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ABSTRACT 

This paper examines intrinsic characteristics of the integral control of a PID controller, 

and points out one that can cause excessive overshoot when the reference signal changes 

abruptly.  Reasons for not totally relying on the derivative control to suppress overshoot are 

discussed, and then augmentation of an adaptive integral gain to an existing PID controller is 

proposed.  The associated smooth adaptive law for the gain is presented, with the 

correspondingly allowable upper and lower bounds that guarantee input-to-state stability for 

the system of interest.  Effectiveness, simplicity, and desirable properties of the proposed 

adaptive integral gain are clearly shown in two design examples.  Numerical simulations  

show that maximum overshoot can be reduced by approximately 50%, without upsetting rise 

time.         
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1. Introduction 
For decades, PID controllers and their 

variants have been successfully applied to 

many types of systems found in various 

industries [1-5].  In simple applications of 

these controllers, parameters of the systems 

of interest are treated as constants.  This 

approach facilitates the controller designs, 

in which controller parameters are tuned and 

fixed at appropriate values. However, it is 

certain that system parameters can change  

 

 

as the control systems operates over time. 

Depending on characteristics of these 

parameter variations, performance of the 

control systems could be degraded in 

various aspects.  These include excessive 

rise time, overshoot, and steady state error.   

In a PID controller, the integral 

control is usually responsible for 

eliminating or reducing steady-state error 

due to disturbances and parameter variations 

[6].  This property is extremely useful in 

important practices such as precision 
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machining, and robotics [7].  However, it is 

a widely known fact that using the integral 

control reduces relative stability of the 

control system [4].  Because of this, it 

commonly appears in some situations such 

as when reference signal changes abruptly 

that outputs of the control system exhibit 

large overshoots.  The latter undesirable 

characteristic could be well suppressed by 

the derivative component of the controller.  

However, it appears in real applications that 

the derivative signal is very sensitive to 

noises and measurement errors.  

Accordingly, using a large derivative gain to 

suppress excessive overshoot could mean 

introducing large noises into the control 

system and degrading its performance.  A 

large derivative gain could also increase rise 

time accordingly.  These intrinsic properties 

of the derivative component prohibit its 

excessive uses in practices.  

A solution for this problem is to 

introduce adaptive capabilities to the 

controllers so that they could enhance 

compensation for disturbances and 

parameter variations in the systems.  

Depending on the system of interest, an 

adaptive PID controller could vary a 

combination of its principal parameters, 

which can be the proportional gain, the 

integral gain, the derivative gain, and others 

[5], [8-9].  Some adaptive PID control 

systems can incorporate reference model 

[10], or feedforward control [11] in their 

designs.  When intended ranges of 

controller parameter variations can be 

estimated, it is generally most desirable to 

assert a type of stability for the resulting 

control systems.  Only after stability is 

guaranteed do we seek further to improve 

performance.  The latter is usually 

represented in terms of bounds on state 

vectors in many researches.  See [6], [12-

13] and references therein.  While such 

bounds could be drawn naturally from the 

influential and powerful theorem of 

Lyapunov stability, the results are usually 

associated with significant conservatism.  

Accordingly, they are rarely good indicators 

for important transient response 

characteristics such as rise time and 

overshoot.  It is then difficult to see how the 

resulting adaptive PID controllers could 

make these transient characteristics better 

than those corresponding to static PID 

controllers.      

When compared to the above existing 

techniques, ours is original in the sense that 

it could be employed to reduce overshoot in 

existing PID control systems without 

increasing rise time when reference signals 

change abruptly.  It does so by augmenting 

an adaptive law to the integral gain of the 

controllers.  Because the derivative signal is 

not involved, our technique is insensitive to 

noises and measurement error.  It also yields 

desirable smooth control law.  In effect, 

however, our technique transforms static 

PID controllers to be the corresponding 

adaptive controllers.  Stability of the 

resulting control systems can be guaranteed 

for a determined range of the adaptive 

integral gain by using an existing robust 

stability theorem.  The flexibility of 

beginning from existing controllers allows 

us to preserve their desirable properties, 

which may not simple to obtain.  This could 

reduce design time and effort significantly.  

