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Abstract 
 
The aim of this paper is to analyze the queuing model entitled to cost optimization in bulk arrival and a batch service 

retrial queuing system with threshold, server failure, non-disruptive service, and multiple vacations. When bulk arrival of 

customers find the server is busy, then all customers will join in the orbit. On the other hand, if the server is free, then batch 

service will be provided according to the general bulk service rule. Batch size varies from a minimum of one and a maximum of 

‘b’ number of customers. Customers in the orbit seek service one by one through constant retrial policy whenever the server is in 

idle state. The server may encounter failure during service. If the server fails, then ‘renewal of service station’ will be considered 

with probability . If there is no server failure with probability   in the service completion or after the renewal process and 

if the orbit is empty, the server then leaves for multiple vacations. The server stays on vacation until the orbit size reaches the 

value N.  For this proposed queuing model, a probability generating function of the orbit size will be obtained by using the 

supplementary variable technique and various performance measures will be presented with suitable numerical illustrations. A 

real time application is also discussed for this system. Additionally, a cost effective model is developed for this queuing model. 

 

Keywords: bulk arrival, batch service, constant retrial policy, server failure, threshold, renewal time

 

 

1. Introduction 
 

Mathematical modeling of a retrial queuing system 

with vacations is very useful in dealing with real life 

congestion problems like local area networks (LAN), commu-

nication networks, and media access protocols. In modern 

technology, communication networks play a vital role in 

transmitting and accessing data from anywhere at any time. A 

retrial queuing system is characterized by the arrival of 

customers that find a busy server and leave the service area 

but after some random delay they request service again. If the 

customer finds the server is busy then he joins an orbit which 

is defined as a virtual queue formed by the customers after 

finding that the server is busy. 

 
Performance analysis of a LAN executing under 

transmission protocol CSMA-CD (Carrier Sense Multiple 

Access with Collision Detection) is one of the applications of 

our proposed queuing model.  In order to remit data, any 

moderator on the segment of CSMA-CD is used to investigate 

whether the transmission channel (a bus) is free or not, to 

avoid collisions between the data. Moderator A transmits 

messages to another moderator through the transmission 

medium (server in our model). The messages are split into 

different packets (batch) in order to transmit to the destination 

station. First, Moderator A checks whether the bus is free or 

not. If the transmission medium is free, then a group of 

packets is picked for transmission and the surplus is stored in 

a buffer (retrial group). On the contrary, if the bus is busy, 

then all of the packets are stored in the buffer and Moderator 

A will retry the transmission later on. Sometimes while 

transmitting data, the server may be infected with a virus 

(server failure) which results in slow performance of the 

server. Though the server fails, service will not be interrupted, 

but will continue for the current batch of packets by including 
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antivirus software. When the transmission medium fails, 

antivirus software will get stimulated immediately and helps 

in transmitting the data. The virus will be removed after the 

data transmission (renewal period). When the server is idle, 

maintenance activities (multiple vacations) such as temporary 

files can be cleaned to keep the server functioning well. This 

type of maintenance can be programmed to perform on a 

regular basis. This can be designed as a bulk arrival and batch 

service queuing model with server failure, non-disruptive 

service, and multiple vacations. 

Analytical treatment of different models of retrial 

queues has been extensively given by Falin and Templeton 

(1997). A brief survey and an overview of retrial queues were 

explained by Artalejo (1999). Retrial queuing systems with 

vacations and breakdown were analyzed by many researchers 

which included a study on retrial queue with constant retrial 

rate and server breakdown by Li and Zhao (2005). Atencia, 

Bouza, and Moreno (2008) derived generating functions of 

system and orbit state of the bulk arrival retrial queue with 

server breakdown. Also they considered constant failure rate 

of the server. Chang and Ke (2009) used a supplementary 

variable technique to derive some important results in a batch 

arrival retrial queue with modified vacations. The M/G/1 

retrial queue with a breakdown period and delay period were 

analyzed by Choudhury and Ke (2014). They used Bernoulli 

schedule vacation and derived system size at a departure time 

epoch. Choudhury, Tadj, and Deka (2010) analysed the 

 retrial queuing system with optional two phases of 

service and breakdown. In this paper, delay time was also 

introduced. Yang and Wu (2015) studied a working vacation 

queuing model with threshold and server failure. In their work 

cost minimization was carried out.  

