

Songklanakarin J. Sci. Technol.

41 (4), 828-837, Jul. – Aug. 2019

Original Article

Cache-as-a-Service for client-side cloud caching: Models and system

Chaturong Sriwiroj1 and Thepparit Banditwattanawong2*

1 School of Information Technology, Sripatum University,

Chatuchak, Bangkok, 10900 Thailand

2 Department of Computer Science, Faculty of Science,

Kasetsart University, Chatuchak, Bangkok, 10900 Thailand

Received: 17 August 2017; Revised: 27 December 2018; Accepted: 4 April 2018

Abstract

Presently, cloud computing is being used to store large amounts of data for sharing among users. However, it imposes

cloud data-out charges and data access delays on organizations. These problems can be relieved by using cloud caching to

prevent repetitive data loading from clouds. This paper proposes technical and economic models and a system for operating a

client-side shared cloud cache to be turned into a Cache-as-a-Service (CaaS). The models and the system are our novel

contributions. Evaluation by simulation using two experimental data sets, representing large-sized and small-to-medium-sized

cloud data, demonstrated that the technical model achieved cost-saving ratios up to 56.20% and delay-saving ratios up to 56.65%,

and that the economic model recommended a monthly service charge of CaaS to be 24,599.70 USD on average based on a large-

sized cloud data set and 657.93 USD on average based on a small-to-medium-sized cloud data set. The CaaS system gained a

good level of user satisfaction.

Keywords: cloud computing, Cache-as-a-Service, economic service model, technical service model

1. Introduction

Presently, much data is stored and shared in clouds

and is continuously and rapidly increasing for distributed

sharing among users via standard protocol HTTP. As a

consequence, this could saturate network bandwidth and lead

to data access latency (Banditwattanawong & Uthayopas,

2013). Besides, it may also cause expensive cloud data

loading when accounting for the transferred volume and data-

out charge rate. This problem can be relieved by adopting

client-side cloud caching (Figure 1) which replicates data and

stores it on the user side in order to prevent repeated data

loading from clouds every time there is a request for the same

data. Although the client-side cloud caching algorithm (Bandit

wattanawong, Masdisornchote, & Uthayopas, 2016) has been

well established, it lacks service models to serve as a real

working cloud service as a Cache-as-a-Service (CaaS) model.

Figure 1. Deployment of client-side CaaS.

Research studies are available in the literature on the

technical models for cloud cache such as SC2 (Chockler et al.,

2011), high performance model, and best value model (Han et

al., 2012). On the other hand, research has been reported that

is related to economic service models for a cloud cache, such

as an economic model for self-tuning (Dash, Kantere, &

Ailamaki, 2009), a billing model (Chockler et al., 2011), a

*Corresponding author

Email address: thepparit.b@ku.th

C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019 829

dynamic pricing model (Kantere, Dash, Francois, Kyriako

poulou, & Ailamaki, 2011), and a pricing model (Han et al.,

2012). However, all of these technical and economic service

models belong to a server-side rather than client-side.

A few research studies were published on client-side

cloud caching such as dynamic block-level caching that uses

SSD on virtual host to improve virtual machine performance

(Arteaga, Otstott, & Zhao, 2012), client-side hybrid caching

file system (CFS) uses file-level disk caching and block-level

memory caching to improve performance of random file

access in cloud computing (Cao, Huang, Lei, Zhang, &

Huang, 2012), client-side cloud cache replacement policy,

namely Cloud, aims for optimal byte-hit ratio and a cost-

savings ratio and improves delay-saving ratio (Bandit

wattanawong & Uthayopas, 2014), and an intelligent cloud

cache eviction approach, namely i-Cloud, that is capable of

reducing public cloud data-out expenses, improving cloud

network scalability, and lowering cloud service access

latencies (Banditwattanawong et al., 2016). However, these

client-side cloud caching studies still lack technical and

economic models to serve as a real-working client-side CaaS.

2. Proposed CaaS Models and System

Our proposed CaaS service models consist of a

technical model and an economic model together with a

proposed CaaS system which realizes the technical and

economic models.

