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ABSTRACT 
An Energy-efficient Sensor cloud is a challenging task due to the limited life span battery 

of the sensor and massive consumption of power at the data center. An energy-efficient cloud-
integrated sensor network model is proposed using the combination of the artificial neural 
network (ANN) based prediction model with two activation functions and forecasting methods 
using Autoregressive Integrated Moving Average (ARIMA). The ANN model analyses the 
nonlinear components.  After that, ARIMA examines the linear part utilizing the output of ANN 
and input data. The combination of ANN and ARIMA provides better results for modeling of 
nonlinear and linear patterns one by one using the separate models, and then merging the 
forecast to enhance the performance. In our model, we have first used the ANN model, having 
two activation functions, which predicts the temperature for a given hour with an accuracy of 
94%. Then we used the results of ANN along with the previous real temperature as an input to 
the ARIMA forecasting model. In traditional approaches, all the user’s requests must redirect 
to the sensor network, which consumes more energy as the requests of the users are very 
frequent. In our approach, the sensor communicates with the cloud every 5 hours. Most of the 
user’s requests replied at the cloud system itself by using the combination of prediction using a 
neural network model having two activation functions and the forecasting method with an 
accuracy of 98%, which results in less communication and more battery life of the sensor. The 
proposed method consumes less energy as compared to the traditional techniques for the sensor 
cloud environment as per our simulation. 
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network 
 

doi: 10.14456/scitechasia.2020.50



K. Das and  S. Das | Science & Technology Asia | Vol.25 No.4 October - December 2020 

 82 

1. Introduction  
 A Wireless Sensor Network (WSN) 
consists of many sensors that communicate 
with each other wirelessly. Cloud computing 
is an emerging technology where the end-
users get resources on rent from cloud 
service providers. A Sensor Cloud is the 
integration of the sensor network and cloud 
system where end-users get resources from 
sensor networks using the cloud. The cloud 
service provider provides sensing as a service 
where the sensor owner adds sensors in the 
cloud so that the user can access them using 
the cloud platform. The cloud can give 
virtualization services where multiple users 
can share a sensor.  An energy-efficient 
Sensor cloud is a challenging task due to the 
limited life span battery of the sensor and 
massive consumption of power at the data 
center for providing the resources. The 
primary motivation of the paper is to make 
sensor-cloud energy efficient. 
 In the traditional models, every user 
request is redirected to the WSN through the 
cloud. Every user request needs 
communication between the cloud and the 
sensor network. The energy consumption 
of a node is of the form  
where K1 is energy consumption when the 
node is idle, K’ = constant, r = data rate of 
the node, Ey = the energy required for 
successful decoding the sink [1]. Let the 
constant The energy 
consumption of a node by substituting 
values of K is of the form  

where α within the range from 2 to 4 
depending on the environmental factor. 
Energy consumption in the sensor 
network depends on the rate and distance 
of data transmission. More data 
transmission between the sources to sink 
can cause the sensor node to dry. Sensors 
generally consume more power while 
transmitting data. Usually, user requests are 
frequent, and all the user’s requests are 
redirected to the sensor network through the 

cloud system. As every user request needs 
communication between the cloud and the 
WSN, the energy consumption is more than 
in the traditional models. There is a need for 
prediction methods that predict future sensor 
data in advance within the cloud. So, there 
will be less communication between the 
cloud system and the senor network so that 
less energy will be consumed within the 
sensor network. Generally, ANN and 
ARIMA analyze the nonlinear and linear 
forecasts. Combining both, the model 
improves the performance as analysis of 
nonlinear and linear components is carried 
out one by one using the separate models.  
 In our model, the sensor 
communicates less frequently, and most of 
the user requests are replied to by the cloud 
system using ANN-based prediction and an 
ARIMA based forecasting model. This 
approach results in less commutation 
between the sensor network and the cloud 
system, and more battery life for the sensors. 
The related works are described in Section 2. 
Section 3 discusses the ANN-based 
prediction model, forecasting techniques 
using ARIMA, and the advantage of the 
combination of the ANN and the ARIMA 
model. The results of the combination of 
ANN and ARIMA models and the 
comparison of energy consumption in the 
proposed and traditional methods are 
explained in Section 4. The conclusion of the 
proposed model is described in Section 5. 
 