Our adaptive scheme is derived from an 

observation in time domain.  It is then 

simple to see how it could reduce overshoot 

without increasing rise time.   The adaptive 

law requires very little computational 

resource, making it practical to implement 

in real time.   

 

2. Adaptive Law for the Integral Gain 
Consider a dynamic system whose 

error dynamics can be reasonably modeled 

as: 

 x Ax Bu w(t)     (2.1) 

where nx  is the state vector, the system 

matrix n nA   is known, the input matrix 
n mB   is known, mu  is the control 
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input vector, and nw(t)  is the bounded 

time-varying perturbation vector.  The 

control vector u is computed from the 

control law u Kx  , in which m nK  .  

We denote an element of K by 

ijk  i j    .  Notice that 

 
n n

i ij ij j
j 1 i j

u u k x
 

      (2.2) 

where iu  is the i-th component of u, and  

iju  is the j-th component of iu .  To 

facilitate our discussion, the model is 

arranged so that    t
1 0

x e(t)dt  , 2x e(t) , 

and 3x e(t) , in which e(t) r(t) y(t)   is 

the error vector, r(t) is the reference vector, 

and y(t) is the output vector.  Using this 

arrangement, we have i i1 i2u u u   for PI 

control, and i i1 i2 i3u u u u    for PID 

control.  Note that the number of states n 

need not be limited by 3.  For clarity in 

some parts of our discussion, we call 

i1 iIu u  the integral control, i2 iPu u  the 

proportional control, i3 iDu u  the 

derivative control, i1 iIk k  the integral 

gain, i2 iPk k  the proportional gain, and 

i3 iDk k  the derivative gain.  We are 

concerned with the assumption that a 

constant gain matrix cK K   is already 

obtained by a designer such that the 

resulting control system is stable, and is 

associated with satisfactory response 

characteristics other than having excessive 

overshoot.  The designer then wants to 

reduce overshoot without using large 

derivative gains because this can adversely 

increase rise time and introduce large noise 

into the system.  Note that we limit our 

discussion for the cases in which the 

integral gain iIk  and the proportional gain 

iPk  have the same sign.    

In a PI control system, it is known 

that the integral control is primarily 

employed to reduce or to eliminate steady-

state error due to unknown disturbances.  

However, it can simultaneously reduce 

relative stability of the resulting control 

system, causing excessive overshoot when 

the reference signal changes abruptly.  A 

known effective solution for this is to 

incorporate the derivative control to obtain 

the well-known PID control law.  While the 

derivative control can decrease or even 

eliminate overshoot, it can simultaneously 

increase rise time significantly.  For some 

demanding applications, such as PCB 

fabrications in which a large number of 

parts must be placed at various positions 

very rapidly, it is most preferable that the 

motion control system should be associated 

with both small rise time and small 

overshoot when reference position changes 

abruptly.  Discussion of important 

characteristics of PID control systems and 

their variants can be found in the literature, 

in particular, see [4]. 

Generally, a sole objective of a 

control system is convergence of e(t) to the 

origin.  The proportional control is then 

regarded as the principal control component 

in the sense that it is the only control 

component that depends explicitly on e(t).  

On the other hand, the integral control is 

regarded as supplementary component 

because we do not require t
0
e(t)dt  to 

converge to the origin.  By definition, the 

state variable t
0
e(t)dt  depends on a long 

chain of historical values of e(t).  It rarely 

gives any information of the present state of 

e(t).  Accordingly, the corresponding 

integral control component does not 

contribute to convergence of e(t) at all times.  

It is precisely this property that causes the 

undesirable overshoot mentioned previously.   

