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Abstract 
 
Presently, cloud computing is being used to store large amounts of data for sharing among users. However, it imposes 

cloud data-out charges and data access delays on organizations. These problems can be relieved by using cloud caching to 

prevent repetitive data loading from clouds. This paper proposes technical and economic models and a system for operating a 

client-side shared cloud cache to be turned into a Cache-as-a-Service (CaaS). The models and the system are our novel 

contributions. Evaluation by simulation using two experimental data sets, representing large-sized and small-to-medium-sized 

cloud data, demonstrated that the technical model achieved cost-saving ratios up to 56.20% and delay-saving ratios up to 56.65%, 

and that the economic model recommended a monthly service charge of CaaS to be 24,599.70 USD on average based on a large-

sized cloud data set and 657.93 USD on average based on a small-to-medium-sized cloud data set. The CaaS system gained a 

good level of user satisfaction. 
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1. Introduction 
 

Presently, much data is stored and shared in clouds 

and is continuously and rapidly increasing for distributed 

sharing among users via standard protocol HTTP. As a 

consequence, this could saturate network bandwidth and lead 

to data access latency (Banditwattanawong & Uthayopas, 

2013). Besides, it may also cause expensive cloud data 

loading when accounting for the transferred volume and data-

out charge rate. This problem can be relieved by adopting 

client-side cloud caching (Figure 1) which replicates data and 

stores it on the user side in order to prevent repeated data 

loading from clouds every time there is a request for the same 

data. Although the client-side cloud caching algorithm (Bandit 

wattanawong, Masdisornchote, & Uthayopas, 2016) has been 

well established, it lacks service models to serve as a real 

working cloud service as a Cache-as-a-Service (CaaS) model. 

 

 
 

Figure 1. Deployment of client-side CaaS. 

 
Research studies are available in the literature on the 

technical models for cloud cache such as SC2 (Chockler et al., 

2011), high performance model, and best value model (Han et 

al., 2012). On the other hand, research has been reported that 

is related to economic service models for a cloud cache, such 

as an economic model for self-tuning (Dash, Kantere, & 

Ailamaki, 2009), a billing model (Chockler et al., 2011), a 
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dynamic pricing model (Kantere, Dash, Francois, Kyriako 

poulou, & Ailamaki, 2011), and a pricing model (Han et al., 

2012). However, all of these technical and economic service 

models belong to a server-side rather than client-side. 

A few research studies were published on client-side 

cloud caching such as dynamic block-level caching that uses 

SSD on virtual host to improve virtual machine performance 

(Arteaga, Otstott, & Zhao, 2012), client-side hybrid caching 

file system (CFS) uses file-level disk caching and block-level 

memory caching to improve performance of random file 

access in cloud computing (Cao, Huang, Lei, Zhang, & 

Huang, 2012), client-side cloud cache replacement policy, 

namely Cloud, aims for optimal byte-hit ratio and a cost-

savings ratio and improves delay-saving ratio (Bandit 

wattanawong & Uthayopas, 2014), and an intelligent cloud 

cache eviction approach, namely i-Cloud, that is capable of 

reducing public cloud data-out expenses, improving cloud 

network scalability, and lowering cloud service access 

latencies (Banditwattanawong et al., 2016). However, these 

client-side cloud caching studies still lack technical and 

economic models to serve as a real-working client-side CaaS.  

 

2. Proposed CaaS Models and System 
 

Our proposed CaaS service models consist of a 

technical model and an economic model together with a 

proposed CaaS system which realizes the technical and 

economic models.  

 

2.1 Technical model 
 

Our proposed technical model represents a set of 

caching performance and privacy options for different 

consumer requirements. The model relies on two-dimensional 

elements: cached-data storage technologies, which can be 

random access memory [RAM], solid-state drive [SSD] or 

hard disk drive [HDD], and cached-data sharing requirements 

that are either shared cache space or isolated cache space. The 

isolated cache space is defined as a single cache space used to 

store data objects requested by a single consumer group. The 

shared cache space is defined as a single cache space used to 

store data objects requested by multiple consumer groups. 

Thus, a combination of these two dimensions yields six 

technical service options (Figure 2). 

● Option 1: RAM isolated cache space is suitable 

for organizations who require very fast data access (based on 

RAM speed) and gives priority to data security and privacy. 

