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ABSTRACT
By means of the principle of subordination, we commence with a unified subclass

of analytic functions involving the fractional Ruscheweyh-Goyal derivative operator intro-
duced by Goyal and Goyal (2005). The properties like inclusion relationships, coefficient
inequalities and distortion theorems for the above mentioned class have been analyzed. For
analytic functions defined in open disk of unit radius, we have incorporated the differential
sandwich theorem.

Keywords: Analytic functions; Convolution; Differential subordination; Fractional
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1. Fractional Ruscheweyh-Goyal
Derivative

Let us assume an analytic and p-
valent function denoted by f (z) in an open
disk

∆ = {z : z ∈ C and |z | < 1}

of unit radius and of the form

f (z) = zp +
∞∑
j=s

ap+j zp+j, (1.1)

where p, s ∈ N. The class of such function
is denoted by Ap.

The fractional calculus is calculus of
arbitrary order. Various authors are study-
ing a number of applications of fractional
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calculus in various fields of science and en-
gineering (see e.g. [1–3].

Goyal and Goyal [4] introduced the
generalized Ruscheweyh derivative for p-
valent functions (see also, [5–9]), involv-
ing the Saigo fractional differential operator
Jλ,κ,ρ0,z (see, e.g. [10]) as follows:

Definition 1.1 (Fractional Ruscheweyh--
Goyal derivative operator). The general-
ized Ruscheweyh derivative for p-valent
functions involving the Saigo fractional dif-
ferential operator Jλ,κ,ρ0,z is defined by

Jλ,κp f (z)

:=
Γ(κ − λ + ρ + 2)
Γ(κ + 1)Γ(ρ + 2) zpJλ,κ,ρ0,z (zκ−p f (z)),

= zp +
∞∑

r=n+p

akBλ,κ
p (r)zr, (1.2)

where,

Bλ,κ
p (r) := Γ(r − p + 1 + κ)

Γ(r − p + 1)

× Γ(ρ + 2 + κ − λ)Γ(r + ρ − p + 2)
Γ(r + ρ − p + 2 + κ − λ)Γ(ρ + 2)Γ(1 + κ),

λ, κ, ρ ∈ R and 0 ≤ λ < 1.

For κ = λ, fractional Ruscheweyh-
Goyal derivative operator Jλ,κp reduces to
the Ruscheweyh derivative Dλ of order λ.

Eq. (1.2) can be expressed in the
terms of convolution as:

Jλ,κp f (z)
= zp ·2F1(κ + 1, ρ + 2; ρ + 2 + κ − λ; z) ∗ f (z).

For the fractional Ruscheweyh-Goyal
derivative operator, recurrence relation is
derived in [11] and is given below:

z
[
Jλ,κp f (z)

] ′
= (κ − λ + ρ + 1)Jλ+1,κp f (z)

−(κ − λ + ρ + 1 − p)Jλ,κp f (z).
(1.3)

The following definitions would be re-
quired in the current work: Let f and g are

analytic functions defined in ∆. The func-
tion f is said to be subordinate to g if there
exists a Schwarz function w(z), analytic in
∆ with w(0) = 0, |w(z)| < 1 for all z ∈ ∆
such that

f (z) = g(w(z)) for all z ∈ ∆.

We denote this subordination by f ≺ g or
f (z) ≺ g(z) for all z ∈ ∆. In particular, if
the function g is univalent in ∆, the above
subordination is equivalent to f (0) = g(0)
and f (∆) ⊂ g(∆) for all z ∈ ∆.

Let H = H(∆) denote the class of
functions analytic in ∆. For a positive in-
teger n and a ∈ C, let

H[a, n] = { f ∈ H | f (z) = a + anzn

+an+1zn+1 + . . .}

be denoted by H0 = H[0, 1]. We denote the
set of all functions f (z) analytic and injec-
tive on ∆\E( f ) by Q (see [12]), where

E( f ) = {ζ ∈ ∂∆ : lim
z→ζ

f (z) = ∞}

such that f ′(ζ) , 0 for ζ ∈ ∂∆\E( f ), where
∂∆ is a boundary of ∆.