In all of the above queuing models, customers were 

served one by one. But in many real-time applications it is 

essential to provide batch service too. Extensive review on a 

classical bulk arrival and batch service queuing model was 

given by Niranjan and Indhira (2016). Bulk arrival and batch 

service retrial queueing systems have been analyzed by 

Haridass, Arumuganathan, and Senthilkumar (2012). They 

used supplementary variable techniques, derived some 

important performance measures, and developed cost effective 

models for their proposed system. 

In the literature of bulk arrival retrial queuing 

models, only a few authors studied bulk arrival and batch 

service retrial queuing models. The bulk arrival and batch 

service retrial queuing models with multiple vacations were 

not considered. Once the server breaks down, the service stops 

in all of the bulk arrival retrial queuing models with 

breakdown under consideration. But in this proposed model, 

though the server encounters failure, service will not stop but 

will continue for the current batch through some precaution in 

technical arrangements. The server will be repaired after 

completion of the service which is called the ‘renewal period 

of the server’. The model under consideration is peculiar 

because multiple vacations with threshold and server failure 

with non-disruptive service are used to model the proposed 

bulk arrival and batch service retrial queuing system. 

 

2.  Model Description 
 

This paper analyses a bulk arrival and batch service 

queuing model with threshold, server failure, multiple vaca-

tions, and constant retrial policy. Customers enter into the 

system in bulk according to the Poisson process with rate λ. 

Upon arrival, if the server is busy then all customers choose to 

join the virtual queue called orbit. Customers in the orbit 

request service again after some time. On the contrary, if the 

customers find that the server is free then batch service will be 

provided with a minimum of ‘1’ and a maximum of ‘b’ 

number of customers. Let  be the queue length. If , 

then the entire batch will be served immediately. Additionally 

if , then service will be provided for only ‘b’ customers. 

The remaining  customers will join the orbit. Since this 

proposed system follows constant retrial policy, customers in 

the orbit explore service one by one with constant retrial rate 

‘ ’. The server may encounter failure while serving custo-

mers. This paper proposes a concept called server failure 

without service interruption. Though the server encounters 

failure the service will not be stopped, but will continue for 

the current batch by doing some technical precaution 

arrangements.  

Proper maintenance of the server or repair of the 

server is defined as renewal of service station. When the 

server encounters failure with probability  then the renewal 

of service station will be considered. After completing a 

renewal of service station or when there is no server failure 

with probability    and the orbit size is zero, then the 

server leaves for vacation. If the orbit size is less than ‘N’ 

upon return from a vacation, then the server leaves for another 

vacation. Likewise, the server continuously goes for vacation 

(multiple vacations) until the orbit size reaches the threshold 

value ‘N’ (N > b). At a vacation completion time, if the orbit 

size reaches the threshold value ‘N’, then the server becomes 

idle in the system to provide service for customers from the 

primary source or orbit. The model under consideration is 

schematically represented in Figure 1. 

 

 
 
Figure 1. Schematic representation of the queuing model: J-orbit  

size 

 

2.1. Notations 
 

Let be the Poisson arrival rate, X be the group size 

random variable of the arrival,  be the probability that ‘k’ 

customers arrive in a batch, X (z) be the probability 

generating function of X, (t) be the number of customers 

waiting for service at time t, (t) be the number of customers 

under the service at time t, and  be the number of 

customers in the orbit at time t. 
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Let ’  be the retrial rate of the customer from the 

orbit and  be the probability of server failure. Let S(x) (s(x)) 

{ (θ)} [ (x)] be the cumulative distribution function 

(probability density function) {Laplace-Stieltjes transform} 

[remaining service time] of service. Let V(x) (v(x) 

{( (θ)}[ (x)] be the cumulative distribution function 

(probability density function){Laplace-Stieltjes transform} 

[remaining vacation time]  of vacation. Let B(x)(b(x))  (θ)} 

[ (x)]  be the cumulative distribution function (probability 

density function){Laplace-Stieltjes transform} [remaining 

renewal time]  of renewal. 