● Option 2: RAM shared cache space is suitable for 

organizations who require very fast data access and have 

affiliation with other organizations able to share cached data 

without security and privacy concerns such as an enterprise 

with multiple branches can share cached data across the 

branches to economize service charge based on cost sharing. 

● Option 3: SSD isolated cache space is a good 

choice for obtaining data access speed and data security and 

privacy with a moderate budget. 

● Option 4: SSD shared cache space is for fast data 

access and multiple organizations able to share the same 

cached data. 

● Option 5: HDD isolated cache space is appro-

priate for organizations who require data security and privacy 

with a limited budget. 

 
 

Figure 2. Proposed technical service model. 

 
● Option 6: HDD shared cache space allows normal 

data access with a limited budget and full cached-data sharing. 

 

2.2 Economic model 
 

The proposed economic model serves as the service 

pricing scheme for the technical service options for CaaS 

providers. The model has been derived from two underlying 

platforms on which a CaaS system is deployed: colocation 

service and cloud Infrastructure as a Service (IaaS). Colo-

cation-based and IaaS-based services incur different capital 

expenditures (CapEx), operating expenditures (OpEx) and 

probably different desired profit margins. The CapEx are the 

expenses incurred to initiate the business or service system to 

acquire or upgrade fixed long-term assets for operation. The 

OpEx are the expenses incurred in the course of ordinary 

business such as general and administrative expenses. OpEx 

are comprised of two parts: fixed cost (OpExf), which is a 

periodic constant cost, and variable cost (OpExv), which is a 

periodic cost that varies with operated service output. We 

have modeled the CapEx and the OpEx based on the total cost 

of ownership (Amazon Web Services [AWS], 2014). By 

taking into account these costing factors, a reasonable service 

charge has been derived in Equation 1. 

 

PR = AC+PF                  (1) 

 

where PR is CaaS subscription pricing per month, AC is the 

total actual monthly cost, and PF is the desired monthly profit. 

Since AC is the summation of both CapEx and OpEx on a 

monthly basis, it is necessary to clarify the CapEx and OpEx 

of different CaaS deployment platforms which leads to two 

different economic options of the CaaS. 

 

2.2.1 Option 1. CaaS running on colocation service 
 

Based on Equation 1, the monthly price of CaaS is 

calculated from the summation of CapEx, OpEx, and desired 

profit. Specifically, CapEx comes from asset depreciation, 

while OpEx includes only amortized fixed cost and variable 

cost. Depreciation can be calculated using Equation 2. 

 

Dd = ((Cd-Rd)/pd)/12                 (2) 

 

where Dd is the depreciation per annum of fixed asset d 

(which can be infrastructure, hardware, and software), Cd is 

the cost of fixed asset d, Rd is an estimated remaining value at 

the end of asset d's lifetime, pd is the lifetime (years) of fixed 

asset d, and P is the maximum projected number of consumer 

sites that can be supported by the fixed assets. We can now 
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derive CapEx per month for all assets involving a CaaS 

system by using Equation 3. 

 

CapEx = ∑ Dd/P                  (3) 

 

As a consequence, the first part of CaaS price 

derived from CapEx, i.e. the AC and PF of CapEx in Equation 

1, is showed in Equation 4 where pm is the desired profit in 

percentage. 

 

PRCapEx = CapEx+CapEx×pm/100                (4) 

 

With respect to the amortized fixed cost, a basic 

formula for amortization is Equation 5 where Aam is the 

installment amount per month, Pam is an initial principal per 

month, eam is an interest rate per month, qam is the total 

number of installments, and am can be salary, colocation cost, 

hardware maintenance cost, and software maintenance cost. 

 

Aam = (Pam×eam×(1+eam)q
am)/((1+eam)q

am-1)           (5) 

 

Therefore, the amortized fixed cost (OpExf) per 

month per consumer site is Equation 6. 

 

OpExf = ∑Aam/P                  (6) 

 

As a consequence, the second part of the CaaS price 

derived from fixed OpEx, i.e. the AC and PF of fixed OpEx in 

Equation 1, is shown in Equation 7. 

