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Abstract 
 

An algebraic system is a structure which consists of a nonempty set together with a sequence of operations and a se-

quence of relations on this set. Properties of this structure are expressed in terms and formulas. In this paper, we show that the set 

of all linear hypersubstitutions for algebraic systems of the type ((𝑛), (2)) with a binary operation on this set and the identity 

element forms a monoid. Finally, we characterize idempotent and regular elements on the monoid. 
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1. Introduction 
 

The concept of an algebraic system was first intro-

duced by A.I. Mal'cev in 1973. For approach to algebraic sys-

tems, we need some preparations. Let 𝐴 be a nonempty set 

and 𝑛 ∈ ℕ+ ≔ ℕ ∖ {0}. An 𝑛-ary operation on 𝐴 is a mapping 

𝑓: 𝐴𝑛 → 𝐴. We call 𝑛 the arity of 𝑓. An 𝑛-ary relation on 𝐴 is 

a relation 𝛾 ⊆ 𝐴𝑛and call 𝑛 the arity of 𝛾. Let 𝐼, 𝐽 be indexed 

sets and let (𝑓𝑖)𝑖∈𝐼 , (𝛾𝑗)𝑗∈𝐽 be sequences of operation symbols 

and relation symbols, respectively. Let 𝜏 = (𝑛𝑖)𝑖∈𝐼 and �́� =
(𝑛𝑗)𝑗∈𝐽 where 𝑓𝑖 has the arity 𝑛𝑖 for every 𝑖 ∈ 𝐼 and 𝛾𝑗has the 

arity 𝑛𝑗  for every 𝑗 ∈ 𝐽. 

 

Definition 1.1 (Mal’cev, 1973) An algebraic system of type 

(𝜏, �́�) is a triple 𝒜 ≔ (𝐴, (𝑓𝑖)𝑖∈𝐼 , (𝛾𝑗)𝑗∈𝐽) consisting of a no-

nempty set 𝐴, a sequence (𝑓𝑖)𝑖∈𝐼 of operations on 𝐴  where 𝑓𝑖 

is 𝑛𝑖-ary for 𝑖 ∈ 𝐼 and a sequence (𝛾𝑗)𝑗∈𝐽 of relations on 𝐴 

where 𝛾𝑗is 𝑛𝑗-ary for 𝑗 ∈ 𝐽. The pair (𝜏, �́�) is called the type of 

an algebraic system. 

 
To classify algebras into collections called varieties 

we need terms and some pairs of terms, i.e. equations. To 

classify algebraic systems into subclasses by logical sentences 

we need a language, i.e. quantifier free formulas. 

Now, we recall basic notions related to terms. For a 

natural number 𝑛 ≥ 1, let 𝑋𝑛 = {𝑥1, … , 𝑥𝑛} be a finite set of 

variables, and let 𝑋 ≔ ⋃ 𝑋𝑛𝑛≥1 = {𝑥1, … , 𝑥𝑛 , … } be countably 

infinite. Let {𝑓𝑖|𝑖 ∈ 𝐼} be a set of operation symbols which is 

disjoint from 𝑋. An 𝑛-ary term of type 𝜏 is defined inductively 

as follows: 

(i) Every variable 𝑥𝑗 ∈ 𝑋𝑛 is an 𝑛-ary term of type 

𝜏. 

(ii) If 𝑡1, … , 𝑡𝑛𝑖
 are 𝑛-ary terms of type 𝜏 and 𝑓𝑖is an 

𝑛𝑖-ary operation symbol, then 𝑓𝑖(𝑡1, … , 𝑡𝑛𝑖
) is an 

𝑛-ary term of type 𝜏. 

Let 𝑊𝜏(𝑋𝑛) be the set of all 𝑛-ary terms of type 𝜏 which con-

tains 𝑥1, … , 𝑥𝑛 and is closed under finite application of (ii). 