2.1 Technical model

Our proposed technical model represents a set of

caching performance and privacy options for different

consumer requirements. The model relies on two-dimensional

elements: cached-data storage technologies, which can be

random access memory [RAM], solid-state drive [SSD] or

hard disk drive [HDD], and cached-data sharing requirements

that are either shared cache space or isolated cache space. The

isolated cache space is defined as a single cache space used to

store data objects requested by a single consumer group. The

shared cache space is defined as a single cache space used to

store data objects requested by multiple consumer groups.

Thus, a combination of these two dimensions yields six

technical service options (Figure 2).

● Option 1: RAM isolated cache space is suitable

for organizations who require very fast data access (based on

RAM speed) and gives priority to data security and privacy.

● Option 2: RAM shared cache space is suitable for

organizations who require very fast data access and have

affiliation with other organizations able to share cached data

without security and privacy concerns such as an enterprise

with multiple branches can share cached data across the

branches to economize service charge based on cost sharing.

● Option 3: SSD isolated cache space is a good

choice for obtaining data access speed and data security and

privacy with a moderate budget.

● Option 4: SSD shared cache space is for fast data

access and multiple organizations able to share the same

cached data.

● Option 5: HDD isolated cache space is appro-

priate for organizations who require data security and privacy

with a limited budget.

Figure 2. Proposed technical service model.

● Option 6: HDD shared cache space allows normal

data access with a limited budget and full cached-data sharing.

2.2 Economic model

The proposed economic model serves as the service

pricing scheme for the technical service options for CaaS

providers. The model has been derived from two underlying

platforms on which a CaaS system is deployed: colocation

service and cloud Infrastructure as a Service (IaaS). Colo-

cation-based and IaaS-based services incur different capital

expenditures (CapEx), operating expenditures (OpEx) and

probably different desired profit margins. The CapEx are the

expenses incurred to initiate the business or service system to

acquire or upgrade fixed long-term assets for operation. The

OpEx are the expenses incurred in the course of ordinary

business such as general and administrative expenses. OpEx

are comprised of two parts: fixed cost (OpExf), which is a

periodic constant cost, and variable cost (OpExv), which is a

periodic cost that varies with operated service output. We

have modeled the CapEx and the OpEx based on the total cost

of ownership (Amazon Web Services [AWS], 2014). By

taking into account these costing factors, a reasonable service

charge has been derived in Equation 1.

PR = AC+PF (1)

where PR is CaaS subscription pricing per month, AC is the

total actual monthly cost, and PF is the desired monthly profit.

Since AC is the summation of both CapEx and OpEx on a

monthly basis, it is necessary to clarify the CapEx and OpEx

of different CaaS deployment platforms which leads to two

different economic options of the CaaS.

2.2.1 Option 1. CaaS running on colocation service

Based on Equation 1, the monthly price of CaaS is

calculated from the summation of CapEx, OpEx, and desired

profit. Specifically, CapEx comes from asset depreciation,

while OpEx includes only amortized fixed cost and variable

cost. Depreciation can be calculated using Equation 2.

Dd = ((Cd-Rd)/pd)/12 (2)

where Dd is the depreciation per annum of fixed asset d

(which can be infrastructure, hardware, and software), Cd is

the cost of fixed asset d, Rd is an estimated remaining value at

the end of asset d's lifetime, pd is the lifetime (years) of fixed

asset d, and P is the maximum projected number of consumer

sites that can be supported by the fixed assets. We can now

830 C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019

derive CapEx per month for all assets involving a CaaS

system by using Equation 3.

CapEx = ∑ Dd/P (3)

As a consequence, the first part of CaaS price

derived from CapEx, i.e. the AC and PF of CapEx in Equation

1, is showed in Equation 4 where pm is the desired profit in

percentage.

PRCapEx = CapEx+CapEx×pm/100 (4)

With respect to the amortized fixed cost, a basic

formula for amortization is Equation 5 where Aam is the

installment amount per month, Pam is an initial principal per

month, eam is an interest rate per month, qam is the total

number of installments, and am can be salary, colocation cost,

hardware maintenance cost, and software maintenance cost.