 

PROpExf = OpExf+OpExf×pm/100                (7) 

 

Additionally, as the third part, CaaS price must 

include variable OpEx, which is divided into two parts: a 

variable OpEx in case of cache miss and a variable OpEx in 

case of cache hit. For a data object oi, tstore is a timestamp oi is 

stored into a cache, tevict is a timestamp oi is evicted from a 

cache, Δt is elapsed time equal to tevict – tstore, Toi is the 

transfer cost of oi from a public cloud server, Scoi(Δt) is the 

cost of using cache space per Δt for oi, c is the member of a 

set {RAM,SSD,HDD}, p can be Isolated cache space or 

Shared cache space, Mpoi is the electricity cost of processing 

the cache miss of oi, and Ooi is the transfer-out cost of oi from 

cache to an end user. Thus, the total cost of oi's cache miss 

(Cmissc,poi) is given in Equation 8. 

 

Cmissc,poi = Toi+Scoi(Δt)+Mpoi+Ooi                (8) 

 

As a consequence, the part of CaaS price derived 

from variable OpEx in the case of cache miss (i.e., the AC and 

PF of variable OpEx in Equation 1 in the case of cache miss) 

is shown in Equation 9. 

 

PRmissc,poi = Cmissc,poi+Cmissc,poi×pm/100        (9) 

 

On the other hand, the total cost of a cache hit is 

simply Equation 10. 

 

Chitc,poi = Mpoi+Ooi                              (10) 

 

Subsequently, the part of CaaS price derived from 

variable OpEx in the case of cache hit, i.e. the AC and PF of 

variable OpEx in Equation 1 in the case of cache hit, is shown 

in Equation 11. 

 

PRhitc,poi = Chitc,poi+Chitc,poi×pm/100              (11) 

 

The part of CaaS price derived from total OpEx is 

shown in Equation 12. 

 

P / oPRhitoPRmissPROpExv i

h

1j

pc,i

m

1l

pc, 







 

        (12) 
 

where m is the total number of cache misses (detected in a 

CaaS system) per month and h is the total number of cache 

hits (detected in a CaaS system) per month. Finally, based on 

Equation 1, the monthly price of CaaS deployed by means of 

colocation can be derived from Equation 13. 

 

PR = PRCapEx+PROpExf+PROpExv               (13)  

 

2.2.2 Option 2. CaaS running on infrastructure as a  

         service 
 

In this CaaS economic option, CapEx is composed 

of merely software license costs while OpExf consists of the 

amortized costs of salaries and IaaS subscription fee. The 

OpExv is composed of the costs of cache misses and hits. The 

variable costs of cache misses and hits can be calculated with 

Equations 8 and 10, respectively, and they can be summed up 

in Equation 14. 
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            (14) 

 
Therefore, the monthly price of CaaS deployed over 

IaaS can be derived from Equation 15. 

 

PR = [(CapEx+OpExf+OpExv)]+   

         [((CapEx+OpExf+OpExv)×pm)/100]        (15)  

 

2.3 CaaS system 
 

This section describes the analysis, design and 

implementation of our CaaS system, which operates according 

to the proposed models.  

 

2.3.1 System analysis and design 
 

This subsection explains the transformation of CaaS 

system requirements into a blueprint. We defined user 

requirement specification based on not only the technical and 

economic models but also a service supply chain according to 

Josyula, Orr, and Page (2011) (Figure 3). The service supply 

chain consists of 6 steps starting from consumer subscription 

to CaaSes from a catalogue until they gain provisioned 

services matching their needs. All of the service usage and 

change requests are logged and can be monitored by a CaaS 

provider. 

Once we had a clear blueprint set, we employed the 

Unified Modeling Language (UML) and Entity-Relationship 

diagrams to conduct the analysis and design. Figure 4 presents 

a user case diagram. 
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Figure 3. CaaS supply chain. 

 

 
Figure 4 User case diagram for our CaaS system. 
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We also came up with the architecture of the IaaS-

based CaaS system depicted in Figure 5.  

The architecture is comprised of virtual machines, 

each of which acts as an independent caching server. One of 

the virtual machines is responsible for web-based CaaS 

management, and according to subscribing customer volume, 

the virtual machines can scale out or in.  

 

 
 

Figure 5. CaaS architecture based on IaaS. 
 

3. Evaluation 
 

Evaluation of both proposed models was conducted 

by means of trace-driven simulation. As for the CaaS system 

evaluation, we engaged thorough user-acceptance testing 

using questionnaires.  

