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Abstract 
 
Many regions across Australia have high rainfall variability, which has various effects on water and food availability. 

This study examines rainfall patterns over consecutive 5-day periods during 1950-2013 using data from 92 observational stations 

in Australia. The first model used factor analysis to classify the stations into distinct geographical regions. Gamma generalised 

linear model (GLM) was then fitted to describe the rainfall amount in each category with season and year factors as the 

predictors. 

Factor analysis revealed eight factors, which represent eight geographical regions of Australia. Analysis of the 

similarities in the seasonal evolutions between regions revealed three seasonal rainfall groupings. The GLM models fitted the 

data quite well in all the areas and showed that 5-daily rainfall is significantly affected by the period of the year and its annual 

average in most of the regions. The models could be used to simulate rainfall data for the areas with inadequate rainfall records. 
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1. Introduction 
 

Many areas of the globe, particularly in the tropics, 

are extremely susceptible to changes in rainfall patterns. A 

study by Trenberth, Dai, Rasmussen, and Parsons (2003) 

revealed that, for the past few decades, the global hydrological 

cycle has been undergoing significant changes, which include 

rainfall amount, frequency and duration. These changes in 

rainfall have resulted in severe floods or droughts, which often 

have diverse effects on human life and health, food and 

provision of potable water, ecosystems, and infrastructure 

(Herring et al., 2016). 

 

Modelling and analysis of rainfall with appropriate 

statistical methods have diverse applications not just for 

predictive purposes but also in hydrological analysis, agri-

cultural production and meteorological planning. They also 

facilitate sound understanding of spatial-temporal rainfall 

distribution patterns. Thus, classifying and model fitting 

analysis of various rainfall events, such as the probability of 

occurrence, the mean amount in a month or year, and distri-

bution patterns, will be beneficial to different stakeholders in 

their policy planning.  

Many authors have analysed rainfall amount with 

various mathematical models. Many have used methods 

including artificial neural networks (Deo & Shahin, 2015) and 

the K-Nearest-Neighbours (Toth, Brath, & Montanari, 2000). 

Other studies also used multiple linear regression (Shukla, 

Tripathi, Pandey, & Das, 2011) and support vector machines 
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for regression (Lin & Jhong, 2015) methods. Bagirov, 

Mahmood, and Barton (2017) evaluated a model with clusters 

linear regression (CLR) of the rainfall data in Australia and 

observed the superiority of CLR over the other models.  

Rainfall observations are known to be skewed; the 

gamma generalised model has been found by many 

researchers (Coe & Stern, 1982; Kenabatho, McIntyre, 

Chandler, & Wheater, 2012; Stern & Coe, 1984;) to fit rainfall 

observations reasonably well. Cai, Cowan and Thatcher 

(2012) have revealed rainfall reductions over semi-arid parts 

of the Southern Hemisphere, such as southern coastal Chile, 

southern Africa, and southeastern Australia. There have been 

various studies on different aspects of Australian rainfall. For 

instance, Drosdowsky (1993) has studied the seasonal rainfall 

and has revealed that it is highly variable throughout the 

country.  

Trend analyses of rainfall (Chambers, 2003; 

Lavender & Abbs, 2013; Taschetto & England, 2009) have 

shown significant observed changes, with increases in the 

northwest and decreases in the east during the period of 1970-

2009. These rainfall changes could be partially associated 

with tropical cyclones and other low pressure systems as 

revealed by Lavender and Abbs (2013). Similar studies 

(Beecham, Rashid, & Chowdhury, 2014; Srikanthan & 

Pegram, 2009;) have used a multi-site two parts model to 

describe the daily variability at some sites. They described the 

occurrences and amounts with different models and observed 

acceptable model fits in all the sites. 

Hasan and Dunn (2010) have used a Poisson-

gamma model to describe monthly rainfall observations for 

agricultural planning. They used monthly observations from 

220 stations and observed acceptable model fits on modelling 

the mean rainfall amount and the probability of occurrence. 

Knowledge of the trends in the spatial-temporal rainfall 

variability and their physical explanations are essential in 

climate change assessment (Kenabatho et al., 2012).  