Not all of the terms in the second-order language 

will used to express properties of algebraic systems. The one 

is called formulas, first introduced by A.I. Mal'cev in 1973. 

For approach to formulas see also (Mal’cev, 1973), and we 

recall the definition of formula which is defined by Denecke 

and Phusanga (2008).To define the quantifier free formulas of 
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type (𝜏, �́�)we need the logical connectives   (negation),   (disjunction) and the equation symbol  . 

 

Definition 1.2. (Denecke & Phusanga, 2008) Let 𝑛 ∈ ℕ+. An 𝑛-ary quantifier free formula of type (𝜏, �́�)(for simply, formula) is 

defined in the following steps: 

(i) If 𝑡1, 𝑡2 are 𝑛-ary terms of type  , then the equation 
1 2t t  is an 𝑛-ary quantifier freeformula of type (𝜏, �́�). 

(ii) If 𝑗 ∈ 𝐽and 𝑡1, … , 𝑡𝑛𝑗
 are 𝑛-ary terms of type  and 𝛾𝑗  is an 𝑛𝑗-ary relation symbol, then 𝛾𝑗(𝑡1, … , 𝑡𝑛𝑗

) is an 𝑛-ary 

quantifier free formula of type (𝜏, �́�). 

(iii) If 𝐹 is an 𝑛-ary quantifier free formula of type (𝜏, �́�), then ¬𝐹 is an 𝑛-ary quantifier free formula of type (𝜏, �́�). 

(iv) If 𝐹1 and 𝐹2 are 𝑛-ary quantifier free formulas of type (𝜏, �́�), then 𝐹1 ∨ 𝐹2 is an 𝑛-ary quantifier free formula of type 

(𝜏, �́�). 

Let ℱ(𝜏,�́�)(𝑊𝜏(𝑋𝑛)) be the set of all 𝑛-ary quantifier free formulas of type (𝜏, �́�). In 2012, M. Couceiro and E. Lehtonen 

introduced the concept of a linear term, i.e., a term which each variable occurs only once. 

 

Definition 1.3. (Couceiro & Lehtonen, 2012) An 𝑛-ary linear term of type 𝜏 is defined inductively as follows: 

(i) Every 𝑥𝑖 ∈ 𝑋𝑛 is an 𝑛-ary linear term of type 𝜏. 

(ii) If 𝑡1, … , 𝑡𝑛𝑖
 are 𝑛-ary linear terms of type 𝜏 with 𝑣𝑎𝑟(𝑡𝑙) ∩ 𝑣𝑎𝑟(𝑡𝑘) = ∅ for all 1 ≤ 𝑙 < 𝑘 ≤ 𝑛𝑖 (where 𝑣𝑎𝑟(𝑡) is the 

set of all variables occurring in the the term 𝑡) and 𝑓𝑖 is an 𝑛𝑖-ary operation symbol, then 𝑓𝑖(𝑡1, … , 𝑡𝑛𝑖
) is an 𝑛-ary 

linear term of type 𝜏. 

Let 𝑊𝜏
𝑙𝑖𝑛(𝑋𝑛) be the set of all𝑛-ary linear terms of type 𝜏. 

In this paper, we consider an algebraic system of type ((𝑛), (2)), i.e., we have only one 𝑛-ary operation symbol and 

one binary relation symbol. We define the new definition of linear formulas of type ((𝑛), (2)) and give the concept of 

superposition of linear terms and superposition of linear formulas. This leads to introduce the concept of linear hypersubstitutions 

for algebraic systems of type ((𝑛), (2)). We show that the set of all linear hypersubstitutions for algebraic systems of type 

((𝑛), (2)) together with a binary operation ∘𝑟 and an identity element forms a monoid. Furthermore, the characterizations of 

idempotent and regular elements are investigated. 

 

2. Linear Terms of Type (𝒏)  and Linear Formulas of Type ((𝒏), (𝟐)) 

 

Let 𝑣𝑎𝑟(𝑡) be the set of all variables occurring in the term 𝑡 and let 𝑣𝑎𝑟(𝐹) be the set of all variables occurring in the 

formula 𝐹. 