To see this, consider the PID position 

control system for a Maxon DC motor 

discussed in Section 4.  This is a single-

input single-output system, for which we 
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define shaft angular displacement M (t)  as 

output y(t), and r(t) as reference signal.  The 

control system is designed in the manner 

that positive control voltage drives y(t) in 

the positive  direction (CCW), while 

negative control voltage does the opposite.  

With e(t) = r(t) – y(t), it follows that positive 

control voltage decreases e(t) and vice versa.  

For a step reference signal, we employ 

numerical simulations to obtain e(t) as 

shown in Fig. 1.  Shown in the same figure 

are the control components Iu , and Pu .  

The control component Du  is not shown 

because its magnitude is negligible when 

compared to those of  Iu , and Pu .  Starting 

from t = 0 with e(0) = 10, Pu  is positive 

while Iu  increases from zero to positive 

values.  The signs of these control 

components are both positive during the 

first two seconds, and their combined effort 

drives e(t) to decrease rapidly.  After t = 2 s, 

the sign of e(t) becomes negative, and so 

does that of Pu .  Accordingly, Pu  now 

drives e(t) to increase back to zero.  

However, Iu  remains positive, and 

continues to drive e(t) to decrease further to 

more negative values.  Clearly, this 

undesirable characteristic of Iu  can cause 

excessive overshoot.       

To reduce the above undesirable 

overshoot due to the integral control, we 

propose an adaptation law for the integral 

gain.   According to the above observation 

in time domain, we see that overshoot can 

be decreased by decreasing the magnitude 

of the integral gain when the signs of 
t

1 0
x e(t)dt   and 2x e(t) are opposite.   

On the other hand, the integral gain should 

be restored to its nominal value when the 

signs are the same.  Noticing this, we write 

an adaptive integral gain Ik  as: 

 I Ia Ick k k   (2.3) 

where Iak  is the adaptive part of the integral 

gain of interest, and Ick  is the constant part 

of the integral gain whose value is available 

by our assumption.   
 

 

Fig. 1. Integral control is slow to react to error, 

causing overshoot.  

 

Now, a smooth adaptation law that 

encapsulates the above required 

characteristics is given by: 

 Ia Ic 1 2k k tanh(x x )    (2.4) 

where   is the parameter that governs 

adaptation rate.  Figure 2 depicts the 

adaption law.  Note that 

I Ia Ic Iak k k k   .  The feedback gain 

matrix K can now be written as: 

 a cK K K    (2.5) 

where aK  is the adaptive part of the gain 

matrix, and cK  is the known constant gain 

matrix.   

 For multiple-input multiple-output 

(MIMO) systems, tuning controller 

parameters is usually much more difficult 

than that for single-input single-output 

(SISO) systems because of multiple 

coupling effects among the inputs and 

outputs.  However, our adaptation law 

remains convenient to apply in the sense 

that there is no need to apply it to all the 
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integral gains simultaneously.  Indeed, it is 

typical to find that an output exhibits 

excessive overshoot while others do not.  In 

this case, we can apply the adaptation law to 

the integral gain that causes excessive 

overshoot of the output of interest only. 

 

 

Fig. 2. Adaptation law as a function of 1 2x x , 

assuming Ick    

Simplicity of the above adaptation 

law allows its real-time implementation.  In 

addition, it yields a smooth control signal.  

The latter property is very desirable for 

motion control applications in which 

mechanical wears should be minimized.  

Clearly, the adaption law introduces 

nonlinear dynamics to the controller, and 

the resulting control system is now 

nonlinear.  It is well known that stability of 

the system can no longer be guaranteed by 

merely confining all the eigenvalues of 

A BK  in the LHP at all time.  We now 

need an additional criterion that can be 

employed to guarantee stability of the 

system.  This is addressed in the next 

section. 