 

 

Let G (t) denotes different states of the server at 

time t, and define 

 

0, if the server is busy with service

1, if the server is on vacation
( )

2, if the server is on renewal

3, if the server is idle

G t





 

  

Let  be the server is on mth vacation. 

 

The state probabilities are defined to obtain 

governing equations:  

; ,  

 
,  

                            

 

3. Steady State Orbit Size Distribution  
 

By using supplementary variable technique and using remaining service time as a supplementary variable the following 

equations are obtained.   

 

                             (1) 

 

                                      (2) 

 

                                      (3) 

 

                   (4) 

 

                          (5)   

 

                          (6) 

 

                 (7) 

 

                                         (8) 

 

                               (9) 

 

                                (10) 

 

                                  (11) 

 

                (12) 

 

                                            (13)   

 

 

 The Laplace-Stieltjes transform of (x), (x) and (x) are defined as 
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               (14) 

 

Taking the Laplace-Stieltjes transform on both sides of the equations from equations (1) to (13), we get  

 

                                          (15) 

 

                                          (16) 

 

                              (17)  

 

                                  (18) 

 

                                            (19) 

 

                                                             (20) 

 

                               (21) 

 

                                    (22) 

 

                                (23) 

 

                                    (24) 

 

                          (25)              

 

4.  Probability Generating Function (PGF)   
 

To obtain the PGF of an orbit size distribution at an arbitrary time epoch, the following generating functions are 

defined. 

 

      

                          (26) 

 

    =                            

                                     

                                            (27)      

 

                           (28)     

 

                  (29) 

 

                              (30) 

 

                   (31) 

 

                             (32) 

 

                              (33) 

 

Substituting  in equation (28) implies 
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                  (34) 

 

Substituting  from equations (29) to (33) implies                        

 

                (35) 

 

                                          (36) 

 

                               (37) 

 

                      (38) 

 

                        (39) 

 

By using (28) and (34), we get 

 

                 (40) 

 

By using (29) and (35), we get 

 

                (41) 

 

By using (30) and (36), we get  

 

                                                                                  (42) 

 

 

By using (31), (32),  (37) and (38), we get 

 

              (43) 

 

By using (33) and (39), we get 

 

                          (44) 

 

Substituting equations through (40) to (44), (38) and (39) in equation (27), we get 

 

                    (45) 

 

 

Probability generating function of the orbit size at an arbitrary time is given by 

 

                   (46) 



368 N. S. P. et al.  / Songklanakarin J. Sci. Technol. 41 (2), 363-374, 2019 

 

Substituting   from equation (54) to (58) and using (45), the equation (46) is simplified as 

 

                             (47) 

where  

 

 
   

  

   

  

 
     

  

 

4.1 Steady state condition 
               

The probability generating function given in equation (47) has to satisfy the condition P (1) = 1. The steady state 

condition for the proposed model under consideration is simplified as 

 

  and the unknown constant  is obtained as 

 

 
where 

  

         

 
 

4.2 Results 
 

An unknown constant  is expressed in terms of known term . Let  be the probability that ‘n’ customers arrive 

into the system during an idle period then. 

 

 
 

, n=1, 2,…, N-1 

 

5. Performance Measures 
 

In this section some important performance measures for the given queuing system are derived.  

 

5.1 Expected orbit length (E(Q)) 
 

The mean orbit length can be obtained by differentiating P(z) with respect to  z at 1  
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+    

 
                         

       

 
     

  

    

   

    

  

                               

                         

                

   

      

 
             

   

  

  

 

5.2. Probability that the server is busy 

 

   

 

where 

 

 
 

 

5.3. Probability that the server is in renewal period 
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5.4. Probability that the server is idle 
 

 

 
 

5.5. Mean waiting time in retrial queue 
 

 
 

5.6. Mean number of customers in the system 
 

 
 

5.7. Mean waiting time in the system 
 

 
 

5.8. Expected length of busy period 
 

By the theory of alternating renewal process, the expected length of busy period is derived as 

 

  
 

5.9. Expected length of busy cycle 
 

The expression for expected length of busy cycle is obtained by the theory of alternating renewal process 

 

 
6. Special cases 

 

The proposed model is developed with the assumption that the service time is arbitrary.  However, to analyze real time 

systems, suitable distribution is required. This section presents some special cases of the system by indicating bulk service time 

as exponential distribution, hyper-exponential distribution and Erlangian distribution.  