 

3.1 Simulation data sets 
 

The traces were produced from a single pre-

processed HTTP trace obtained from IRCache (National 

Laboratory for Applied Network Research [NLANR], 2016) 

collected from users in Boulder, Colorado, USA for 31 days. 

The preprocessing cleaned trace to remain only the records of 

requests to top 50 domains (to emulate the total number of 

cloud-hosted intranet services (Banditwattanawong et al., 

2016)) and adjusted object sizes within the trace proportional 

to the original sizes the scenarios separately. The pre-

processing produced two distinct traces. 

The preprocessing trace representing the large-sized 

object scenario, generated a data set with total requested 

object size equal to realistic organization at bandwidth 

consumption through 10 Gbps Metro Ethernet with 50% 

average downstream bandwidth utilization for 8 work hours a 

day. Thus, the total amount of cloud data-out transfer was 

4,570.31 TB per year (260 workdays per year) or 380.86 TB 

per month. This size of total transferred objects is divided 

across the new object sizes in each preprocessed trace. The 

objects requested in the new trace include the files listed in 

Table 1. 

The preprocessing trace representing the small-to-

medium object scenario generated the other data set based on 

the original HTTP trace by adjusting the original object sizes 

to produce requests to the files listed in Table 2. Thus, the 

total size of objects requested from the cloud was 6,697.69 

GB per month. 

Table 1. Characteristics of the large-sized object data set. 
 

Object 

types 

Object size 

(bytes) 

No. of 

objects 

Utilized cache space 

(bytes) 

    

High-

definition 

large 
videos 

53,687,091,200 617 6,979,321,856,000 

Animations 21,474,836,480 1,702 11,617,886,535,680 

Virtual 
machine 

image files 

16,106,127,360 10,632 71,301,825,822,720 

Standard-
definition 

videos 

5,046,586,572.8 35,237 119,518,309,803,622 

    

 
Table 2. Characteristics of the small-to-medium-sized object data 

set.  
 

Object types 
Object size 

(bytes) 
No. of 
objects 

Utilized cache 
space (bytes) 

    

Standard-

definition 

large videos 

5,046,586,572.8 522 2,634,318,191,106 

Audios 314,572,800 8,552 2,690,226,585,600 

High-

definition 
image raw 

images 

26,214,400 51,857 1,359,400,140,800 

High-

definition 

images 

7,340,032 53,592 393,366,994,944 

Miscellaneous 
cloud data  

1,048,576 108,985 114,279,055,360 

    

 
3.2 Performance metrics 

 

To evaluate the technical model, we measured its 

realized performance using the following four metrics. 

Cost-saving ratio is the difference between the total 

data downloading cost without caching and with caching 

divided by the total data downloading cost without caching. 

The metric value is calculated using Equation 16. 

 

 
                 (16)  

 

where n is the number of total requests, ci is data object i 

loading charge from a cloud provider to a CaaS system per 

object size, si is the size of object i, ri is a request to object i, l 

is the total number of cache hits, ck is a data loading charge 

from CaaS to a consumer premise per object size, k is a CaaS 

option (RAM, SSD, or HDD), hi is the hit rate of object i, mi 

is the miss rate of object i, and o is the total number of cache 

misses. 

Delay-saving ratio refers to the difference between 

the total data downloading latency without caching and with 

caching divided by the total data downloading latency without 

caching. The metric value can be calculated using Equation 

17.  
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        (17) 

 

where di is data object i loading delay from a cloud provider to 

a CaaS system and ei is data object i loading delay from CaaS 

to a consumer premise. 

Hit rate is the total number of hits per total number 

of requests (Podlipnig & Böszörmenyi, 2003) as shown in 

Equation 18. 

 

                                                   (18) 

 

Byte hit rate is the total size of hit objects per total 

size of requested objects (Podlipnig & Böszörmenyi, 2003) as 

in Equation 19. 

 

                 (19) 

 

3.3 Simulation tools 
 

We adapted the proven preprocessor and simulator 

of (Banditwattanawong et al., 2016) using Java SE Runtime 

Environment version 1.8.0_20-b26 and NetBeans version 

8.0.2 Patch 2. All simulation sessions were conducted on a 64-

bit Windows 7 laptop computer using an Intel CPU i7-3667 U 

2.00 GHz, 6 GB RAM, and 1 TB hard drive. 

 

3.4 Simulated scenarios 
 

Four scenarios of combination between the CaaS 

deployment scenarios and the data consumption scenarios 

were used in our simulation. 