2.  Related Works  
 Various temperature prediction 
methods have been proposed [2-12].  In [2], 
a study was conducted to predict the land 
surface temperature of Jaipur, an Indian city. 
Moderate-Resolution Imaging 
Spectroradiometer & Advanced Spaceborne 
Thermal Emission and Reflection 
Radiometer sensors were used for it. The 
results of this study are beneficial to conduct 
studies on the urban heat island effect of any 
location. Papantoniou et al. [3] used the 
neural network method on the data obtained 

1 ' ,yE K K rE da= +

' .yK K E=

1E K Krda= +



K. Das and  S. Das | Science & Technology Asia | Vol.25 No.4 October - December 2020 

 83 

from some European cities to predict the 
outdoor temperature. By comparing 
predicted and measured outdoor temperature, 
the efficiency of the prediction was 
measured. The comparison made on the 
measured and predicted outdoor air 
temperature produced proper training of the 
neural network. In [4], the study was carried 
out with a method of using thermal imaging 
recognition for choosing the values and 
processing the images. The neural network 
technology was successfully applied to 
predict the minimum resolvable temperature 
difference. In [5], the study carried out was 
to learn the multilayer perceptron networks 
for predicting the maximum and minimum 
temperature by the past recorded temperature 
observations. The use of temperature 
gradient feature improves the temperature 
prediction with greater accuracy. In [6], the 
authors proposed a method to predict the 
daily mean water temperature. They 
compared it with the traditional modeling 
approach and utilized it for water resource 
managers as predictive tools. In [7], a 
simulation model of the cement kiln is used 
to find the best method to check the fuel 
consumption by the rotary kiln. The BP & 
Elman network-based cement kiln model 
produced faster convergence speed and high 
precision. In [8], a Back Propagation neural 
network model was introduced by 
establishing a temperature prediction model 
of the pavement in the winter season. The 
algorithm was improved with new prediction 
methods to get more accuracy in results. The 
methods used in this paper referred to 
predicting the temperature of pavements. In 
the article [9], using the temperature 
monitoring data of some gravity dams, the 
authors have proposed a mathematical 
modeling principle and partial least-squares 
regression method. The obtained results from 
the model have more accuracy, advanced 
computing, and more realistic explanations 
than the general least-squares regression 
method. 1n [10], the dependency of 
temperature is explained using the 

combination of backpropagation and genetic 
algorithm. In [11], for the uncertain 
temperature field prediction, the paper has 
proposed two methods, such as the first-order 
fuzzy perturbation finite element method and 
the modified fuzzy perturbation finite 
element method. These methods are useful 
for the prediction of the temperature. In [12], 
the authors developed a nonlinear predictive 
model for weather analysis using ANN. Also, 
the effectiveness of the models was 
examined to forecast maximum temperature 
throughout the year.  
 In the references [13-25], the authors 
proposed various energy-efficient methods 
in the sensor network and cloud computing. 
The authors in [13] [14] have proposed a data  
energy-efficient sensor cloud model in which 
the prediction method is used in the cloud 
system to save energy consumption in the 
sensor network. The authors used the logistic 
activation function in the Rprop-algorithm. 
The sensors are grouped into independent 
sets and the author in [15] maximized the 
number of separate groups with less 
rearrangement of sensors to minimize energy 
consumption. In [16], the authors analyzed 
various transport protocols for energy 
efficacy using a real-time system. In [17], the 
authors used tools for energy measurement 
and proposed optimizing input and output 
operations for energy saving. In [18], the 
authors used prediction techniques to predict 
computational requirements for future virtual 
machines to save energy in the cloud system. 
In [19], the authors minimized the network 
lifetime using a minimum spanning tree. 
Authors in [20] reduced power consumption 
in WSN by choosing backbone nodes using a 
heuristic approach. In [21], the authors 
analyzed the loss of power in the WSN in 
terms of the supply voltage. The authors in 
[22] proposed an energy-efficient protocol 
based on the maximization of coverage using 
sleep schedule techniques. In [23], the 
authors suggested a game algorithm-based 
packet forwarding technique that improves 
network lifetime. The author in [24] 
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proposed an aggregation method that 
aggregates sensor data and forwards it to the 
cloud system with optimum bandwidth to 
minimize delay and cost. In [25], the authors 
proposed a method which selects the 
minimum number of server and performed 
load balancing among the server. As a result, 
energy consumption is less for the cloud.  