2. The class Sλ,κp (α, β; χ)
Inspired by the present efforts in [28],

and by using the operator Jλ,κp , we define
and study a novel unified subclass of class
Ap, which is introduced using the principle
of subordination and is given underneath:

Definition 2.1. If the following subordina-
tion constraint for α ∈ C, λ, κ, ρ ∈ R,ℜ(α),
ℜ(β) > 0, 0 ≤ λ < 1,

(1 − α)
(

Jλ,κp f (z)
zp

)β
+ α

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
≺ χ(z), (2.1)

is satisfied, then the functions f (z) ∈ Ap

are said to be in the class Sλ,κ
p (α, β; χ).
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A number of classes follow as
special cases of the above defined class.

Special Cases:

1. If χ(z) = 1+Az
1+Bz , 1 ≥ B > A ≥ −1,

then we denote the class Sλ,κ
p (α, β; χ)

by Sλ,κ
p (α, β; A, B). Hence, f (z) be-

longs to the class Sλ,κ
p (α, β; A, B), if it

fulfills the relation����������
(
Jλ,κ
p f (z)
zp

)β
+ z
Λ

{(
Jλ,κ
p f (z)
zp

)β}
− 1

A − B

[(
Jλ,κ
p f (z)
zp

)β
+ z
Λ

{(
Jλ,κ
p f (z)
zp

)β}]
���������� ≤ 1,

(2.2)

Λ =
β(κ−λ+ρ+1)

α .

2. If χ(z) = αzq′(z) + q(z), then the
above mentioned class is represented
by Sλ,κ

p (α, β; q).

3. If λ = κ = 1; β = 1; p = 1; and
A = 2γ − 1; B = 1, then

Sλ,κ
p (α, β; A, B) = S1,1

1 (α, 1; 2γ − 1, 1)
= R(α, γ)

for all 0 ≤ γ < 1. This class was
studied by Altintas [13].

4. If λ = κ = 1; β = 1; p = 1; α = 0
and A = 2γ − 1; B = 1, then

Sλ,κ
p (α, β; A, B) = S1,1

1 (0, 1; 2γ − 1, 1)
= T∗∗(γ)

for all 0 ≤ γ < 1. This class
was introduced and investigated by
Sarangi and Uralegaddi [14] and Al-
Amiri [15].

5. If λ = κ = 1; β = 1; p = 1; α = 0 and
A = {(1 + ε)γ − 1}δ; B = εδ, then

Sλ,κ
p (α, β; A, B)
= S1,1

1 (0, 1; {(1 + ε)γ − 1}δ, εδ)

= P∗(γ, ε)

for all 0 ≤ γ < 1, 0 < δ ≤ 1, 0 ≤ ε <
1. This class was studied by Owa and
Aouf [16].

6. If λ = κ = 1; β = 1; p = 1; α = 0
and A = (2γ − 1)δ; B = δ, then

Sλ,κ
p (α, β; A, B)
= S1,1

1 (0, 1; (2γ − 1)δ, δ)
= P∗(γ, δ)

for all 0 ≤ γ < 1 and 0 < δ ≤ 1.
This class was studied by Gupta and
Jain [17].

7. If λ = κ; β = 1 and p = 1, then

Sλ,λ
1 (α, β; A, B) = Sλ(α, 1; A, B),

which is studied by Chen [18].

8. If λ = κ = 0; β = 1; p = 1 and
A = 2γ − 1; B = 1 with 0 ≤ γ < 1,
then

Sλ,κ
p (α, β; A, B) = S(α, 1; 2γ − 1, 1).

This class has been considered by
Bhoosnurmath and Swamy [19].

9. If λ = κ; β = 1; p = 1 and
Dλ f (z)

z is replaced by (Dλ f (z))
′
, then

the class Sλ,κ
p (α, β; A, B) reduces to

class Q(λ, α; A, B)which was studied
by Attiya and Aouf [20].

3. Preliminaries
The following lemmas are needed to

prove our results:

Lemma 3.1 ([21]). The function h, which
is analytic in ∆ given as

h(z) = 1 + bnzn + bn+1zn+1 + . . . ,
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and let there be another function φ with
φ(0) = 1 be analytic and convex(univalent)
in ∆, and if

h(z)+ zh′(z)
ζ

≺ φ(z) (ℜ(ζ) > 0; ζ , 0; z ∈ ∆).
(3.1)

Then,

h(z) ≺ ξ(z)

=
ζ

n
z−

ζ
n

∫ z

0
t
ζ
n−1φ(t)dt

≺ φ(z)

for all z ∈ ∆ and the best dominant of (3.1)
is ξ(z).