Many scholars (Bärring, 1987, 1988; Um, Yun, 

Jeong, & Heo, 2011; Wickramagamage, 2010;) have studied 

rainfall regions classification. Most of these studies applied 

Principal Component Analysis (PCA) and factor analysis to 

describe the spatial-temporal variability based on classi-

fication into distinct regions. These methods delineated 

rainfall regions reasonably well in all their study areas. 

However, the latter gave easily interpretable results relative to 

the PCA. Chambers (2003) used PCA and cluster analysis to 

group rainfall in South Australia and observed that both 

methods gave similar clusters. Factor analysis models have 

been widely used in several meteorological applications to 

classify multiple outcomes, of data collected from stations 

spread over a region of considerable size such as a continent 

or nation (Bukantis, 2002; Cheung, Chooprateep, & Ma, 2015; 

Unkel, Trendafilov, Hannachi, & Jolliffe, 2010). The use of 

the method by these authors may be motivated by its ability to 

account for spatial correlations in the observations. The 

present paper fits appropriate statistical models to classify and 

describe the variability patterns of the 5-day rainfall amount in 

Australia. 

 

2. Materials and Methods 
 

This study used 64 years (1950-2013) daily aggre-

gated rainfall data for 92 observational weather stations spread 

over Australia. The data were obtained from Australian 

Bureau of Meteorology (http://www.bom.gov.au/climate/ 

data). These 92 stations were selected to give a sample 

covering the whole area as evenly as possible, and they have 

continuous rainfall records that extend over a period of 64 

years. Data recorded on leap years were omitted to maintain 

regular year with 365 days observations, and thus each station 

had 23,360 observations from the 64 years of records. For 

each site, the 5-day average rainfall defined as the average 

over successive 5-days, was computed and used in this study.  

This choice in the statistical analysis has the 

following advantages; the proportion of missing data is 

substantially reduced, and daily patterns are represented 

graphically well. Correlation between data in consecutive 

periods is also considerably reduced, and the number of 

parameters in the model is reduced by a factor of 5, 

facilitating data management, computations and providing 

smoother model fits. Where data are missing, the average is 

estimated based on the number present. If all the observations 

in a 5-day period are missing, the GLM model, described in 

the next section, is used for the imputation of these missing 

values. 

Statistical methods were used to analyse the data. The 

first method used factor analysis to classify the 92 weather 

stations into factors, which correspond to different 

geographical regions. The factor model with m factors 

( )1 2 3 mf , f , f ,..., f  can be written as;  

 

1

,

m

t j j

j
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                    (1) 

 

where yt is the rainfall for time t,  is the average rainfall 

amount of each station, λj is the factor loadings on the jth factor 

while fj is the jth common factor. The model also provides 

uniqueness values to the variables, and those variables with 

high uniqueness values cannot be assigned to any factor 

(Rencher, 2002). 

The factor analysis technique was then applied to 

the correlation matrix of the 5-day period rainfall observations 

and the parameters were estimated by the maximum-

likelihood method. The factors were rotated by the “Promax” 

one of the “oblique” rotation techniques to achieve simple 

structure patterns of loadings, and each factor is identified by 

the estimated loadings (Venables & Ripley, 2002). A stations 

was assigned to a factor if the loading was at least 0.33 and 

this was also the largest among the factor loadings (Hair, 

Anderson, Tatham, & Black, 1998). 

The second model involves fitting gamma GLM to 

the non-zero rainfall amount for these regions revealed by the 

factor analysis to generate its amount on wet days. The shape 

parameter of the gamma distribution is assumed constant 

through data set for each region. For instance, if i  is the 

mean rainfall amount for any period i  connected with 

predictor vector ix , then the average 5-day rainfall amount is 

estimated by equation (2) where   is the coefficient vector.  