Energy prediction methods were 
proposed in the papers [26-31]. Chaianong et 
al. [26] designed a forecasting model of 
photovoltaics, which expected nearly 14 
percentage use of photovoltaic energy. The 
accuracy of the forecasting could be 
improved further. The research carried out by 
Krishna et al. in [27] used a time series 
analysis to predict future sensor data from the 
old data. This method reduced the 
communication and, as a result, saved 
energy. This model does not fit large scale 
datasets. Jemal et al. [28] predicted the 
monitoring values of Quality of Service 
(QoS) parameters, which reduced the 
transmission energy in the WSN. This 
approach was not implementable in a large 
area with a real-time environment. Xia et al. 
proposed [29] an energy-efficient body area 
network based on the prediction of 
transmitted data. This method has yet to 
analyze packet loss and latency of 
transmission.  In reference [30], the authors 
proposed a prediction-based technique that 
predicted the remaining energy of nodes to 
balance energy consumption. This method 
was not implementable in real-time 
scenarios.  The authors in [31] proposed a 
prediction-based approach in a sensor cloud 
environment which minimizes the energy 
usage in the sensor network. This technique 
did not optimize the QoS parameters.   

From the literature survey carried out 
in this section, we are motivated to make 
Sensor Cloud energy efficient. There is a 
massive consumption of power in cloud data 
centers to provide storage, and the battery life 
of the sensor is finite. There is a need for 
implementing the combination of prediction 
and forecasting systems in the cloud system, 

which predicts future sensor data in advance 
so that it can reduce the communication of 
data as most of the user’s requests receive 
replies at the cloud level.  
 
3. Proposed Method 

In the conventional models, all users 
request are transferred to the sensor network 
through the cloud system. Generally, users' 
requests are frequent. All the users' demands 
must be redirected to the sensor through the 
cloud system in the traditional approaches, 
which requires more data communication 
and consumes more energy. In our energy-
efficient sensor cloud model, most of the 
user's requests are replied to at the cloud level 
using the combination of the artificial neural 
network-based prediction model having two 
activation functions and forecasting methods 
using ARIMA. The combination ANN based 
prediction model having two activation 
functions and forecasting methods using 
ARIMA [32] is used to predict the future 
sensor data in advance within the cloud. The 
proposed energy-efficient cloud-integrated 
sensor network model is shown in Fig. 1. 
.

 
 

Fig. 1. Energy-efficient cloud-integrated sensor 
network. 
We have used  !!

"#!!
  as the transfer function 

in the hidden layer and !!

"$!"!
 as the 

activation function in the output layer for the 
simulation. Fig. 2 shows the combination of 
two activation functions based on the 
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prediction method and forecasting using 
ARIMA. 

 
Fig. 2. The combination of two activation 
function based prediction and ARIMA. 
 

3.1 ANN-based prediction 
ANN models are useful for the 

modeling of various nonlinear type 
problems. In our ANN model, the output of 
the feed-forward network is as follows: 

Output = σ (Dot Product (V, I) + C),      (3.1)                      

where I denotes the input for the neuron with 
bias C, V is the weight, and σ is known as the 
activation function. In our model, we are 
using  !!

"#!!
  as the activation function in the 

hidden layer with four nodes and  !!

"$!"!
  as 

the activation function in the output layer 
with one node.   

The network’s weight updates using 
the following equation: 

Δ output= Σ𝑗
𝜕𝑜𝑢𝑡𝑝𝑢𝑡
𝜕𝑉𝑗

⊿𝑉𝑗 +
𝜕𝑜𝑢𝑡𝑝𝑢𝑡
𝜕𝐶𝑗

⊿𝐶𝑗,  (3.2) 

The smoothness of σ means that a small 
change in the weight (ΔV), and a little change 
in the bias (ΔC) will produce a slight change 
in output. The cost function is as: 

 F (V, C) = "
%&
Σ'‖𝑔(𝑥) − 𝜔	‖%,             (3.3) 

where V denotes the collection of all weights 
in the network, C denotes all the biases, n is 
the total number of training inputs, 𝜔 is the 
output from the network when x is the  input  
and the sum overall training input x. 

In the gradient descent technique, we 
are trying to minimize the value of the error 
function as: 
                    ΔF ≈ ∇F ⋅ Δy, 

where 

         ∇F ≡. ()
(*#

, ()
(*$

, … , ()
(*%

0
+
,              (3.4) 

such that y1, y2,…yn are the variables and 

Δy = −ρ∇F,                                 (3.5) 

with the learning rate ρ. 
By applying the following functions 
repeatedly, we can easily find the minimum 
of the cost function: 

                V→ V’= V– ρ ()
(,

 ,                    (3.6) 

                C→C’ = C – ρ ()
(-

 .                   (3.7) 

The changes in weight and biases are as 
follows: 

              V→V’= V –	.
/
()
(,

 ,              (3.8) 

  C→C’ = C −	.
/
()
(-

 ,                   (3.9) 

The symbol m is the size of the mini-batch. 
We calculate the error in a layer using the 
following function: 

           𝛿01 =
()
(2&

𝜎(UL j,                        (3.10) 

where a is the output of the layer, σ′ is the 
derivative of the activation function we have 
used, ()

(3
 is a measure of the error in the 

neuron and UL= VL·IL - 1 +C L. 
 