Lemma 3.2 ([22]). If |k | reaches its highest
value inside the circle r = |z | < 1 at z0,
where k is an analytic function in ∆ which
is non-constant with k(0) = 0, then

z0k ′(z0) = βk(z0),

where β ∈ R with β ≥ 1.

Lemma 3.3 ([23]). Suppose G is analytic
and a convex function in open unit disk ∆.
If s, t ≺ G, where s, t ∈ A, then

λs + (1 − λt) ≺ G

for 1 ≥ λ ≥ 0.

Lemma 3.4 ([24]). Suppose that

ℜ
{
1 +

zs′′(z)
s′(z)

}
> max

{
0,−ℜ

(
1

η

)}
,

where s(z) is univalent in ∆, and η is a non-
zero complex number, and if

h(z) + γzh′(z) ≺ s(z) + γzs′(z),

then h(z) ≺ s(z), where h(z) is analytic in
∆. Further the best dominant is s(z).

Lemma 3.5 ([12]). Assuming h(0) = a,
h(z) is convex in ∆, let η ∈ C,ℜ(η) > 0.
If g ∈ H[a, 1] and g(z) + ηzg′(z) is univa-
lent in an open disk ∆ of radius unity, then

h(z) + γzh′(z) ≺ g(z) + γzg′(z),

here h(z) ≺ g(z) and the best subordinant
is h(z).

Lemma 3.6 ([25]). Taking h(z) to be ana-
lytic in an open disk of radius unity which
is defined in the following manner

h(z) = 1 +
∞∑
k=1

ck zk,

and p(z) is convex and analytic in ∆ defined
as

p(z) = 1 +
∞∑
k=1

dk zk,

If h ≺ p, then

|ck | ≤ |d1 |

for all k ∈ N.

4. Integrals Means
We begin with integral means results

below by using Lemma 1.

Theorem 4.1. For α ∈ C and f ∈
Sλ,κ
p (α, β; χ) with ℜ(α, β) > 0, then(
Jλ,κp f (z)

zp

)β
≺ Λ

n

∫ 1

0

(
1 + Azu
1 + Bzu

)
u
Λ
n−1du

≺ 1 + Az
1 + Bz

, (4.1)

z ∈ ∆, Λ = (κ − λ + ρ + 1)β
α

.

Proof. Here the function p1 is defined as

p1(z) =
(

Jλ,κp f (z)
zp

)β
, (z ∈ ∆), (4.2)
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then p1 is analytic in ∆ with p1(0) = 1. On
taking the derivative of (Eq. (4.2)) of both
sides and by applying (1.3), we get{

Jλ+1,κp f (z)
Jλ,κp f (z)

} {
Jλ,κp f (z)

zp

}β

α

+

{
Jλ,κp f (z)

zp

}β

(1 − α)

=
{
p1(z) + p1 ′(z).

z
Λ

}
≺ 1 + Az

1 + Bz
, (z ∈ ∆).

(4.3)

An application of Lemma 3.1 to (4.3) yields(
Jλ,κp f (z)

zp

)β
≺ Λ

n

∫ z

0

(
1 + At
1 + Bt

) (
t
z

) Λ
n −1

dt

=
Λ

n

∫ 1

0

(
1 + Azu
1 + Bzu

)
u
Λ
n −1du

≺ 1 + Az
1 + Bz

, (z ∈ ∆). (4.4)

Thus the proof is completed. □

Theorem 4.2. Taking α ∈ C along with
f ∈ Sλ,κ

p (α, β; A, B), 1 ≥ B > A ≥ −1,
ℜ(α, β) > 0, then we have

Λ

n

∫ 1

0

(
1 − Au
1 − Bu

)
u
Λ
n−1du < ℜ

(
Jλ,κp f (z)

zp

)β
<
Λ

n

∫ 1

0

(
1 + Au
1 + Bu

)
u
Λ
n−1du. (4.5)

The extremal function of (4.5) is given by

Jλ,κp f (z)Fα,β,A,B(z)

= zp
(
Λ

n

∫ 1

0

(
1 + Azu
1 + Bzu

)
u
Λ
n−1du

) 1
β

,

(4.6)

where Λ = β(κ−λ+ρ+1)
α .