● Scenario I: CaaS was deployed based on colo-

cation and served a large-sized object data set.  

● Scenario II: CaaS was deployed based on IaaS 

and served a large-sized object data set.  

● Scenario III: CaaS was deployed based on colo-

cation and served a small-to-medium-sized object data set.  

● Scenario IV: CaaS was deployed based on IaaS 

and served a small-to-medium-sized object data set. 

Furthermore, every scenario was simulated against a 

combination of practical factors shown in Figure 6 that 

consisted of two data-out charge types (non-uniform costs 

exist when using more than one cloud provider with different 

data-out charge rates), two service types, three CaaS options, 

one cache size, and the pricing policies applied to only the 

IaaS deployment scenario: cost sharing and profit sharing. 

Therefore, there were a total of 72 simulation sessions among 

the four scenarios. 

 
3.5. System implementation 

 

We mainly engaged Java, PHP, Yii2 framework 

(Makarov, 2013; Safronov & Winesett, 2014), XAMPP (Apa 

che, 2015), and modified Squid open source software (squid-

cache.org, 2015). The modification of Squid was to include i-

Cloud. 

 

4. Results and Discussion 
 

We report the simulation results based on the four 

scenarios. Since the economic model sets the appropriate 

prices, the simulation results reflect monthly CaaS sub-

scription cost when serving entire certain data sets. The 

simulation results of the technical model are reported in the 4 

performance metrics. 

● Economic model based on Scenario I: Figure 7a 

illustrates that, if the consumer of a single cloud utilizes CaaS 

(RAM option and isolated cache space), a CaaS provider 

should bill 31,731.16 USD per month for the service usage in 

order to gain the desired profit. Figure 7b shows that, if the 

consumer of multi-provider clouds utilizes CaaS (SSD cache 

space sharing option), a CaaS provider should bill 21,405.69 

USD per month for the service usage to gain the desired 

margin. 

● Economic model based on Scenario II: Figure 7c 

demonstrates the costs on a profit-sharing basis for a 

consumer organization using a single cloud. Similarly, Figure 

7d shows costs on a profit-sharing basis for a consumer using 

multiple cloud providers. Figure 7e illustrates CaaS usage 

costs based on the cost-sharing policy when a consumer 

organization utilizes a single cloud. Figure 7f shows costs on a 

cost-sharing basis for a consumer using multiple cloud 

providers. 

● Economic model based on Scenario III: Figure 7g 

illustrates the appropriate costs for a consumer using a single 

cloud. Figure 7h shows the costs for a consumer using 

multiple cloud providers. 

 

 

 
 

Figure 6. Practical factors to build the 72 simulation sessions. 
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Figure 7. Monthly service subscription costs based on the scenarios. 
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● Economic model based on Scenario IV: Based on 

a profit-sharing policy, Figure 7i illustrates the appropriate 

CaaS subscription costs for a consumer using a single cloud. 

Similarly, Figure 7j shows the costs for a consumer using 

multiple cloud providers. On the other hand, with a cost-

sharing policy, Figure 7k illustrates costs for a consumer using 

a single cloud. Similarly, Figure 7l shows costs for a consu-

mer using multiple cloud providers. 

● Technical model based on Scenario I: The best 

performance in terms of a cost saving ratio was found in the 

HDD option and the shared cache space as shown in Figure 

8a, while the best performance in terms of delay saving ratio
 

 
 

Figure 8. CaaS performance based on the scenarios. 



836 C. Sriwiroj & T. Banditwattanawong / Songklanakarin J. Sci. Technol. 41 (4), 828-837, 2019  

 

were found in the RAM option and the shared cache space as 

depicted in Figure 8b. 

● Technical model based on Scenario II: The best 

cost saving performances were found in the HDD option and 

the shared cache space as shown in Figure 8c, while the best 

performances in terms of delay saving ratio were found in the 

RAM option and the shared cache space as depicted in Figure 

8d.  

● Technical model based on Scenario III: The best 

performances in terms of cost saving ratio were found in the 

HDD option and the shared cache space as shown in Figure 

8e, while the best performances in terms of delay saving ratio 

were found in the RAM option and the shared cache space as 

depicted in Figure 8f. 