3.2 Forecasting using ARIMA model 
ARIMA models are useful for the 

modeling of various linear type problems. 
The output of ANN with two activation 
functions is supplied to the ARIMA model. 
This ARIMA model consists of the 1st order 
of the autoregression, the 1st order of 
differencing, and 2nd order moving average. 
First of all, we applied non-linear log 
transformation to make the time series 
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stationary. The p-value is more significant 
than the 5% level of significance, so it was 
concluded that the null hypothesis of data is 
not stationary cannot be rejected. That means 
the data is not stationary. Then, we apply the 
differencing method to make the time series 
stationary. Differencing is one of the most 
common ways of dealing with both trend and 
seasonality. In first-order differencing, you 
compute the differences between 
consecutive observations in the time series. 
This technique usually improves the 
stationarity of the time series. To apply an 
ARIMA model to our time series, we need to 
find optimal values for the following three 
model parameters (p, d, q): The number of 
autoregressive (AR) terms (p): AR terms are 
the lags of the dependent variable. So, if p=1, 
it means that predictors of x(t) will be x(t-1). 
The number of moving average (MA) terms 
(q): MA terms lagged forecast errors in the 
prediction equation. For instance, if q=2, the 
predictors for x(t) will be m(t-1) and m(t-2) 
where m(i) is the difference between the 
moving average at the ith instant and the 
actual value. The number of differences (d): 
These are the number of non-seasonal 
differences. In this case, d=1, as we are 
modeling using the first order differenced 
time series. Fig. 3 shows the Autocorrelation 
function's (ACF) values and partial 
autocorrelation function (PACF), 
respectively. The x-axis of the graph shows 
the randomly selected date from the dataset, 
and the y-axis shows the normalized 
temperature within a scale of 1. 

 

 
Fig. 3. The values of autocorrelation and partial 
autocorrelation function. 

3.3 Combination of ANN and ARIMA  
 This section provides the steps for the 
ANN-based prediction model, having two 
activation functions and forecasting 
techniques using ARIMA.  
 Fig. 3 shows the flow chart for ANN-
based prediction with two activation 
functions and ARIMA based forecasting. 
 

 
Fig. 4. The flow chart for ANN-based prediction 
with two activation functions and ARIMA based 
forecasting. 
 

The time series Ts can represent [33-34]:  

Ts = Ls + Ns, 

where Ls and Ns are linear and nonlinear 
components present in the model, 
respectively. In the first step, ANN gives 
nonlinear forecasts, and the residuals we get 
from nonlinear components believe in having 
the direct link. Let Es denotes the residuals 
we got from ANN model so: 

Es = Ts – Xs, 

where Xs is the value, we have predicted for 
the ANN model. In the second step, the linear 
component is forecast by the ARIMA model, 
and the results we get are combined with the 
result of a nonlinear model to improve the 
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performance of models. The new time series 
is represented as: 

Ts’ = Xs + Zs, 

where Zs represents the forecasted value, we 
get from the residual data of the ARIMA 
model. 
 The combination of ANN and ARIMA 
provides better forecasting accuracy 
compared to ANN. This combined method 
predicts future sensor data in advance within 
the cloud system. As a result, there is less 
data communication between the sensor 
network and the cloud system. Less data 
communication saves energy within the 
sensor network.  
 
4. Results 
 This section provides the results for 
the ANN-based prediction system, and this 
output result is fed into the ARIMA Model to 
get more accuracy. This section explains the 
energy consumption in the proposed and 
traditional methods.  The parameters used for 
the calculation of the results are displayed in 
Table 1. 
 

Table 1. Parameters used for result 
calculation. 