In this section, we first defined the definition of a linear term and a quantifier free linear formula of type ((𝑛), (2)) as 

follows: 

 

Definition 2.1. Let 𝑚, 𝑛 ∈ ℕ+with 𝑚 ≥ 𝑛. An 𝑚-ary linear term of type (𝑛) is defined in the following inductive way: 

(i) Every 𝑥𝑖 ∈ 𝑋𝑚is an 𝑚-ary linear term of type (𝑛). 

(ii) If  𝑡1, … , 𝑡𝑛 are 𝑚-ary linear terms of type (𝑛) with 𝑣𝑎𝑟(𝑡𝑙) ∩ 𝑣𝑎𝑟(𝑡𝑘) = ∅ for all 1 ≤ 𝑙 < 𝑘 ≤ 𝑛 and 𝑓 is an 𝑛-ary 

operation symbol, then 𝑓(𝑡1, … , 𝑡𝑛) is an 𝑚-ary linear term of type (𝑛).   

Let 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑚) be the set of all 𝑚-ary linear terms of type (𝑛). 
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Example 2.2. Let (𝑛) = (2) be the type with a binary operation symbol 𝑓 and 𝑋2 = {𝑥1, 𝑥2}. Then 𝑥1, 𝑥2, 𝑓(𝑥1, 𝑥2), 𝑓(𝑥2, 𝑥1) are 

examples of binary linear terms of type (2). 

 

Definition 2.3. Let 𝑚, 𝑛 ∈ ℕ+ with 𝑚 ≥ 𝑛. An 𝑚-ary quantifier free linear formula of type ((𝑛), (2)) (for simply, linear 

formula) is defined in the following steps: 

(i) If 𝑡1, 𝑡2 are 𝑚-ary terms of type (𝑛) and 𝑣𝑎𝑟(𝑡1) ∩ 𝑣𝑎𝑟(𝑡2) = ∅ then the equation 𝑡1 ≈ 𝑡2 is an 𝑚-ary quantifier free 

formula of type ((𝑛), (2)). 

(ii) If 𝑡1, 𝑡2 are 𝑚-ary terms of type (𝑛) with 𝑣𝑎𝑟(𝑡1) ∩ 𝑣𝑎𝑟(𝑡2) = ∅and 𝛾 is a binary relation symbol, then 𝛾(𝑡1, 𝑡2) is 

an 𝑚-ary quantifier free formula of type ((𝑛), (2)). 

(iii) If 𝐹 is an 𝑚-ary quantifier free formula of type ((𝑛), (2)), then F is an 𝑚-ary quantifier free formula of type 

((𝑛), (2)). 

(iv) If 𝐹1 and 𝐹2 are 𝑚-ary quantifier free formulas of type ((𝑛), (2)), then 𝐹1 ∨ 𝐹2 is an 𝑚-ary quantifier free formula of 

type ((𝑛), (2)). 

Let ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋𝑚)) be the set of all 𝑚-ary quantifier free linear formulas of type ((𝑛), (2)). 

 

Remark 2.4. The linear formulas defined by (i) and (ii) are called atomic linear formulas. 

 

Example 2.5. Let ((2), (2)) be a type, i.e., we have one binary operation symbol 𝑓and one binary relation symbol 𝛾 and let 𝑋2 =

{𝑥1, 𝑥2}. Then the binary atomic linear formulas of type ((2), (2)) are 𝑥1 ≈ 𝑥2, 𝑥2 ≈ 𝑥1, 𝛾(𝑥1, 𝑥2), 𝛾(𝑥2, 𝑥1). Moreover, we 

obtained all other linear formulas of type ((2), (2)) from binary atomic linear formulas of type ((2), (2)) by using the 

connectives ¬ and ∨. 