 

3. Stability  
When the adaptive integral gain is 

incorporated, the resulting control law 

becomes nonlinear.  In general, global 

stability of our now nonlinear control 

system cannot be addressed by using the 

concept of poles.  We then require a special 

tool that allows us to guarantee this 

mandatory property.  For this, we substitute 

a cK K K   in Eq. (2.1) and write: 

 c ax [A BK ]x BK x w(t)      (3.1) 

The system can be written as a linear 

time varying uncertain system: 

 N
j 1 j jx Ax [h (t)E ]x w(t)     (3.2) 

where cA A BK   is strictly Hurwitz by 

our assumption that a stabilizing cK  is 

known, 
n n

jE   is known, and jh (t)  

is a time-varying function representing 

variation of an adaptive integral gain Iak .  

Note that jh (t)  is associated with  known 

strict upper bound uj jh h  and strict lower 

bound lj jh h .  When the system is written 

in the form of Eq. (3.2), there are robust 

stability analysis (RSA) theorems that can 

be employed to assert exponential stability 

of the system of interest when the 

perturbation vector w(t) does not present.  

However, it can often be found that 

allowable bounds on jh (t)  resulting from 

an RSA theorem are too conservative, and 

do not allow satisfactory suppression of 

overshoot.  Here, we employ the RSA 

theorem in [14-15] because it is convenient 

to apply and is usually able to yield 

sufficiently large allowable bounds that lead 

to clear suppression of overshoot in our 

investigation.  Because of its importance in 

our discussion, the theorem is reproduced 

for convenience of the reader in the 

following: 

 

Theorem 1 [14-15] If the dynamical system 

in Eq. (3.2) is  uniformly globally Lipschitz 

with A  being Hurwitz, w(t) = 0, and 

max( (Z)) 0  , then the equilibrium point 

at the origin is uniformly globally 
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exponentially stable.  The matrix 
T n nZ Z    is obtained by: 

1) Specified Q > 0 and A  to compute P 

from the Lyapunov equation 
TQ (1/ 2)[PA A P]    

2) Compute N
j 1l lj jA A h E   

  and T
l lΦ PA A P  . 

3) Compute 
T T

j j j jΨ [PE E P] Ψ    j  . 

4) Compute 
T

Ψ Ψ j Ψ Ψ 1 Ψ nj j j j j
Λ T Ψ T diag[ ]   

 j , where Ψ Ψ 1 Ψ nj j j
T [v v ] ,  

Ψ 1j
{v , Ψ nj

..., v }  is the set of n 

orthogonal unit (orthonormal) 

eigenvectors of jΨ , and 

Ψ 1j
{ , Ψ nj

..., }  is the corresponding 

set of n real eigenvalues of  jΨ . 

5) Set all negative elements of Ψj
Λ  to zero 

to get 0
Ψ j

Λ  j . 

6) Compute 0 0 T
j Ψ Ψ Ψj j j

Ψ T Λ T   j . 

7) Compute 
0r

j 1 uj lj jZ Φ [(h h )Ψ ]
   . 

When the bounded perturbation 

vector w(t) presents as in real practices, we 

cannot employ Theorem 1 to assert 

exponential convergence of trajectories to 

the origin.  Rather, we can assert that 

trajectories converge into a neighborhood 

about the origin.  The extent of this 

neighborhood is determined by the size of 

w(t).  This is known as input-to-state 

stability [6], and is addressed in the 

following corollary: 

 

Corollary  1 If Theorem 1 is satisfied with 

w(t) 0  , then trajectories of Eq. (3.2) 

converge to a neighborhood about the origin.  

The extent of this neighborhood is defined 

by 
2{x | V(x) (1/ 2)max( (P)) }      

where V(x)=(1/2)
Tx Px , TP P 0   is 

obtained from Theorem 1, 

2 max( (P)) / max( (Z))     , and   is a 

bound on w(t).   

Proof Following the proof of Theorem 1, 

we have along the trajectories of Eq. (3.2) 

that  

 V(x,t) T(1/2)x Zx +( V/ x)w(t)   

where V(x)=(1/2)
Tx Px  with TP P 0  .  