Proof. By taking f ∈ Sλ,κ
p (α, β; A, B) with

ℜ(α, β) > 0 and using Theorem 4.1, it can

be concluded that Eq. (4.1) holds, which im-
plies that

ℜ

(

Jλ,κp f (z)
zp

)β
< sup

z∈∆
ℜ

[
Λ

n

∫ 1

0

(
1 + Azu
1 + Bzu

)
u
Λ
n−1du,

]
≤ Λ

n

∫ 1

0
sup
z∈∆

ℜ
(
1 + Azu
1 + Bzu

)
u
Λ
n−1du,

<
Λ

n

∫ 1

0

(
1 + Au
1 + Bu

)
u
Λ
n−1du. (4.7)

and

ℜ

(

Jλ,κp f (z)
zp

)β
> inf

z∈∆
ℜ

[
Λ

n

∫ 1

0

(
1 + Azu
1 + Bzu

)
u
Λ
n−1du,

]
≥ Λ

n

∫ 1

0
i n f
z∈∆

ℜ
(
1 + Azu
1 + Bzu

)
u
Λ
n−1du,

>
Λ

n

∫ 1

0

(
1 − Au
1 − Bu

)
u
Λ
n−1du. (4.8)

Combining Eqs. (4.7) and (4.8), we get

Λ

n

∫ 1

0

(
1 − Au
1 − Bu

)
u
Λ
n−1du

< ℜ

(

Jλ,κp f (z)
zp

)β
<
Λ

n

∫ 1

0

(
1 + Au
1 + Bu

)
u
Λ
n−1du. (4.9)

□

Corollary 4.3. For α ∈ and f ∈
Sλ,κ
p (α, β; A, B) with 1 ≥ B > A ≥ −1, and

ℜ(α, β) > 0, then

Λ

n

∫ 1

0

(
1 + Au
1 + Bu

)
u
Λ
n−1du < ℜ


(

Jλ,κp f (z)
zp

)β
(4.10)
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<
Λ

n

∫ 1

0

(
1 − Au
1 − Bu

)
u
Λ
n−1du. (4.11)

The extremal function is given by (4.6) for
the function given in (4.10).

Proof. This corollary can be proved in the
similar manner as done in Theorem 4.2. □

Using Theorem 4.2 and Corollary
4.3, the following distortion theorems are
derived for the class Sλ,κ

p (α, β; A, B).

Corollary 4.4. Let α ∈ C and f ∈
Sλ,κ
p (α, β; A, B) with 1 ≥ B > A ≥ −1 and

ℜ(α, β) > 0. Then

rp
(
Λ

n

∫ 1

0

(
1 − Aur
1 − Bur

)
u
Λ
n−1du

) 1
β

< |Jλ,κp f (z)|

< rp
(
Λ

n

∫ 1

0

(
1 + Aur
1 + Bur

)
u
Λ
n−1du

) 1
β

,

(4.12)

r = |z | < 1.

The extremal function for the above
inequality is mentioned in (4.6).

Corollary 4.5. For α ∈ C and f ∈
Sλ,κ
p (α, β; A, B), 1 ≥ B > A ≥ −1 with

ℜ(α, β) > 0. Then

rp
(
Λ

n

∫ 1

0

(
1 + Aur
1 + Bur

)
u
Λ
n−1du

) 1
β

< |Jλ,κp f (z)|

< rp
(
Λ

n

∫ 1

0

(
1 − Aur
1 − Bur

)
u
Λ
n−1du

) 1
β

,

(4.13)

r = |z | < 1.

The extremal function for the above
inequality is mentioned in (4.6).

By keeping in mind that,

(ℜ(v))
1
2 ≤ ℜ(v 1

2 ) ≤ |v | 12 (ℜ(v) ≥ 0; v ∈ C).