  
4.1 Results of the integration of ANN and 
ARIMA 
 This section provides a brief 
description of a model that uses ANN using 
back-propagation [35] with two activation 
function-based predictions combined with 

the forecasting using ARIMA within the 
cloud system. The meteorological data 
collected from the "Kaggle" website from the 
year 2012 to 2017 of San Diego, California, 
USA, is used as the dataset for our simulation 
[36].  We choose data from the dataset 
randomly with a ratio of 0.83:0.17 for the 
model's training and testing. The dataset 
contains 45524 instances of measurements, 
which are divided into 37524 training and 
8000 test samples. Our simulation uses 
temperature as the target parameter and four 
other parameters (i) Humidity, (ii) Pressure 
Pa, (iii) Wind Speed Km/h, and (iv) Wind Dir 
Degrees as the predictors.   Here the 
temperature is in the units of Kelvin. With 
two activation functions, the ANN model 
predicts the temperature for the next hour 
with an accuracy of 94%.  The prediction of 
this temperature for the next five hours can 
save five times the energy compared to the 
prediction of temperature data one hour in 
advance. Using only the ANN model for 
prediction for the next five hours may 
provide more power saving, but the accuracy 
may be less. Therefore, for more power-
saving and more accurate forecasting, ANN 
and ARIMA methods merged. Applying the 
combination of two activation function-
based ANN based prediction and ARIMA 
based forecasting model, the actual and 
predicted temperatures are displayed in 
Table 2. 
 

Table 2. Predicted and actual temperatures. 

  
 It can be observed that the real and 
predicted values are nearly equal. 

The mean absolute deviation (MAD), 
root mean square error (RMSE), mean 
squared error (MSE) and mean absolute 
percentage error (MAPE) for the actual and 

                      Parameters Values/Unit 
Layer Used Input, Hidden, Output 
Activation Function in Hidden 
layer 

'!

(-'!
   

Transmission Range  15 meter 
lag order (p) 1 
Degree of differencing (d) 1 
Order of moving average (q) 2 
No of  Sensor Nodes 100 
Area of Simulation 100 *100 square meter 
Data Rate 1 Mbps 
Actual Transferred Data 5Mb per Hour 
Sink Position Middle of the Square 
Types of Communication Multi-hop 

Predicted Value Actual Value Predicted 
Value Actual Value 

21.089098 20.801429 21.889354      21.187083 
20.899749 20.783929 19.112408      18.944597 
23.596117 23.864940 17.289513      16.942838 
23.311050 22.754702 17.935443      18.520119 
22.299035 21.609444 17.949105     17.589479 
20.161868 19.922661 20.735709     20.191898 
19.73019 20.938869 20.192408     19.897738 
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forecasted values using the ANN-ARIMA 
integration method and ANN method are 
displayed in Table 3.    

                                                       
Table 3. Comparison of performance for 
ANN-ARIMA integration method and ANN 
method. 

 

 The performance measures, as 
reported in Table 3, reflect that this ANN 
with two activation functions integrated with 
ARIMA performs better than the ANN 
model since there is not much difference 
between the predicted values and the actual 
values. The observed values and the rolling 
one-step out-of-sample forecast are 
shown in Fig. 5. 
 

 
Fig. 5. The observed values and the rolling one-
step out-of-sample forecast.  
 

The x-axis of the graph shows the time 
from January 2017 to November 2017, and 
the y-axis of the figure shows the actual 
temperature within that period. Here the 
temperature per hour is plotted in dotted blue, 
and the green line shows the next 5 hours 
rolling forecast. 
After every hour, the forecasted temperature 
gets added to the previous data, and the 
whole dataset, along with the previously 
predicted temperature, becomes an input to 
the ARIMA model. The ANN model with 
two activation functions is used first in this 

paper, predicting the temperature one hour in 
advance with an accuracy of 94%. After that, 
the ANN results and the previous real 
temperature are used as input to the ARIMA 
model. The prediction using the combination 
of ANN with two activation functions and 
ARIMA forecasting model provides the 
temperature of the next five hours with an 
accuracy of 98%. 
 

4.2 Calculation of energy consumption 
in proposed and traditional 
approaches 
 Here the set of the sensor is S = 
{S1, S2, S3, …, Sn}. Each sensor is 
represented as three tuples, i.e., <x-
coordinate, y-coordinate, M> where y-
coordinate and x-coordinate represent the 
sensor location, and M represents the 
measurement of the sensor.   The sensor 
sends data to the gateway, and the end-user 
can access the data from the sensor through 
the cloud using this gateway. One sensor’s 
data may be obtained by any end-user using 
the virtualization concept. Each sensor has a 
range of communication. If the gateway is 
within the scope of the sensor, the sensor can 
directly send data to this gateway using 
single hop communication, otherwise the 
sensor can send data using the multi-hop 
connection. During the multi-hop 
transmission, the bandwidth of outgoing 
traffic of a node is the sum of inflow traffic 
and the traffic generated by that node. The 
total power consumption of the wireless 
sensor network is the sum of power 
consumption of all the individual active 
sensors which take part in the 
communication process.  