Let  w(t)  be strictly bounded by   and 

notice that TV/ x=x P  . Thus, 

 V(x,t) T(1/2)x Zx +max( (P)) x   

where we have max( (P)) 0   because 

TP P 0  .  Because max( (Z)) 0   when 

Theorem 1 is satisfied, it follows that 

 
2

V(x,t) (1/2) max( (Z)) x +max( (P)) x   
 

It is clear that V(x,t)<0  when x  is 

sufficiently large.  By direct substitution, 

one can verify that V(x,t)<0  when  

 
2 max( (P))

x
max( (Z))

 
  


  (3.3) 

Because V(x)  (1/2)
2

max( (P)) x , it 

follows that V(x,t)<0  where V(x) > 

(1/2) 2max( (P))  .  By Lyapunov stability 

theorem [6], trajectories originating within 

  remain therein, while those out of   

converge into  .  This completes the proof.   

 With Theorem 1 and Corollary 1, input-

to-state stability of the perturbed system in 

Eq. (3.2) is guaranteed when the adaptive 

integral gain Iak  varies between ljh  and 

ujh  j .  If required, it is certainly possible 

to fix Iak  at any value between the two 

bounds.  Now that our adaptive law for the 

integral gain and the tools for assessing 

stability of the control systems are readily 
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available,  we demonstrate in the next 

section their applications and results.   
 

4. Design Examples 
In this section, we apply our adaptive 

integral gain to a DC motor position control 

system, and a two-mass position control 

system.  It is assumed that a stabilizing PID 

controller is available for each of the 

systems, and we want to reduce overshoot 

by augmenting our adaptive integral gain to 

the controller.   

 

Example 1 Consider the Maxon model 

353297 DC motor position control system 

with gearbox model 223085 in [16].  The 

nominal unperturbed error dynamics of this 

SISO system can be approximated by Eq. 

(2.1), in which 

0 1 0

A 0 0 1

0 0 20489.5

 
 
 
  
 

, and 

0

B 0

2514.82

 
 
 
  

. 

Here, the state vector 3x , with state 

variables t
1 0

x e(t)dt  , 2x e(t) , and   

3x e(t) .  The error is defined as 

R Me     , where R  is the reference 

signal, and M  is the angular displacement 

of the motor shaft.  Note that the armature 

inductance L of the motor is truncated when 

deriving the above error dynamics because 

it is very small when compared to other 

parameters of the motor.  This also reduces 

the number of feedback signals by one.  

Using the Linear Quadratic Regulator 

(LQR) theory, we obtain the PID control 

law u Kx  , in which 

K [ 1 4.17 0.06]    .  Note that this 

control law minimizes the cost function  

 T T
0

J (x Qx u Ru)dt


   (4.1) 

where 3 3Q I  , and R = [1]. 

 To investigate transient response 

characteristics resulting from the above PID 

controller, we perform numerical 

simulations using the following full-order 

state equation: 

 T T dq A q B u NT     (4.2) 

where the state vector 4q , with 

t
1 M0

q dt  , 2 Mq   , 3 Mq   , and 

4q i .  Note that we now include the 

armature current i and the armature 

inductance into our simulation model.  The 

relevant matrices are: 

 T

0 1 0 0

0 0 1 0
A

0 0 0.7 1828.4

0 0 6324.5 2189.4

 
 
 
  
 

   

, 

  T

0

0
B

0

1552.8

 
 
 
 
 
 

 , and 

0

0
N

473.2

0

 
 
 
 
 
 

.   

 When the system is subjected to a 

square-wave reference signal 

R 10sign(sin(0.15t))   and a square wave 

disturbance torque dT 0.5sign(sin(0.5t)) , 

we obtain simulation results for output M  

shown in Fig. 3.  We see that the control 

system spends approximately 2 s to drive 

the output to reach the reference, and 

exhibits approximately 2.6 rad or 13% of 

maximum overshoot.  Transient response 

characteristics appear satisfactorily, and 

should be acceptable for many applications. 