Aam = (Pam×eam×(1+eam)q
am)/((1+eam)q

am-1) (5)

Therefore, the amortized fixed cost (OpExf) per

month per consumer site is Equation 6.

OpExf = ∑Aam/P (6)

As a consequence, the second part of the CaaS price

derived from fixed OpEx, i.e. the AC and PF of fixed OpEx in

Equation 1, is shown in Equation 7.

PROpExf = OpExf+OpExf×pm/100 (7)

Additionally, as the third part, CaaS price must

include variable OpEx, which is divided into two parts: a

variable OpEx in case of cache miss and a variable OpEx in

case of cache hit. For a data object oi, tstore is a timestamp oi is

stored into a cache, tevict is a timestamp oi is evicted from a

cache, Δt is elapsed time equal to tevict – tstore, Toi is the

transfer cost of oi from a public cloud server, Scoi(Δt) is the

cost of using cache space per Δt for oi, c is the member of a

set {RAM,SSD,HDD}, p can be Isolated cache space or

Shared cache space, Mpoi is the electricity cost of processing

the cache miss of oi, and Ooi is the transfer-out cost of oi from

cache to an end user. Thus, the total cost of oi's cache miss

(Cmissc,poi) is given in Equation 8.

Cmissc,poi = Toi+Scoi(Δt)+Mpoi+Ooi (8)

As a consequence, the part of CaaS price derived

from variable OpEx in the case of cache miss (i.e., the AC and

PF of variable OpEx in Equation 1 in the case of cache miss)

is shown in Equation 9.

PRmissc,poi = Cmissc,poi+Cmissc,poi×pm/100 (9)

On the other hand, the total cost of a cache hit is

simply Equation 10.

Chitc,poi = Mpoi+Ooi (10)

Subsequently, the part of CaaS price derived from

variable OpEx in the case of cache hit, i.e. the AC and PF of

variable OpEx in Equation 1 in the case of cache hit, is shown

in Equation 11.

PRhitc,poi = Chitc,poi+Chitc,poi×pm/100 (11)

The part of CaaS price derived from total OpEx is

shown in Equation 12.

P / oPRhitoPRmissPROpExv i

h

1j

pc,i

m

1l

pc,

 (12)

where m is the total number of cache misses (detected in a

CaaS system) per month and h is the total number of cache

hits (detected in a CaaS system) per month. Finally, based on

Equation 1, the monthly price of CaaS deployed by means of

colocation can be derived from Equation 13.

PR = PRCapEx+PROpExf+PROpExv (13)

2.2.2 Option 2. CaaS running on infrastructure as a

 service

In this CaaS economic option, CapEx is composed

of merely software license costs while OpExf consists of the

amortized costs of salaries and IaaS subscription fee. The

OpExv is composed of the costs of cache misses and hits. The

variable costs of cache misses and hits can be calculated with

Equations 8 and 10, respectively, and they can be summed up

in Equation 14.

P / oChitoCmissOpExv i

h

1j

pc,i

m

1l

pc,

 (14)

Therefore, the monthly price of CaaS deployed over

IaaS can be derived from Equation 15.

PR = [(CapEx+OpExf+OpExv)]+

 [((CapEx+OpExf+OpExv)×pm)/100] (15)

2.3 CaaS system

This section describes the analysis, design and

implementation of our CaaS system, which operates according

to the proposed models.

2.3.1 System analysis and design

This subsection explains the transformation of CaaS

system requirements into a blueprint. We defined user

requirement specification based on not only the technical and

economic models but also a service supply chain according to

Josyula, Orr, and Page (2011) (Figure 3). The service supply

chain consists of 6 steps starting from consumer subscription

to CaaSes from a catalogue until they gain provisioned

services matching their needs. All of the service usage and

change requests are logged and can be monitored by a CaaS

provider.

Once we had a clear blueprint set, we employed the

Unified Modeling Language (UML) and Entity-Relationship

diagrams to conduct the analysis and design. Figure 4 presents

a user case diagram.

C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019 831

Figure 3. CaaS supply chain.