 

1ln( ) .i i ix     ,                  (2) 
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where 1i   denotes the AR(1) term. A significant concern in 

fitting models to time series data such as rainfall is the 

dependence among the response variable (serial correlation) 

which violates the independence assumption. The serial 

correlation was minimised by the introduction of AR(1) term 

in the modelling. The predictors used in this study were the 5-

day rainfall periods (seasonal), the annual daily rainfall (year 

factors) and the AR(1) term. Therefore, 73 seasonal, 64 year 

factors and the AR(1) terms were employed in the models. 

The treatment contrast is usually used to fit non-Gaussian 

GLMs to obtain model coefficients that are easy to interpret. 

The models were thus fitted using the treatment contrast 

which makes the first coefficient for each factor a reference; 

such that each coefficient represents a comparison of that 

coefficient with the first factor (Venables & Ripley, 2002). 

The fitted models were assessed by the residuals 

quantile-quantile (Q-Q) plots. The quantile-quantile plot is 

one of the measures used to check the model fit at each 

observation for GLMs. The sum contrasts (Tongkumchum & 

McNeil, 2009) were used to obtain 95% confidence intervals 

(CI) to compare the fitted model means with the overall 

rainfall means. This contrast gives criteria to classify levels of 

the factor into three groups, according to whether each 

relating CI exceeds, matches, or is below the overall mean. 

All data analysis and graphical displays were carried out in R 

version 3.2.3 (R Development Core Team, 2013). 

 

3. Results and Discussion 
  

Factor analysis grouped Australia into eight distinct 

geographical rainfall regions and these regions are made up of 

groups of stations that load with just one factor. The analysis 

was conducted on several factors, but the factor loadings 

showed that eight factors were adequate and accounted for 

52% of the observed correlations in the data with correlation 

values of at least 0.34. Also, 15 stations out of the 92 

correlated with factor 1 (F1), 13 with factor 2 (F2), 10 with 

factors 3, 4 and 6 (F3, F4, and F6) and 7 with factor 5 (F5). 

Six stations correlated with factor 7 (F7) and 4 with factor 8 

(F8). A similar classification was revealed by Wanishsakpong 

and McNeil (2016) in the modelling of daily maximum 

temperature in Australia.  However, 17 stations correlated to 

more than one factor in this study (mix-factors). The 

seventeen stations with mixed factor loadings were not used in 

the GLM modelling. These mixed factor stations, most of 

them over southeast Australia, may be due to contributions 

from different climate regimes to the rainfall in this region, 

including tropical and subtropical processes. A similar reason 

may apply to the three mixed factor stations observed over 

Western Australia as well. Figure 1 depicts the map of 

Australia, locations of the observational stations used in the 

study and the eight regions as determined by the factor model. 

These regions include F1: North (N), F2: Central South (CS), 

F3: South-Southeast (SSE) and F4: Central East (CE). The 

remaining regions are F5: Southwest (SW), F6: Northwest 

(NW), F7: Northeast (NE) and F8: North-Southeast (NSE). 

Australian Bureau of Meteorology has categorised 

the climate in Australia into six regimes, namely tropical, 

grassland, desert, equatorial, temperate and subtropical group. 

These administrations were revealed using the modified 

Köppen scheme (Köppen, 1918), which identified climate

 
 

Figure 1. Map of rainfall factor regions of Australia during 1950-

2013. The small sized points show stations that correlated 
with only one factor and the triangle points show stations 

that correlated with more than one factor (mixed factors). 

 
boundaries with a mixture of natural landscape topographies 

and parts of human experience. The tropical climate system is 

mainly in Northern Australia while the grassland climate 

system is to the south with the desert classification in central 

Australia. The equatorial area is the pointed part of Cape 

York, and Bathurst and Melville Islands in the north of 

Darwin, and temperate regime mainly exist in southeastern 

Australia. The subtropics are more central coast Australia, and 

the northeastern part is more tropical (northern Queensland). 

The eight geographical regions revealed by the 

factor analysis do not follow the climate regime directly. 

Comparatively, the factor region N revealed by the factor 

analysis mostly comprises desert, grassland and tropical areas, 

while the NE is made up of mostly the equatorial and the 

tropical areas. The CS stands out as part of the desert area 

while the SW, NSE and the SSE are mostly part of the 

temperate regime. The CE is observed to be a mixture of the 

grassland and subtropical categories. Besides, the NW 

comprised the grassland and the desert land categories. 