 We now explore application of the 

adaptive integral gain.  Notice that the 

constant integral gain Ick 1   is K(1,1).  

Because Ick  is negative, we want the 

adaptive integral gain Iak  to be positive to 

counter the slowly-varying nature of 
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integral control that causes overshoot.  For 

this, it is convenient to select zero as the 

lower bound on Iak , and then find an 

allowable positive upper bound.  Using 

Theorem 1, a satisfactorily large allowable 

upper bound on Iak  is found to be 

uh 0.55 .  This corresponds to the 

following matrices: 

 

14.8 20.9 2.1

Z ... 33.6 3.0

... ... 45.4

 
 

  
 
 

,  and 

 

23 0 0

Q 0 24.2 0

0 0 24

 
 

  
 
 

. 

Theorem 1 is satisfied with 

max( (Z)) 1.1   , noting that Z is 

symmetric.  Using the adaptive law for Iak  

in Eq. (2.4) with 2  , numerical 

simulations give the resulting output Ma  as 

shown in Fig. 3.  We see that the rise time 

of Ma  is virtually the same as that of M .  

However, the overshoot is now  

approximately 1.3 rad, showing 

approximately 50% overshoot reduction.  

Note that convergence of  Ma  to the 

reference is slightly slower than that of M .   

 

 

Fig. 3. Outputs and reference resulting from PID 

controls ( M : without adaptive integral gain, 

Ma : with adaptive integral gain) 

Figure 4 shows the corresponding 

trajectory of Iak , which is bounded by 

lh 0  and uh 0.55 .  Note that increasing 

value of   beyond 2 hardly affects transient 

response characteristics because the 

corresponding trajectory of Iak  is already 

faster than that of Ma .   

 

 

Fig. 4. Trajectory of adaptive integral gain Iak , 

augmented to K(1, 1)  

Example 2 Consider the two-mass system 

depicted in Fig. 5.  The nominal 

unperturbed error dynamics of this MIMO 

system can be approximated by Eq. (2.1), in 

which  

 

4 2 4 4

1 1 2 2

2 2
3 3 4 4

0 I

2c c -2c cA
0

c c c c

 



 
   
  
 

,  

 
4 2

2 2

0
B

I





 
  
 

, 

1 1c =k/m , 2 1c =b/m ,  3 2c =k/m , 4 2c =b/m , 

spring constant k=1000N/m, mass 

1m 10kg , mass 2m 20kg , damper 

coefficient b 100N.s / m , and control 

vector 
T

1 2u [f f ] .   
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 The control force if  is applied to im , i = 

1, 2.  There are 6 state variables, namely 
t

1 10
x e dt  , t

2 20
x e dt  , 3 1x e , 4 2x e , 

5 1x e , and 6 2x e .  We also define error 

variable i i ie r   , in which ir  and i  are 

the i-th reference position and the i-th 

output associated with im  respectively.  

Using the LQR theory yields the following 

constant feedback gain matrix for the PID 

control law u Kx  :  

63.2 2.5 28.6 33.2 47 6.1
K

2.5 63.2 2.06 92.6 6.1 60.6

     
      
 

 

The above control law minimizes the cost 

function J in Eq. (4.1), with  6 6Q 4000I  , 

and 2 2R I  . 

 

 
Fig. 5. Schematic of two-mass system. 

 

In the same fashion as the previous 

example, we employ numerical simulations 

to estimate responses of the above PID 

control law.  The corresponding model used 

for this is Eq. (4.2), for which we note that 

TA A , and TB B  .  The two-mass 

system is not used for driving external loads, 

so we set  dT 0 .  The state vector 
6q , 

in which t
1 10

q dt  , t
2 20

q dt  , 3 1q   , 

4 2q   , 5 1q   , and 6 2x   .  The same 

square-wave reference position 

1 2r =r =sign(sin(0.15t))  is used for both 

masses to facilitate comparisons of the 

simulation results shown in Fig. 6.  It 

appears that the rise time of  1  is 

significantly larger than that of 2 .  Also, 

maximum overshoot of 1  is negligible 

while that of 2  is approximately 0.28 m, or 

14%.  Again, the LQR theory is able to 

yield satisfactory results.  