Figure 4 User case diagram for our CaaS system.

832 C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019

We also came up with the architecture of the IaaS-

based CaaS system depicted in Figure 5.

The architecture is comprised of virtual machines,

each of which acts as an independent caching server. One of

the virtual machines is responsible for web-based CaaS

management, and according to subscribing customer volume,

the virtual machines can scale out or in.

Figure 5. CaaS architecture based on IaaS.

3. Evaluation

Evaluation of both proposed models was conducted

by means of trace-driven simulation. As for the CaaS system

evaluation, we engaged thorough user-acceptance testing

using questionnaires.

3.1 Simulation data sets

The traces were produced from a single pre-

processed HTTP trace obtained from IRCache (National

Laboratory for Applied Network Research [NLANR], 2016)

collected from users in Boulder, Colorado, USA for 31 days.

The preprocessing cleaned trace to remain only the records of

requests to top 50 domains (to emulate the total number of

cloud-hosted intranet services (Banditwattanawong et al.,

2016)) and adjusted object sizes within the trace proportional

to the original sizes the scenarios separately. The pre-

processing produced two distinct traces.

The preprocessing trace representing the large-sized

object scenario, generated a data set with total requested

object size equal to realistic organization at bandwidth

consumption through 10 Gbps Metro Ethernet with 50%

average downstream bandwidth utilization for 8 work hours a

day. Thus, the total amount of cloud data-out transfer was

4,570.31 TB per year (260 workdays per year) or 380.86 TB

per month. This size of total transferred objects is divided

across the new object sizes in each preprocessed trace. The

objects requested in the new trace include the files listed in

Table 1.

The preprocessing trace representing the small-to-

medium object scenario generated the other data set based on

the original HTTP trace by adjusting the original object sizes

to produce requests to the files listed in Table 2. Thus, the

total size of objects requested from the cloud was 6,697.69

GB per month.

Table 1. Characteristics of the large-sized object data set.

Object

types

Object size

(bytes)

No. of

objects

Utilized cache space

(bytes)

High-

definition

large
videos

53,687,091,200 617 6,979,321,856,000

Animations 21,474,836,480 1,702 11,617,886,535,680

Virtual
machine

image files

16,106,127,360 10,632 71,301,825,822,720

Standard-
definition

videos

5,046,586,572.8 35,237 119,518,309,803,622

Table 2. Characteristics of the small-to-medium-sized object data

set.

Object types
Object size

(bytes)
No. of
objects

Utilized cache
space (bytes)

Standard-

definition

large videos

5,046,586,572.8 522 2,634,318,191,106

Audios 314,572,800 8,552 2,690,226,585,600

High-

definition
image raw

images

26,214,400 51,857 1,359,400,140,800

High-

definition

images

7,340,032 53,592 393,366,994,944

Miscellaneous
cloud data

1,048,576 108,985 114,279,055,360

3.2 Performance metrics

To evaluate the technical model, we measured its

realized performance using the following four metrics.

Cost-saving ratio is the difference between the total

data downloading cost without caching and with caching

divided by the total data downloading cost without caching.

The metric value is calculated using Equation 16.

 (16)

where n is the number of total requests, ci is data object i

loading charge from a cloud provider to a CaaS system per

object size, si is the size of object i, ri is a request to object i, l

is the total number of cache hits, ck is a data loading charge

from CaaS to a consumer premise per object size, k is a CaaS

option (RAM, SSD, or HDD), hi is the hit rate of object i, mi

is the miss rate of object i, and o is the total number of cache

misses.

Delay-saving ratio refers to the difference between

the total data downloading latency without caching and with

caching divided by the total data downloading latency without

caching. The metric value can be calculated using Equation

17.

C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019 833

 (17)

where di is data object i loading delay from a cloud provider to

a CaaS system and ei is data object i loading delay from CaaS

to a consumer premise.

Hit rate is the total number of hits per total number

of requests (Podlipnig & Böszörmenyi, 2003) as shown in

Equation 18.