Corollary 4.6. For α ∈ C and f ∈
Sλ,κ
p (α, β; A, B), 1 ≥ B > A ≥ −1 with

ℜ(α, β) > 0. Then(
Λ

n

∫ 1

0

(
1 − Au
1 − Bu

)
u
Λ
n−1du

) 1
2

< ℜ

(

Jλ,κp f (z)
zp

) β
2 

<

(
Λ

n

∫ 1

0

(
1 + Au
1 + Bu

)
u
Λ
n−1du

) 1
2

. (4.14)

Corollary 4.7. For α ∈ C and f ∈
Sλ,κ
p (α, β; A, B), 1 ≥ B > A ≥ −1 with

ℜ(α, β) > 0. Then(
Λ

n

∫ 1

0

(
1 + Au
1 + Bu

)
u
Λ
n−1du

) 1
2

< ℜ

(

Jλ,κp f (z)
zp

) β
2 

<

(
Λ

n

∫ 1

0

(
1 − Au
1 − Bu

)
u
Λ
n−1du

) 1
2

. (4.15)

5. Subordination and Superordina-
tion

In this section we prove multiple the-
orems for the class Sλ,κ

p (α, β; χ) to show the
subordination and superordination results.

Theorem 5.1. Let q(0) = 1 and q(z) be uni-
valent in ∆and ℜ(α, β) > 0, α ∈ C. Sup-
pose that

ℜ
{
1 +

zq′′(z)
q′(z)

}
> max {−ℜ(Λ), 0} ,

(5.1)
Λ =

β(κ−λ+1+ρ)
α . If f (z) ∈ Ap fulfills the

subordination,

(1 − α)
(

Jλ,κp f (z)
zp

)β
+
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α

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
≺ q(z) + αz

β(κ − λ + ρ + 1)q′(z), (5.2)

then, {
Jλ,κp f (z)

zp

}β

≺ q(z),

and the best dominant is q(z).

Proof. Suppose that

p(z) =
(

Jλ,κp f (z)
zp

)β
, (5.3)

performing the differentiation of the above
equation with respect to the variable z and
using (1.3), we obtain

zp′(z) = αΛ
(

Jλ,κp f (z)
zp

)β {
Jλ+1,κp f (z)
Jλ,κp f (z)

− 1

}
.

Hence, we get

p(z) + z
Λ

p′(z) = (1 − α)
(

Jλ,κp f (z)
zp

)β
+

α

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
.

By the relation (5.2), we obtain

p(z) + z
Λ

p′(z) ≺ q(z) + z
Λ

q′(z).

According to Lemma 3.4,(
Jλ,κp f (z)

zp

)β
≺ q(z).

Thus the proof is completed. □

The following corollary is obtained
by taking the convex function q(z) = 1+Az

1+Bz
in Theorem 5.1.

Corollary 5.2. Letℜ(α, β) > 0, α ∈ C and
1 ≥ B > A ≥ −1. When the following
subordination

Sλ,κ
p (α, β; χ) ≺ 1 + Az

1 + Bz

+
(A − B)αz

β(κ − λ + ρ + 1)(1 + Bz)2
,

(5.4)

where, Sλ,κ
p (α, β; χ) defined in (2.1), is ful-

filled by f (z) ∈ Ap, then(
Jλ,κp f (z)

zp

)β
≺ 1 + Az

1 + Bz
,

and
1 + Az
1 + Bz

is the best dominant.

Theorem 5.3. When q(z) with q(0) = 1 is
convex in ∆ and ℜ(α, β) > 0, α ∈ C. If(

Jλ,κp f (z)
zp

)β
∈ Q ∩ H(q(0), 1), f (z) ∈ Ap,

and the following superordination

q(z)+q′(z) αz
β(κ − λ + 1 + ρ) ≺ Sλ,κ

p (α, β; χ),
(5.5)

is fulfilled by q(z) ∈ Sλ,κ
p (α, β; χ) is univa-

lent in ∆ where, Sλ,κ
p (α, β; χ) is defined in

(4), then

q(z) ≺
(

Jλ,κp f (z)
zp

)β
,

and the best subordinant is q(z).

Proof. Proceeding similarly as in Theorem
5.1 and letting p(z) as given by (5.3), we
redraft subordination (5.5) in the form

q(z) + αz
β(κ − λ + ρ + 1)q′(z)

≺ p(z) + αz
β(κ − λ + ρ + 1) p′(z).