 

3.1. Annual rainfall  
 

The annual rainfall amount on 5-day period and its 

probability of occurrence defined as the likelihood of non-zero 

annual 5-day mean rainfall on any particular year in all the 

eight regions are shown in Figure 2. There are no distinct 

annual patterns revealed by the graph. Among all the regions, 

the NE received the highest average of 4.43 mm d-1 followed 

by SSE with a mean of 3.22 mm d-1 while the CE received an 

average of 2.08 mm d-1. 

NSE, N and SW followed in that order with 

averages 1.98, 1.76 and 1.51 mm d-1 respectively. The NW re-

ceived 0.79 mm d-1 while the smallest amount of 0.67 mm d-1 

was received in the CS. Also, the NE received considerably 

high annual rainfall relative to the other regions followed by
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the SSE. In contrast, the NW and CS received relatively low 

annual rainfall. Similar probability patterns in some of the 

regions were also evident (Figure 2). These probability 

patterns show the likelihood of obtaining the corresponding 5-

day rainfall in that particular year. 

The analysis of the probability curve revealed that 

SSE was anticipated to experience rainfall throughout the 

year, whereas SW, NSE, CS and CE showed varying proba-

bilities between 0.8-1.0. However, N and NE had a probability 

between 0.59 and 1.0. The least annual rain probability of 0.59 

was observed with high variations throughout the 64 years in 

NW. 

 

3.2. Seasonal rainfall 
 

The observed seasonal rainfall amount and the 

probability of occurrence which is the likelihood of non-zero 

5-day rainfall on any particular 5-day period of the year in 

Australia from 1950-2013 are shown in Figure 3. Each bar 

corresponds to 5-day average in each particular month. It 

revealed four distinct seasonal rainfall distribution patterns in 

Australia, but out of the four seasonal rainfall groups, some 

regions have similar patterns with different seasonal rainfall 

amounts. Among the regions, the CS and NSE have similar 

seasonal patterns while the N and NE regions have a similar 

distribution. Rainfall in these regions is mostly influenced by 

tropical cyclones that convey masses of convective clouds. 

Besides, NW and CE have similar distributions, but apparent 

two rainfall peaks were observed in NW. The apparent peaks 

in the seasonal rainfall in the NW may be due to summer 

monsoon and the cold winter fronts pushing northwards. 

Seasonal rainfall distribution was observed to be similar in the 

SW and SSE. These patterns had very low variations in the CS 

and NSE, but the remaining regions experienced high seasonal 

variations.  

 

 
Figure 2. Annual rainfall amount and the probability of occurrences during 1950-2013. The black bars denote the rainfall amount; the horizontal 

blue dashed lines the overall mean, and the red curve denotes the probability of its occurrence. 
 

 
Figure 3. Seasonal rainfall amount and probability of occurrences in Australia during 1950-2013. The black bars denote the rainfall amount 

while the red curve indicates the probability of its occurrence. 
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Analysis of the similarities in the seasonal evo-

lutions between regions by correlation analysis revealed three 

main seasonal rainfall groupings. This result is consistent with 

the earlier study by Peel, Finlayson, and Mcmahon (2007) 

which revealed three main climate patterns throughout 

Australia. The first group consisting of the N, NE, NW and 

the CE regions which were seen to be strongly positively 

correlated, have apparent summer monsoon rainfall with dry 

winters. The second group comprised the CS and the NSE 

which were also seen to be strongly correlated. These regions 

observe sporadic rainfall with the apparent seasonal pattern. 

The final group comprised the SW and SSE regions which 

have similar seasonal patterns with a correlation of 0.82. On 

the other hand, the SW and SSE have evident peak rainfall 

during the winter season. The observed peak in winter may be 

as a result of climate variability mode which develops in June 

and peaks around October. The southwest of Australia is 

predominantly influenced by weather fronts, often related to 

the Southern Annular Mode (SAM), whereas the southeast is 

influenced by the SAM and IOD (and associated weather 

fronts). 