 (18)

Byte hit rate is the total size of hit objects per total

size of requested objects (Podlipnig & Böszörmenyi, 2003) as

in Equation 19.

 (19)

3.3 Simulation tools

We adapted the proven preprocessor and simulator

of (Banditwattanawong et al., 2016) using Java SE Runtime

Environment version 1.8.0_20-b26 and NetBeans version

8.0.2 Patch 2. All simulation sessions were conducted on a 64-

bit Windows 7 laptop computer using an Intel CPU i7-3667 U

2.00 GHz, 6 GB RAM, and 1 TB hard drive.

3.4 Simulated scenarios

Four scenarios of combination between the CaaS

deployment scenarios and the data consumption scenarios

were used in our simulation.

● Scenario I: CaaS was deployed based on colo-

cation and served a large-sized object data set.

● Scenario II: CaaS was deployed based on IaaS

and served a large-sized object data set.

● Scenario III: CaaS was deployed based on colo-

cation and served a small-to-medium-sized object data set.

● Scenario IV: CaaS was deployed based on IaaS

and served a small-to-medium-sized object data set.

Furthermore, every scenario was simulated against a

combination of practical factors shown in Figure 6 that

consisted of two data-out charge types (non-uniform costs

exist when using more than one cloud provider with different

data-out charge rates), two service types, three CaaS options,

one cache size, and the pricing policies applied to only the

IaaS deployment scenario: cost sharing and profit sharing.

Therefore, there were a total of 72 simulation sessions among

the four scenarios.

3.5. System implementation

We mainly engaged Java, PHP, Yii2 framework

(Makarov, 2013; Safronov & Winesett, 2014), XAMPP (Apa

che, 2015), and modified Squid open source software (squid-

cache.org, 2015). The modification of Squid was to include i-

Cloud.

4. Results and Discussion

We report the simulation results based on the four

scenarios. Since the economic model sets the appropriate

prices, the simulation results reflect monthly CaaS sub-

scription cost when serving entire certain data sets. The

simulation results of the technical model are reported in the 4

performance metrics.

● Economic model based on Scenario I: Figure 7a

illustrates that, if the consumer of a single cloud utilizes CaaS

(RAM option and isolated cache space), a CaaS provider

should bill 31,731.16 USD per month for the service usage in

order to gain the desired profit. Figure 7b shows that, if the

consumer of multi-provider clouds utilizes CaaS (SSD cache

space sharing option), a CaaS provider should bill 21,405.69

USD per month for the service usage to gain the desired

margin.

● Economic model based on Scenario II: Figure 7c

demonstrates the costs on a profit-sharing basis for a

consumer organization using a single cloud. Similarly, Figure

7d shows costs on a profit-sharing basis for a consumer using

multiple cloud providers. Figure 7e illustrates CaaS usage

costs based on the cost-sharing policy when a consumer

organization utilizes a single cloud. Figure 7f shows costs on a

cost-sharing basis for a consumer using multiple cloud

providers.

● Economic model based on Scenario III: Figure 7g

illustrates the appropriate costs for a consumer using a single

cloud. Figure 7h shows the costs for a consumer using

multiple cloud providers.

Figure 6. Practical factors to build the 72 simulation sessions.

834 C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019

Figure 7. Monthly service subscription costs based on the scenarios.

C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019 835

● Economic model based on Scenario IV: Based on

a profit-sharing policy, Figure 7i illustrates the appropriate

CaaS subscription costs for a consumer using a single cloud.

Similarly, Figure 7j shows the costs for a consumer using

multiple cloud providers. On the other hand, with a cost-

sharing policy, Figure 7k illustrates costs for a consumer using

a single cloud. Similarly, Figure 7l shows costs for a consu-

mer using multiple cloud providers.

● Technical model based on Scenario I: The best

performance in terms of a cost saving ratio was found in the

HDD option and the shared cache space as shown in Figure

8a, while the best performance in terms of delay saving ratio

Figure 8. CaaS performance based on the scenarios.

836 C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019

were found in the RAM option and the shared cache space as

depicted in Figure 8b.