 

Case 1 Exponential bulk service time 
 

The probability density function of exponential service time is  , here  is parameter, therefore, 

 
  

The PGF of the orbit size for exponential service time is derived by substituting the expression for   in 

equation (61) 

 

 
 

where  
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Case 2 Hyper-exponential bulk service time 
 

When the service time follows hyper-exponential distribution with probability density function, then 

, where d and f are parameters, then,  

 
The PGF of the orbit size for hyper-exponential service time is derived by substituting the expression for   in 

equation (61). 

 

Case 3 K-Erlangian bulk service time 
 

Let us consider that service time follows K-Erlang distribution with probability density function 

 

, k > 0; where  is the parameter, then 

 
The PGF of the orbit size K-Erlangian bulk service time can be derived by substituting the expression for   in 

equation (61). 

 

Case 4 When there is no server failure, multiple vacations and threshold  
 

i. e ( ) 

The PGF given in (61) is reduced to  

 

 
where  
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The above equation is coincides with Haridass et al. (2012). 

 

7. Cost Effective Model 
 

Optimization techniques take part in minimizing total average cost of the queuing system in many practical situations. 

Constraints in cost analysis are start-up cost, operating cost, holding cost, set-up cost and reward cost (if any). It is obvious that 

management of the system aims to minimize the total average cost. In this part, the cost analysis of the proposed queuing system 

is developed to obtain total average cost of the system with the following assumptions: 

 

Ah : holding cost per customer  A0 : operating cost per unit time 

As : startup cost per cycle  Ar : reward cost per cycle due to vacation 

  

 Total average cost= Holding cost of customers per unit time in the queue 

                                 + Start-up cost per cycle +Operating cost +Reward cost 

 

 
 

Therefore, the TAC is obtained as 

 

TAC  

 

The simple value direct search method is used to find an optimal policy for a maximum batch size b* to minimize the total 

average cost.   

 

 Step 1: Fix the value of threshold ‘N’ (N>b) 

Step 2: Select the value ‘b’ which will satisfy the following relation 

 TAC (  

Step 3: The value b* is optimum, since it gives minimum total average cost. 

 

The above procedure gives the optimum value of ‘b’ which minimizes total average cost function. A numerical illustration is 

given in the next section to justify the above solution.         

 

8. Numerical Illustration 
 

In the performance evaluation of LAN executing under transmission protocol CSMA-CD, data are entered into the 

system according to Poisson arrival rate λ . This section presents a numerical example of the proposed queuing system, which is 

used by the moderator of a CSMA/CD protocol to make a decision in utilizing idle time effectively. All of the numerical results 

are obtained with the following assumptions. 

Service time follows exponential distribution with parameter     

Batch size distribution of the arrival is geometric with mean   3 

Retrial rate         

Vacation time follows exponential distribution with parameter     

Renewal time follows exponential distribution with parameter     

Maximum service capacity       b 

Threshold        N=10 

Start-up cost         Rs. 1.40 

Holding cost per customer        Rs. 0.50 

Operating cost per unit time        Rs. 2.00 

Reward per unit time due to vacation       Rs. 1.00 

 Renewal cost per unit time       Rs. 0.40 

 

8.1. Effects of different parameters on the performance measures 
 

The effects of retrial rate and service rate with respect to mean orbit size are given in Table 1. It is observed that if the 

retrial rate increases, then mean orbit size decreases. Also, when the service rate increases, the mean orbit size decreases. 
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Table 1. Retrial rate vs. mean orbit size (arrival rate λ=2). 