Seasonal rainfall probability of 1.0 was observed in 

the N and NE from December-March. The observed seasonal 

probability of 1.0 shows that it is certain that it will rain 

during this period. However, this probability dropped to 0.3 in 

the N in August and 0.6 in NE during September. In NW, 

rainfall probability varied from 0.2-0.9. 

 

3.3. The analysis of the fitted gamma GLM models 
 

The cube root transform of the response variable 

was used in fitting the models for all regions. The predictors 

were seen to be significant in the patterns in the N, SSE, and 

CE but the models in SW, NW and NE were significantly 

affected by the seasonal effect only. In CS and NSE the 

models were seen to be significantly affected by the year 

factors. 

Figure 4 shows the results of the fitted gamma GLM 

model of the rainfall of each region. The top panel shows the 

models in N, NE, NW, and CE while the bottom panel shows 

the models in CS, NSE, SW, and SSE. The grey points are the 

observed rainfall, and the black lines denote the fitted gamma  
 

 

 
 

Figure 4. The results of the fitted gamma model for the 5-day rainfall means in the eight factor regions in Australia during 1950-2013.  
The grey points denote the 5-day rainfall and the black line denotes the fitted 5-day rainfall mean by the GLM. 
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model. One noticeable feature is the well-marked seasonal 

periodic pattern. The eight factor regions revealed different 

rainfall variability throughout the fitted models. The fitted 

models vary throughout the 64 years in all the regions with 

minimum variations observed in CS and NSE from 1950-2013 

(the CS and NSE experiences uniform rainfall throughout the 

season). However, high temporal variations were observed in 

the N and NE. Besides, Figure 4 shows similar patterns of the 

fitted models in some of the regions. For instance, the mean 

rainfall patterns in N and NE were similar while that of NW 

was also similar to CE. Also, not much difference was 

observed between the patterns in CS and NSE, and the rainfall 

patterns in SSE and SW were similar. 

The fitted gamma models were assessed using the 

residuals quantile-quantile (Q-Q) plots from the models 

(Figure 5). The residuals plots had low variations relative to 

the expected line of best fit that indicated the models fitted the 

data quite well in most of the factor regions except for little 

departures at the upper and lower tails of some of the models. 

These departures at the lower and upper tails of some of the 

models may be as a result of rainfall extremes or other 

neglected influential predictors, which indicates that the 

gamma GLM models may only work well for non-extreme 

rainfall values. Similar results were seen by Hasan and Dunn 

(2010) using simple Poisson-gamma modelling of monthly 

rainfall in Australia and in a similar study by Kenabatho et al. 

(2012) in semi-arid Limpopo Basin in Botswana. However, 

Kenabatho et al. attributed the departures of the models from 

a normal distribution to the data quality. They established that 

GLM model is sensitive to data quality of rainfall observa-

tions and good quality data can improve the performance of 

the model. Also, the evaluation and analysis of the deviance 

residuals versus the fitted values of the models did not display 

any distinctive patterns and outliers, signifying no indication 

of poor fit of the models. Interestingly, this study revealed that 

the GLM model performed better in modelling the 

observations over a short-term period (considering the first 

thirty-two or last thirty-two years data separately). The model 

captured the periodic seasonal patterns quite well as regards 

the timings of periods. Interestingly, the seasonal variations 

were observed to be higher in all the factor regions than their 

annual rainfall variations. The fitted models revealed signi-

ficant mean rainfall amount in the NE followed by SSE and 

lowest in CS. Moreover, in N, NE, NW and CE, most of the 

annual rainfall was observed in the summer months, and these 

results were seen by Lavender and Abbs (2013) over north of 

Australia and they attributed it partially to the tropical 

cyclones and other low pressure systems. Considering all the 

eight factor regions, N, NE, NW and CE receives a substantial 

amount of rainfall from December-March (wettest months) 

while uniform monthly rainfall distributions were observed in 

CS and NSE. Similar results were seen by Hasan and Dunn 

(2010) on the analysis of monthly rainfall from 1912-1971 

with Poisson and gamma models. On the other hand, SW and 

SSE have their wettest months between August and 

September. 