● Technical model based on Scenario II: The best

cost saving performances were found in the HDD option and

the shared cache space as shown in Figure 8c, while the best

performances in terms of delay saving ratio were found in the

RAM option and the shared cache space as depicted in Figure

8d.

● Technical model based on Scenario III: The best

performances in terms of cost saving ratio were found in the

HDD option and the shared cache space as shown in Figure

8e, while the best performances in terms of delay saving ratio

were found in the RAM option and the shared cache space as

depicted in Figure 8f.

● Technical model based on Scenario IV: The best

cost saving performances were found in the HDD option and

the shared cache space as shown in Figure 8g, while the best

performances in terms of delay saving ratio were found in the

RAM option and the shared cache space as depicted in Figure

8h.

The first finding to be discussed comes from Figure

8c. The HDD shared cache space option had the highest cost-

saving ratio due to its lowest cost per storage space unit,

whereas Figure 8f shows that RAM shared cache space option

had the lowest cost-saving ratio because of its highest cost per

space unit. For the delay-saving performance, Figure 8b and

Figure 8d prove that RAM shared cache space options

outperformed the other options because RAM has the lowest

access latency, whereas Figure 8e and Figure 8g showed that

HDD shared cache space options had the worst delay-saving

ratios because of the slowest access times of HDD. By

synthesizing Figure 8, an economic model that had the

cheapest service price was the shared cache space options

rather than the isolated cache space options because the costs

were shared by multiple user organizations.

In terms of cost effectiveness, the option that

provided the highest benefit per cost value (where the benefit

was a percent cost-saving ratio and the cost was monthly

service cost) was, of course, the HDD shared cache space

service option (cost effectiveness = 0.05292) based on the

uniform cost and profit-sharing policy. Furthermore, the

highest benefit per cost value when the benefit was percent

delay-saving ratio and the cost was monthly service cost was

the SSD shared cache space service option (cost effectiveness

= 0.05447) based on the non-uniform cost and profit-sharing

policy. The reason that the SSD shared cache space service

option had the best cost effectiveness was because SSD has a

slightly longer access delay than RAM but much faster than

HDD resulting in the delay saving performance of SSD closer

to that of RAM, while RAM incurs a highest cost per storage

space or the highest monthly service cost.

The mean Likert scale values for the CaaS system

on the performance and security, content, functional process,

and ease of use aspects were 4.29, 4.44, 4.44, and 4.39,

respectively. The average score of all aspects was 4.39, which

meant that our CaaS system performed well at a good level.

The overall 4.39 score resulted from the application of a well-

known spiral software life cycle model by conducting require-

ment gathering, analysis, design, coding, testing, and evalua-

tion phases in an iterative manner (Pfleeger & Atlee, 2009).

5. Conclusions

This paper presented three novel contributions: an

economic model, a technical model, and a system. The eco-

nomic model consisted of two economic options: colocation

based and IaaS based. The technical model was comprised of

six service options: (1) RAM isolated cache space; (2) RAM

shared cache space; (3) SSD isolated cache space; (4) SSD

shared cache space; (5) HDD isolated cache space; and (6)

HDD shared cache space. The system shows the analysis,

design and implementation of client-side CaaS for the first

time in the field. Evaluation of the economic model was

conducted with 72 simulation sessions. It was found that the

highest monthly service cost was 32,058.52 USD, which

existed in the scenario where CaaS (RAM isolated cache

space) was deployed based on IaaS and served the large-sized

cloud data set using the cost sharing and the uniform cost,

whereas the minimum monthly service cost was 778.71 USD

of the scenario where CaaS (RAM isolated cache space) was

deployed based on IaaS and served the small-to-medium-sized

cloud data set using the profit sharing and the uniform cost.

Evaluation of the technical model was also based on the 72

sessions. The best cost-saving ratio (56.20%), which existed

in the scenario CaaS (HDD shared cache space), was deployed

based on IaaS and served the large-sized cloud data set using

the uniform cost. The best delay-saving ratio (56.65%) lied in

two scenarios: a scenario CaaS (RAM shared cache space)

was deployed based on colocation and served the large-sized

cloud data set using the uniform cost and a scenario CaaS

(RAM shared cache space) was deployed based on IaaS and

served the large-sized cloud data set using the uniform cost.