The above theorem is derived by applying
Lemma 3.5. □
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Corollary 5.4. Suppose that ℜ(α, β) >
0, α ∈ C and 1 ≥ B > A ≥ −1. If(

Jλ,κp f (z)
zp

)β
∈ Q ∩ H(q(0), 1), f (z) ∈ Ap,

and the superordination

1 + Az
1 + Bz

+
α(A − B)z

β(κ − λ + ρ + 1)(1 + Bz)2

≺ Sλ,κ
p (α, β; χ),

is satisfied by Sλ,κ
p (α, β; χ) which is univa-

lent in ∆ then,

1 + Az
1 + Bz

≺
(

Jλ,κp f (z)
zp

)β
,

and the best subordinant is the function
1 + Az
1 + Bz

.

The following sandwich-type theo-
rem is obtained by combining Theorem 5.1
and Theorem 5.3.

Theorem 5.5. Suppose that q1(z) with
q1(0) = 1 and q2(z) with q2(0) = 1 are
convex functions in ∆, and x satisfy (20),
ℜ(α, β) > 0, α ∈ C. If(

Jλ,κp f (z)
zp

)β
∈ Q ∩ H(q(0), 1), f (z) ∈ Ap,

and the relation

q1(z) +
z
Λ

q′
1(z) ≺ Sλ,κ

p (α, β; χ)

≺ q2(z) +
z
Λ

q′
2(z),

is satisfied by Sλ,κ
p (α, β; χ) which is univa-

lent in ∆, where Sλ,κ
p (α, β; χ) is given by

(2.1), then

q1(z) ≺
(

Jλ,κp f (z)
zp

)β
≺ q2(z).

the best dominant is q2(z) and best subordi-
nant is q1(z).

Remark 5.6. The sandwich results for the
operator (

Jλ,κp f (z)
zp

)β
are derived by using Corollaries 5.2 and
5.4.

Theorem 5.7. Suppose that

ϕ(z) =
z

[(
Jλ+1, κ
p f (z)
Jλ,κ
p f (z)

) (
Jλ,κ
p f (z)
zp

)β
− 1

] ′
[(

Jλ+1, κ
p f (z)
Jλ,κ
p f (z)

) (
Jλ,κ
p f (z)
zp

)β
− 1

] ,
f (z) ∈ Ap, z ∈ ∆. If ϕ fulfills any condi-
tions given below:

Re(ϕ(z))

< 1

|ζ |2ℜ(ζ) (ℜ(ζ) > 0),
, 0 (ℜ(ζ) = 0),
> 1

|ζ |2ℜ(ζ) (ℜ(ζ) < 0),
(5.6)

or,

Im(ϕ(z))

> − 1

|ζ |2ℑ(ζ) (ℑ(ζ) > 0),
, 0 (ℑ(ζ) = 0),
< − 1

|ζ |2ℑ(ζ) (ℑ(ζ) < 0),
(5.7)

where ζ ∈ C\{0}, then������
[ (

Jλ+1, κ
p f (z)
Jλ,κ
p f (z)

) (
Jλ,κ
p f (z)
zp

)β
− 1

] ζ ������
< 1 − γ, 1 ≥ γ ≥ 0

Proof. Let the following function χ be de-
fined as,

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
− 1


ζ

= (1 − γ)χ(z), (5.8)
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It is simple to understand that the function
χ(z) with χ(0) = 0 is analytic in ∆.

Differentiating logarithmically both
sides of (5.8) w.r.t. z, we get

z
χ′(z)
χ(z)

= ζ

z

[(
Jλ+1, κ
p f (z)
Jλ,κ
p f (z)

) (
Jλ,κ
p f (z)
zp

)β
− 1

] ′

[(
Jλ+1, κ
p f (z)
Jλ,κ
p f (z)

) (
Jλ,κ
p f (z)
zp

)β
− 1

] ,
(5.9)

(z ∈ ∆; ζ ∈ C\{0}). Now, let us define the
function ϕ by

φ =
ζ̄

|ζ |2
zχ′(z)
χ(z) , (z ∈ ∆; ζ ∈ C\{0}).

(5.10)
Assuming that a point z0 ∈ ∆ exists such
that

max
|z | ≤ |z0 |

|χ(z)| = 1 = |χ(z0)|.