 

Retrial 

rate 

Expected orbit length (E(Q)) 

Service rate 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 
         

1 3.4592 3.0624 2.5317 1.9316 1.5296 1.1762 0.7915 0.2178 

2 3.1972 2.8219 2..3125 1.7161 1.3261 0.9361 0.5715 0.0961 
3 2.9635 2.6314 2.1362 1.5422 1.1965 0.5369 0.3191 0.0511 

4 2.6192 2.3724 1.9352 1.3256 0.9561 0.2850 0.1061 0.0319 

5 2.3207 2.0251 1.6541 1.1509 0.7169 0.0965 0.0951 0.0193 
6 2.1579 1.8512 1.2981 0.9618 0.4196 0.0711 0.0621 0.00743 

7 1.8271 1.6379 1.0263 0.6315 0.2193 0.0562 0.0417 0.00419 

8 1.5324 1.5162 0.9572 0.3259 0.0961 0.0379 0.01884 0.00165 

9 1.2193 1.3292 0.5192 0.1538 0.0541 0.0099 0.00092 0.000863 
         

 

8.2. Effects of different parameters on the total average cost 
 

Cost estimation is essential for the management of the system because there is a chance to change the maximum 

capacity value ‘b’ for service and service rate when the arrival rate is large. The management can reduce the total average cost by 

increasing either the service rate or the batch size of the service. Various comparisons with respect to total average cost are given 

in Table 2 and Table 3. It is clear that when the retrial rate increases, the total average cost decreases. Also, when the service rate 

increases, the total average cost decreases. 
 

Table 2. Retrial rate vs. mean orbit size and total average cost (Arrival rate λ=3, Service rate μ=2). 
 

Retrial 

rate 

Threshold value ‘b’ 

b=3 b=4 b=5 

E(Q) TAC E(Q) TAC E(Q) TAC 

       

2 2.7913 4.5623 2.4031 4.3028 2.3765 4.2193 

3 2.2357 4.3261 2.2568 4.2968 2.2061 4.1562 
4 1.8291 4.2392 2.1982 4.1192 2.0591 3.9843 

5 1.7032 4.0569 1.9768 3.8369 1.8561 3.7521 

6 1.5639 3.7894 1.6893 3.6528 1.7961 3.5361 
7 1.4091 3.4063 1.4331 3.2391 1.5369 3.3549 

8 1.1938 3.2569 1.2941 3.1965 1.3291 3.0391 
       

 

Table 3. Retrial rate vs. total average cost (Arrival rate λ=3 and 
b=5) 

 

Retrial 

rate 

Total Average Cost 

Arrival rate=2.0 Arrival rate=2.5 Arrival rate=3.0 
    

2 5.5639 5.1861 4.8932 

4 5.2962 4.8182 4.5362 
6 4.8296 4.6365 4.3293 

8 4.5192 4.3192 4.1368 

10 4.3265 3.9370 4.8964 
12 3.9493 3.7568 3.5256 

14 3.6591 3.4293 3.2128 
    

 
8.3. Optimum cost  

 

This section presents a numerical example to 

explain how the moderator of the CSMA/CD protocol can 

effectively use the results obtained in Sections 4 and 5 to fix 

the maximum capacity (b), which minimizes the total average 

cost. An optimal policy regarding the maximum capacity ‘b’ 

which will minimize the total average cost is presented in 

Table 4 and Figure 7. From the observations it is clear that the 

optimum value which reduces the total average cost is b=5. 

 

Table 4. Maximum capacity (b) vs. total average cost (λ=2, γ=3, 
N=10) 

 

Maximum capacity(b) Total average cost 

  

3 4.5962 

4 4.3249 

5 4.2964 
6 4.4565 

7 4.6974 

8 4.7421 
9 4.8462 

10 4.9523 
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Figure 2. Retrial rate vs. E (Q) for different service rates. 
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Figure 3. Retrial rate vs. E (Q) for different values of ‘b’. 

 

 
 

Figure 4. Renewal rate vs. E(Q). 

 

 
 

Figure 5. Probability of server    breakdown vs. (E (Q)). 

 

 
 

Figure 6. Retrial rate vs. total average cost for different service rates. 

 

 
 

Figure 7. Maximum capacity vs. Total average cost. 

9. Conclusions 
 

This paper analyzed a bulk arrival and batch service 

retrial queuing system with server failure, threshold, and 

multiple vacations. A probability generating function of the 

orbit size at an arbitrary time epoch was obtained by using a 

supplementary variable technique. Various performance 

measures, a particular case, and special cases were also 

discussed. A cost estimation analysis was also carried out with 

numerical example. All the obtained results will be useful in 

making decisions to estimate overall cost and search for the 

best operating policy in a queuing system. In the future, this 

model can be improved by including vacation interruption 

concept. It is also possible to extend this model to a fuzzy 

environment. 
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