From the above simulation results, we 

only want to decrease overshoot of 2 .  To 

do this, notice that 2u  is associated with 

two integral gains, K(2,1) 2.5   and 

K(2,2) 63.2  . We augment Iak  only to 

the latter, because it is much larger than the 

former, and is directly associated with 2m  .  

In the same fashion as in Example 1, we 

elect that the lower bound for Iak  is zero, 

and employ Theorem 1 to find a sufficiently 

large allowable positive upper bound uh .  It 

turns out that Theorem 1 is satisfied with 

max( (Z)) 4.1    when  uh 37.9 .  The 

relevant matrices are: 
 

30 0.28 0.04 0.13 0 0.08

... 15.0 4.37 15.42 0.18 9.72

... ... 42.4 2.1 0.02 1.33
Z

... ... ... 42.0 0.09 4.69

... ... ... ... 31.5 0.05

... ... ... ... ... 41.05

     
 
 
  

  
 

 
 

  

and 
6Q   is a diagonal matrix, whose 

diagonal elements are 15, 23.5, 21.5, 24.75, 

15.75, and 22.   
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Fig. 6. Outputs and reference resulting from PID 

controls. 

 
Fig. 7. Outputs and reference resulting from PID 

controls with adaptive integral gain. 

 

 
Fig. 8. Trajectory of adaptive integral gain 

Iak augmented to K(2, 2). 

According to the adaptive law for Iak  

in Eq. (2.4), we set 10   and obtain 

simulation results for output 1a  and 2a  as 

shown in Fig. 7.   When comparing 

simulation results in Fig.6 and Fig.7, we see 

that 1  and 1a  are almost identical.  The 

rise time of 2  is approximately the same as 

that of 2a .  However, maximum overshoot 

of  2a  is  approximately 0.13 m, 

representing a 54% reduction when 

compared to that of 2 .  The corresponding 

trajectory of Iak  is shown in Fig. 8.  Note 

that 2  converges to 2r  faster than 2a  

does, and that increasing value of   beyond 

10 affects transient response characteristics 

very slightly because Iak  is already faster 

than 2a . 

      

5. Conclusion 
In PID controllers, the integral control 

is generally incorporated to reduce or 

eliminate steady-state error due to unknown 

disturbances and parameter variations in the 

system of interest.   While the integral 

control is useful for this purpose, it can 

reduce relative stability of the resulting 

control system.  Reducing relative stability 

can be useful for reducing rise time of the 

output, but it can also cause excessive 

overshoot when the reference signal 

changes abruptly.  The derivative control 

can be employed to suppress this 

undesirable characteristic at the usual 

expense of increasing rise time.  The 

derivative signal is also very sensitive to 

noises and measurement errors.  

Accordingly, using a large derivative gain is 

normally prohibited because it can degrade 

performance of the control system 

significantly.   

To suppress excessive overshoot 

without totally relying on the derivative 

control of an existing PID controller, we 

propose that an adaptive integral gain be 
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used.  Our original adaptive integral gain is 

associated with a smooth adaptive law, 

making the resulting control signal smooth.  

Input-to-state of the resulting adaptive PID 

control system is guaranteed when the gain 

variation is within the correspondingly 

allowable upper and lower bounds.  

Simplicity and effectiveness of the adaptive 

integral gain is shown in two design 

examples.  Numerical simulations indicate 

that the adaptive gain can reduce maximum 

overshoot that occurs when reference signal 

changes abruptly by approximately 50%.    

In light of the results obtained in this 

paper, other benefits of adaptive gains for 

enhancing  robust performance of existing 

PID control systems are to be investigated 

in the near future.  In particular, disturbance 

rejection in PID motion control systems is 

now our topic of interest. 
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