Finally, we evaluated the system development by means of

user acceptance test, which achieved an average score of 4.39.

Our future work includes 1) to perform an industrial test of the

system before real CaaS deployment and 2) to invent another

model effectiveness metric that is independent of US dollars,

which was precise only at the time this paper was written, i.e.

when the US dollar exchange rate changes, the data must be

re-applied in our economic model.

References

Amazon Web Services. (2014). Total Cost of Ownership

(TCO) comparison. Retrieved from https://s3-eu-

west-1.amazonaws.com/donovapublic/TCOOutput.

pdf

Arteaga, D., Otstott, D., & Zhao, M. (2012). Dynamic block-

level cache management for cloud computing

systems. Proceeding of the Conference on File and

Storage Technologies.

Banditwattanawong, T., & Uthayopas, P. (2013). Improving

cloud scalability, economy and responsiveness with

client-side cloud cache. Proceeding of the 10th

International Conference on Electrical Engineering/

Electronics, Computer, Telecommunications and

Information Technology, 1-6. doi:10.1109/ECTI

Con.2013.6559553

C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019 837

Banditwattanawong, T., & Uthayopas, P. (2014). A client-side

cloud cache replacement policy. ECTI Transactions

on Computer and Information Technology, 8(2),

152-160.

Banditwattanawong, T., Masdisornchote, M., & Uthayopas, P.

(2016). Multi-provider cloud computing network

infrastructure optimization. Future Generation

Computer Systems, 55, 116-128. doi:10.1016/j.

future.2015.09.002

Cao, L., Huang, L., Lei, K., Zhang, Z., & Huang, L. E. (2012).

Hybrid caching for cloud storage to support

traditional application. Proceeding of the IEEE Asia

Pacific Cloud Computing Congress (APCloudCC),

11-15. doi:10.1109/APCloudCC.2012.6486503

Chockler, G., Laden, G., & Vigfusson, Y. (2011). Design and

implementation of caching services in the cloud.

IBM Journal of Research and Development, 55(6),

9-1. doi:10.1147/JRD.2011.2171649

Dash, D., Kantere, V., & Ailamaki, A. (2009). An economic

model for self-tuned cloud caching. Proceeding of

the 25th International Conference on Data Engi-

neering, IEEE, 1687-1693. doi:10.1109/ICDE.2009.

143

Han, H., Lee, Y. C., Shin, W., Jung, H., Yeom, H. Y., &

Zomaya, A. Y. (2012). Cashing in on the Cache in

the Cloud. IEEE Transactions on Parallel and

Distributed Systems, 23(8), 1387-1399. doi:10.1109/

TPDS.2011.297

Josyula, V., Orr, M., & Page, G. (2011). Cloud computing:

Automating the virtualized data center. Indiana-

polis, IN: Cisco Press.

Kantere, V., Dash, D., Francois, G., Kyriakopoulou, S., &

Ailamaki, A. (2011). Optimal service pricing for a

cloud cache. IEEE Transactions on Knowledge and

Data Engineering, 23(9), 889-915. doi: 10.1109/

TKDE.2011.35

Makarov, A. (2013). Yii application development cookbook.

Birmingham, England: Packt Publishing.

NLANR (2016, January). National Laboratory for Applied

Network Research. Retrieved from http://www.

ircache.net/

Pfleeger, S. L., & Atlee, J. M. (2009). Software engineering:

Theory and practice (4th ed.). Cambridge, England:

Pearson Press.

Podlipnig, S., & Böszörmenyi, L. (2003). A survey of web

cache replacement strategies. ACM Computing

Surveys, 35(4), 374-398. doi:10.1145/954339.954

341

Safronov, M., & Winesett, J. (2014). Web application deve-

lopment with Yii 2 and PHP. Birmingham, England:

Packt Publishing.

Squid-Cache (2015) [Computer software]. squid-cache.org.

XAMPP (2015) (Windows) [Computer software]. Apache

Friends.