● Technical model based on Scenario IV: The best 

cost saving performances were found in the HDD option and 

the shared cache space as shown in Figure 8g, while the best 

performances in terms of delay saving ratio were found in the 

RAM option and the shared cache space as depicted in Figure 

8h.  

The first finding to be discussed comes from Figure 

8c. The HDD shared cache space option had the highest cost-

saving ratio due to its lowest cost per storage space unit, 

whereas Figure 8f shows that RAM shared cache space option 

had the lowest cost-saving ratio because of its highest cost per 

space unit. For the delay-saving performance, Figure 8b and 

Figure 8d prove that RAM shared cache space options 

outperformed the other options because RAM has the lowest 

access latency, whereas Figure 8e and Figure 8g showed that 

HDD shared cache space options had the worst delay-saving 

ratios because of the slowest access times of HDD. By 

synthesizing Figure 8, an economic model that had the 

cheapest service price was the shared cache space options 

rather than the isolated cache space options because the costs 

were shared by multiple user organizations.  

In terms of cost effectiveness, the option that 

provided the highest benefit per cost value (where the benefit 

was a percent cost-saving ratio and the cost was monthly 

service cost) was, of course, the HDD shared cache space 

service option (cost effectiveness = 0.05292) based on the 

uniform cost and profit-sharing policy. Furthermore, the 

highest benefit per cost value when the benefit was percent 

delay-saving ratio and the cost was monthly service cost was 

the SSD shared cache space service option (cost effectiveness 

= 0.05447) based on the non-uniform cost and profit-sharing 

policy. The reason that the SSD shared cache space service 

option had the best cost effectiveness was because SSD has a 

slightly longer access delay than RAM but much faster than 

HDD resulting in the delay saving performance of SSD closer 

to that of RAM, while RAM incurs a highest cost per storage 

space or the highest monthly service cost. 

The mean Likert scale values for the CaaS system 

on the performance and security, content, functional process, 

and ease of use aspects were 4.29, 4.44, 4.44, and 4.39, 

respectively. The average score of all aspects was 4.39, which 

meant that our CaaS system performed well at a good level. 

The overall 4.39 score resulted from the application of a well-

known spiral software life cycle model by conducting require-

ment gathering, analysis, design, coding, testing, and evalua-

tion phases in an iterative manner (Pfleeger & Atlee, 2009).  

 

 

5. Conclusions 
 

 

This paper presented three novel contributions: an 

economic model, a technical model, and a system. The eco-

nomic model consisted of two economic options: colocation 

based and IaaS based. The technical model was comprised of 

six service options: (1) RAM isolated cache space; (2) RAM 

shared cache space; (3) SSD isolated cache space; (4) SSD 

shared cache space; (5) HDD isolated cache space; and (6) 

HDD shared cache space. The system shows the analysis, 

design and implementation of client-side CaaS for the first 

time in the field. Evaluation of the economic model was 

conducted with 72 simulation sessions. It was found that the 

highest monthly service cost was 32,058.52 USD, which 

existed in the scenario where CaaS (RAM isolated cache 

space) was deployed based on IaaS and served the large-sized 

cloud data set using the cost sharing and the uniform cost, 

whereas the minimum monthly service cost was 778.71 USD 

of the scenario where CaaS (RAM isolated cache space) was 

deployed based on IaaS and served the small-to-medium-sized 

cloud data set using the profit sharing and the uniform cost. 

Evaluation of the technical model was also based on the 72 

sessions. The best cost-saving ratio (56.20%), which existed 

in the scenario CaaS (HDD shared cache space), was deployed 

based on IaaS and served the large-sized cloud data set using 

the uniform cost. The best delay-saving ratio (56.65%) lied in 

two scenarios: a scenario CaaS (RAM shared cache space) 

was deployed based on colocation and served the large-sized 

cloud data set using the uniform cost and a scenario CaaS 

(RAM shared cache space) was deployed based on IaaS and 

served the large-sized cloud data set using the uniform cost. 

Finally, we evaluated the system development by means of 

user acceptance test, which achieved an average score of 4.39. 

Our future work includes 1) to perform an industrial test of the 

system before real CaaS deployment and 2) to invent another 

model effectiveness metric that is independent of US dollars, 

which was precise only at the time this paper was written, i.e. 

when the US dollar exchange rate changes, the data must be 

re-applied in our economic model. 
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