Our simulation environment is similar 
to the environment [1] consider by Guha et 
al.  In our simulation, 100 sensor nodes are 
uniformly distributed in a square of side 100 
meters. We assumed that each node transmits 
1Mbps of traffic to the sink, which is in the 
middle of the square. The power 
consumption of all the 100 nodes was 
calculated by assuming that every node 

Algorithm 

Forecasted 
Temperature 

Data set 
(Hourly) 

MAD RMSE MSE MAPE 

ANN-
ARIMA 1-37524 0.4546 0.5323 0.2833 2.2355 

ANN 1-37524 1.5568 2.0224 4.0902 8.6572 
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transmits data for five seconds per hour. In 
the traditional environment, all 100 nodes are 
active in communicating in 5 seconds per 
hour, so in 50 hours, all 100 nodes are active 
for 250 seconds. In our proposed approach, 
all the nodes are active for 5 seconds per five 
hours, so the total transmission time of all the 
100 nodes is 50 seconds. Most of the user 
requests are replied to by the cloud system 
using ANN-based prediction with two 
activation functions and ARIMA based 
forecasting models. As fewer data 
transmissions take place, a smaller amount of 
data is transmitted. As a result, less energy is 
consumed in the proposed approach. Fig. 6 
compares the energy consumption in the 
traditional methods and the proposed 
method. 

 

 
Fig. 6. Energy consumption in the Proposed and 
Traditional methods. 
 
 Our methods save energy compared to 
the optimal bridge nodes selection approach 
[37] as there is less transmission of data 
between sensor and cloud in the proposed 
method. Our proposed approach uses 
forecasting methods that forecast future 
sensor data within the cloud.   The optimal 
bridge nodes selection method always sends 
real data from the sensor to the cloud. In the 
proposed approach, the RMSE is equal to 
0.5323 between the actual and forecasted 
data within the acceptable range. The energy 
consumption will further minimize if we 
forecast temperature for more than 5 hours in 
advance. But the RMSE of actual and 
forecasted temperature will increase. So, in 

the proposed approach, we choose to forecast 
temperature for the next five hours so that the 
RMSE is within the acceptable range. Also, 
the energy consumption is less compared to 
traditional approaches. 
 The predictions are in the correct scale 
and are picking up the trend in the original 
time series. The combination of ANN with 
two activation functions and the ARIMA 
forecasting model is implemented within the 
cloud system so that most of the user’s 
requests are replied to at the cloud level. As 
a result, there is less communication of data 
between the cloud and the sensor network, 
saving energy consumption. The RMSE of 
the forecasting was also less, which means 
the ANN with two activation function 
integrated ARIMA provided the forecasted 
temperatures, which are nearly equal to the 
actual values. Our simulation observed that 
the proposed method consumes less energy 
than the traditional approaches for the sensor 
cloud environment. Our proposed technique 
may not be saving much power when there is 
a sudden change of temperature that takes 
place frequently. 
 
5. Conclusions 

An energy-efficient sensor cloud 
model was proposed using the ANN-based 
prediction model with two activation 
functions and forecasting methods using 
ARIMA.  Initially, two activation functions 
based on the ANN model were used to 
predict temperatures one hour in advance 
with 94% accuracy. After that, the result of 
ANN with previous real temperature was 
used as an input to the forecasting model 
based on ARIMA. After an hour, the 
forecasted temperature data was added to the 
last temperature data, and the whole dataset 
fed as an input to the ARIMA model. Our 
model can predict the temperature for the 
next five hours with 98% accuracy. 
Generally, all the user’s requests are 
redirected to the sensor network, which 
results in more communication of data and 
shorter battery life of the sensor. In our 
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model, the sensor communicates with the 
cloud every 5 hours. Most of the user 
requests are replied to by the cloud system 
using ANN-based prediction with two 
activation functions and ARIMA-based 
forecasting models. This approach results in 
less communication between the sensor 
network and the cloud system and increases 
battery life for the sensors. It was observed 
using the simulation that the proposed 
method consumes much less power as 
compared to the traditional approaches for 
the sensor cloud environment. 
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