Next, we give the concepts of the superposition of linear terms and linear formulas for algebraic systems of type 

((𝑛), (2)). For convenient, we let 𝑆𝑛be the set of all permutations of {1, … , 𝑛}. 

 

3. Superposition of Linear terms and Linear Formulas 

 

Definition 3.1. Let 𝑚, 𝑛 ∈ ℕ+with 𝑚 ≥ 𝑛, 𝑡 ∈ 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛) and 𝑡1, … , 𝑡𝑛 ∈ 𝑊(𝑛)

𝑙𝑖𝑛(𝑋𝑚) with 𝑣𝑎𝑟(𝑡𝑙) ∩ 𝑣𝑎𝑟(𝑡𝑘) = ∅ for all 1 ≤ 𝑙 <

𝑘 ≤ 𝑛. We define the concept of a superposition of linear terms  

𝑆        𝑚
𝑙𝑖𝑛 𝑛 : 𝑊(𝑛)

𝑙𝑖𝑛(𝑋𝑛) × (𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑚))𝑛 ⊸→ 𝑊(𝑛)

𝑙𝑖𝑛(𝑋𝑚) 

as follows: 

(i) If 𝑡 = 𝑥𝑖 ; 1 ≤ 𝑖 ≤ 𝑛, then 𝑆        𝑚
𝑙𝑖𝑛 𝑛 (𝑥𝑖 , 𝑡1, … , 𝑡𝑛) ≔ 𝑡𝑖 . 

(ii) If 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) where 𝜋 ∈ 𝑆𝑛, then  

𝑆        𝑚
𝑙𝑖𝑛 𝑛 (𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝑡1, … , 𝑡𝑛) ≔ 𝑓(𝑆        𝑚

𝑙𝑖𝑛 𝑛 (𝑥𝜋(1), 𝑡1, … , 𝑡𝑛), … , 𝑆        𝑚
𝑙𝑖𝑛 𝑛 (𝑥𝜋(𝑛), 𝑡1, … , 𝑡𝑛)). 

Now, we can extend the concept of this superposition to quantifier free linear formulas by substituting variables 

occurring in a quantifier free linear formula by a linear term, and obtain a new quantifier free linear formula. We explain this by 

the following operations 𝑅        𝑚
𝑙𝑖𝑛 𝑛 when 𝑚, 𝑛 ≥ 1. 
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Definition 3.2. Let 𝑚, 𝑛 ∈ ℕ+ with 𝑚 ≥ 𝑛 and 𝑡1, … , 𝑡𝑛 ∈ 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑚) with 𝑣𝑎𝑟(𝑡𝑙) ∩ 𝑣𝑎𝑟(𝑡𝑘) = ∅ for all 1 ≤ 𝑙 < 𝑘 ≤ 𝑛. The 

operation  

𝑅        𝑚
𝑙𝑖𝑛 𝑛 : 𝑊(𝑛)

𝑙𝑖𝑛(𝑋𝑛) ∪ ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋𝑛)) × (𝑊(𝑛)

𝑙𝑖𝑛(𝑋𝑚))
𝑛

⊸→ 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑚) ∪  ℱ((𝑛),(2))

𝑙𝑖𝑛 (𝑊(𝑛)(𝑋𝑚)) 

is defined by the following inductive steps:  

(i) If𝑡 ∈ 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛), then 𝑅        𝑚

𝑙𝑖𝑛 𝑛 (𝑡, 𝑡1, … , 𝑡𝑛) ≔ 𝑆        𝑚
𝑙𝑖𝑛 𝑛 (𝑡, 𝑡1, … , 𝑡𝑛). 

(ii) If 𝐹 ∈ ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋𝑛)) and 𝐹 has the form 𝑥𝜋(𝑖) ≈ 𝑥𝜋(𝑗) where 𝜋 ∈ 𝑆𝑛, then 𝑅        𝑚

𝑙𝑖𝑛 𝑛 (𝑥𝜋(𝑖) ≈

𝑥𝜋(𝑗), 𝑡1, … , 𝑡𝑛) ≔ 𝑆        𝑚
𝑙𝑖𝑛 𝑛 (𝑥𝜋(𝑖), 𝑡1, … , 𝑡𝑛) ≈ 𝑆        𝑚

𝑙𝑖𝑛 𝑛 (𝑥𝜋(𝑗), 𝑡1, … , 𝑡𝑛). 