We know by Lemma 3.2 that

zχ′(z0) = k χ(z0), (1 ≤ k). (5.11)

Eqs. (5.10) and (5.11) results in

ℜ(ϕ(z0)) = ℜ
(
ζ̄

|ζ |2
z0χ′(z0)
χ(z0)

)
= ℜ

(
ζ̄

|ζ |2 k
)

=
k
|ζ |2ℜ(ζ)


≥ 1

|ζ |2ℜ(ζ) (ℜ(ζ) > 0),
= 0 (ℜ(ζ) = 0),
≤ 1

|ζ |2ℜ(ζ) (ℜ(ζ) < 0),
(5.12)

and,

ℑ(ϕ(z0)) = ℑ
(
ζ̄

|ζ |2
z0χ′(z0)
χ(z0)

)
= ℑ

(
ζ̄

|ζ |2 k
)

= − k
|ζ |2ℑ(ζ)


≤ − 1

|ζ |2ℑ(ζ) (ℑ(ζ) > 0),
= 0 (ℑ(ζ) = 0),
≥ − 1

|ζ |2ℑ(ζ) (ℑ(ζ) < 0).
(5.13)

But the inequalities in (5.12) and (5.13) con-
tradict the inequalities in (5.6) and (5.7), re-
spectively.

Thus, we reach the conclusion that
|χ(z)| < 1, (z ∈ ∆), which implies that,������

[ (
Jλ+1, κ
p f (z)
Jλ,κ
p f (z)

) (
Jλ,κ
p f (z)
zp

)β
− 1

] ζ ������
= (1 − γ)|χ(z)| < 1 − γ.

Thus the proof is completed. □

Theorem 5.8. Suppose that ℜ(α) > 0,
and f ∈ Sλ,κ

p (0, β; 1 − 2δ, −1) (0 ≤ δ <
1), then f ∈ Sλ,κ

p (α, β; 1 − 2δ, −1) for
K(α, β, λ, ρ) > |z |, where

K(α, β, λ, ρ)

=
−α + √

{
α2 + β2(κ − λ + ρ + 1)2

}
β(κ − λ + ρ + 1) .

(5.14)

The best possible bound is K(α, β, λ, ρ).

Proof. Assuming that,(
Jλ,κp f (z)

zp

)β
= δ + (1 − δ)h(z),

(z ∈ ∆; 0 ≤ δ < 1),

where h has a positive real part in ∆ and h
is analytic in ∆. Differentiating both sides
and applying the recurrence relation (3), we
obtain

(1 − α)
(

Jλ,κp f (z)
zp

)β
+ α

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
= p(z) + αz

β(κ − λ + ρ + 1) p′(z),
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i.e.

(1 − α)
(

Jλ,κp f (z)
zp

)β
+ α

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
= δ + (1 − δ)h(z)

+
αz

β(κ − λ + ρ + 1) (1 − δ)h
′(z),

ℜ
(1 − α)

(
Jλ,κp f (z)

zp

)β
+α

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
− δ


= (1 − δ)ℜ

(
h(z) + z

Λ
h′(z)

)
≥ (1 − δ)ℜ

(
h(z) − 1

Λ
|zh′(z)|

)
.

(5.15)

By applying the well-known estimate given
in [26] as:

|zh′(z)| ≤ 2r
1 − r2

ℜ(h(z)), (r = |z | < 1),

in (5.15), we get

ℜ
(1 − α)

(
Jλ,κp f (z)

zp

)β
+α

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
− δ


≥ (1 − δ)

[
1 − 2α r
β(κ − λ + ρ + 1)(1 − r2)

]
,

ℜ(h(z)) > 0 for K(α, β, λ, ρ) > r . Writing(
Jλ,κp f (z)

zp

)β
= δ + (1 − δ)

(
1 − z
1 + z

)
,

( f ∈ Ap, z ∈ ∆),

to prove the bound K(α, β, λ, ρ) is the best
possible. By keeping in mind that,

ℜ
(1 − α)

(
Jλ,κp f (z)

zp

)β
+α

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
− δ


= (1 − δ)ℜ

(
1 − z
1 + z

− 2αz

β(κ − λ + ρ + 1)(1 + z)2

)
= 0

for z = K(α, β, λ, ρ), it can be concluded
that the bound is the best possible. There-
fore Theorem 5.8 is proved. □

6. Inclusion Relation
Theorem 6.1. Letℜ(α2) ≥ ℜ(α1) ≥ 0 and
1 ≥ A1 ≥ A2 > B2 ≥ B1 ≥ −1. Then

Sλ,κ
p (α2, β; A2, B2) ⊆ Sλ,κ

p (α1, β; A1, B1).
(6.1)

Proof. Let us consider that f ∈
Sλ,κ
p (α2, β; A2, B2), we have

(1 − α2)
(

Jλ,κp f (z)
zp

)β
+ α2

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
≺ 1 + A2z

1 + B2z
.