 

3.4. The 95% confidence intervals for the adjusted  

       means 
 

The 95% confidence intervals for the adjusted 

means delineated the temporal variations of the fitted rainfall 

means (seasonal and annual) from the overall mean between 

1950-2013 in Australia (Figure 6). All the models were within 

the 95% CI signifying that the models represented quite well 

all the regions, but with high variations in most parts. 

Seasonal rainfall increases sharply from January to February 

where it attains the maximum, decreases to a minimum in 

August and increases gradually until December in the N and 

NE.  

The NW receives above average rainfall mostly 

between January and June and experiences below average 

until December while in the CE below average rainfall mostly 

occurs between April and October. However, no clear 

seasonal patterns were observed in the CS and the NSE 

regions. In the SW and SSE regions, seasonal rainfall 

increases sharply from February to June and decreases from 

July to December. These seasonal patterns were significant in 

all the factor regions (p < 0.001) except CS and NSE regions 

(first and second panels of Figure 6b). Also, annual rainfall 

has a very low variation concerning the overall rainfall mean 

in the N, NE, NW and the SW regions (p < 0.05 in N, but p > 

0.05 in the NE, NW and SW regions). Annual rainfall 

observed between the remaining regions varies considerably 

from the overall means during 1950-2013.   

 
 

Figure 5. The residuals quantile-quantile (Q-Q) plots based on the gamma GLM for the fitted 5-day rainfall means for the eight regions during 

1950-2013. The black lines denote the residuals while the grey line indicates the line of best fit for the correct gamma model. 
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Figure 6a. The 95% confidence interval plots for the adjusted means 

of the 5-day rainfall from in N, NE, NW, and CE during 

1950-2013. The left panels show the 5-day periods effects 

while the right panels show the annual effects. The hori-
zontal red line indicates the overall mean and the blue 

curve is the fitted rainfall mean. The grey bars are the 95% 
CIs. 

 
5. Conclusions 

 

This study showed how a class of statistical models 

could be used to analyse daily rainfall to provide essential 

information on its variability patterns. In the first model, the 

estimated 5-day average rainfall based on the data in each 

station over 64 years (1950-2013) collected from 92 observa-

tional stations in Australia were grouped into distinct climatic 

regions by using factor analysis. The result showed that eight 

factors were adequate and accounted for about 52% of the 

observed correlations in the data, thus grouping Australia into 

eight geographical rainfall regions. The model revealed 

evident spatial rainfall variability during the 64 years. The 

analysis of similarities in the seasonal evolutions between the 

eight regions by correlation analysis revealed three seasonal 

rainfall distributions. These seasonal patterns were observed 

to be similar in the N, NE, NW and CE regions. The CS and 

NSE regions were seen to have similar seasonal distributions 

while that of SW and SSE were also observed to be related. 

In general, the observed eight climatic regions have 

three main seasonal groups, and each has its unique 

dominating factor. The knowledge of these seasonal groups 

may be essential in the planning of rainfall resources in 

Australia. 

 
Figure 6b. The 95% confidence interval plots for the adjusted means 

of the 5-day rainfall in CS, NSE, SW and SSE during 

1950-2013. The left panels show the 5-day periods effects 

while the right panels show the annual effects. The hori-
zontal red line indicates the overall mean and the blue 

curve is the fitted rainfall mean. The grey bars are the 95% 
CIs. 

 
 The gamma GLM was then used to model the non-

zero rainfall amount with the seasonal and the annual factors 

as predictors. The gamma GLM fitted the data quite well in 

most of the factor regions except little departures at the upper 

and lower tails of some of the models. The model could be 

used to simulate rainfall data for the areas with inadequate 

rainfall records. 

 Further studies could explore the mixed factors, 

extreme rainfall values, and examine the relationship between 

the seasonal rainfall in the factor regions with climate varia-

bles such as humidity and temperature, climate indices/tele 

connection, and model the probability pattern of each region.  
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