105 2814.05 53.0209 0.096457 2187.08 72.7799 0.115583 2823.25 54.7628

(0.0164119) (41.0660) (1.19603) (0.0166625) (35.9175) (1.26396) (0.0166625) (35.9175) (1.26396) (0.0163160) (38.4614) (1.15201)

2.1 0.420350 2452.16 64.0603 0.321496 2415.86 58.5497 0.194758 1933.23 75.2520 0.274387 2445.30 59.3437

(0.0198970) (47.3426) (1.58752) (0.0181893) (38.4014) (1.26988) (0.0181893) (38.4014) (1.26988) (0.0183760) (39.7569) (1.14981)

4.5 0.599675 2024.14 69.6568 0.391742 2267.54 59.6535 0.223310 1873.44 75.6543 0.328945 2327.39 60.2329

(0.0145161) (47.1927) (1.94135) (0.0146808) (30.8648) (1.10450) (0.0146808) (30.8648) (1.10450) (0.0138756) (29.3471) (1.08923)

Distribution

 n

Sample size

600

Sample size

800

Sample size

1000

Sample size

1500