Since, 1 ≥ A1 ≥ A2 > B2 ≥ B1 ≥ −1 we
easily determine

(1 − α2)
(

Jλ,κp f (z)
zp

)β
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+ α2

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
≺ 1 + A2z

1 + B2z
≺ 1 + A1z

1 + B1z
, (6.2)

i.e. f ∈ Sλ,κ
p (α1, β; A1, B1). Thus, state-

ment of Theorem 6.1 holds for α2 = α1 ≥ 0.
If α2 > α1 ≥ 0, using Theorem 4.1 and
(6.2), we say that f ∈ Sλ,κ

p (0, β; A1, B1), i.e.(
Jλ,κp f (z)

zp

)β
≺ 1 + A1z

1 + B1z
. (6.3)

At the same time, we have

(1 − α1)
(

Jλ,κp f (z)
zp

)β
+ α1

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β
=

(
1 − α1
α2

) (
Jλ,κp f (z)

zp

)β
+
α1
α2

(1 − α2)
(

Jλ,κp f (z)
zp

)β
+α2

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β .
(6.4)

Moreover, since 0 ≤ α1

α2
< 1 and

h1(z) =
1 + A1z
1 + B1z

, (z ∈ ∆),

is convex and analytic in ∆. Using (6.2),
(6.3) and (6.4) and Lemma 3.3, we conclude
that

(1 − α1)
(

Jλ,κp f (z)
zp

)β
+ α1

(
Jλ+1,κp f (z)
Jλ,κp f (z)

) (
Jλ,κp f (z)

zp

)β

≺ 1 + A1z
1 + B1z

,

i.e. f ∈ Sλ,κ
p (α1, β; A1, B1), which means

that the statement (6.1) of Theorem 6.1
holds. □

7. Coefficient Inequalities
For the class Sλ,κ

p (α, β; A, B), the co-
efficient inequalities results are given be-
low:

Theorem7.1. If the function f (z) ∈ Ap sat-
isfies

∞∑
r=p+n

(
1 +

n
Λ

)
Bλ,κ
p (r)|ar | ≤

|A − B|
1 + |B| ,

(7.1)
where, λ, κ, ρ ∈ R, ℜ(α, β) > 0, α ∈ J and
1 ≥ λ > 0, then f (z) ∈ Sλ,κ

p (α, β; A, B). For
the function f (z), where

f (z) = zp+
|A − B|

(1 + |B|)
(
1 + 2

Λ

)
ap+2Bλ,κ

p (p + 2)
zp+2,

(7.2)

the result (7.1) is sharp.

Proof. For |z | = 1, we have������
(

Jλ,κp f (z)
zp

)β
+

z
Λ


(

Jλ,κp f (z)
zp

)β − 1

������
−

������A − B

(

Jλ,κp f (z)
zp

)β
+

z
Λ


(

Jλ,κp f (z)
zp

)β

������

=

����� ∞∑
r=p+n

(
1 +

n
Λ

)
Bλ,κ
p (r)ar zr

�����
−

�����(A − B) − B
∞∑

r=p+n

(
1 +

n
Λ

)
Bλ,κ
p (r)ar zr

�����
≤

∞∑
r=p+n

[
1 +

n
Λ

]
Bλ,κ
p (r)|ar | − |A − B|
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+ |B|
∞∑

r=p+n

[
1 +

n
Λ

]
Bλ,κ
p (r)|ar |

= (1 + |B|)
∞∑

r=p+n

[
1 +

n
Λ

]
Bλ,κ
p (r)|ar |

− |A − B|,
≤ 0. (byhypothesis).

Hence, with the help of the maximum mod-
ulus theorem, f ∈ Sλ,κ

p (α, β; A, B). □
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