(iii) If 𝐹 ∈ ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋𝑛)) and 𝐹 has the form 𝛾(𝑥𝜋(𝑖), 𝑥𝜋(𝑗)) where 𝜋 ∈ 𝑆𝑛, then 

𝑅        𝑚
𝑙𝑖𝑛 𝑛 (𝛾(𝑥𝜋(𝑖), 𝑥𝜋(𝑗)), 𝑡1, … , 𝑡𝑛) ≔ 𝛾(𝑆        𝑚

𝑙𝑖𝑛 𝑛 (𝑥𝜋(𝑖), 𝑡1, … , 𝑡𝑛), 𝑆        𝑚
𝑙𝑖𝑛 𝑛 (𝑥𝜋(𝑗), 𝑡1, … , 𝑡𝑛)). 

(iv) If 𝐹 ∈ ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋𝑛)) and supposed that 𝑅        𝑚

𝑙𝑖𝑛 𝑛 (𝐹, 𝑡1, … , 𝑡𝑛) is already defined, then 

𝑅        𝑚
𝑙𝑖𝑛 𝑛 (¬𝐹, 𝑡1, … , 𝑡𝑛) ≔ ¬ (𝑅        𝑚

𝑙𝑖𝑛 𝑛 (𝐹, 𝑡1, … , 𝑡𝑛)). 

(v) If 𝐹 ∈ ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋𝑛)) and 𝐹 has the form 𝐹1 ∨ 𝐹2 and supposed that 𝑅        𝑚

𝑙𝑖𝑛 𝑛 (𝐹𝑙 , 𝑡1, … , 𝑡𝑛) is already defined 

for all 𝑙 = 1,2, then 𝑅        𝑚
𝑙𝑖𝑛 𝑛 (𝐹1 ∨ 𝐹2, 𝑡1, … , 𝑡𝑛) ≔ 𝑅        𝑚

𝑙𝑖𝑛 𝑛 (𝐹1, 𝑡1, … , 𝑡𝑛) ∨ 𝑅        𝑚
𝑙𝑖𝑛 𝑛 (𝐹2, 𝑡1, … , 𝑡𝑛). 

 The next theorem is to show some properties of superposition of linear terms and superposition of linear formulas. We 

will use this theorem to prove the endomorphism properties of the extension of linear hypersubstitutions, identity linear hyper-

substitution and some characterizations of special elements in the next section. 

 

Theorem 3.3. Let 𝑚, 𝑛, 𝑝 ∈ ℕ+ with 𝑚 ≥ 𝑛 ≥ 𝑝. If 𝛽 ∈ 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛) ∪ ℱ((𝑛),(2))

𝑙𝑖𝑛 (𝑊(𝑛)(𝑋𝑛)), then the operation 𝑅        𝑚
𝑙𝑖𝑛 𝑛  satisfies 

the following properties: 

(FC1) 𝑅        𝑚
𝑙𝑖𝑛 𝑛 (𝑅        𝑛

𝑙𝑖𝑛 𝑝
(𝛽, 𝑡1, … , 𝑡𝑝), 𝑠1, … , 𝑠𝑛) = 

 𝑅        𝑚
𝑙𝑖𝑛 𝑝

(𝛽, 𝑆        𝑚
𝑙𝑖𝑛 𝑛 (𝑡1, 𝑠1, … , 𝑠𝑛), … , 𝑆        𝑚

𝑙𝑖𝑛 𝑛 (𝑡𝑛, 𝑠1, … , 𝑠𝑛)) where 𝑡1, … , 𝑡𝑝 ∈ 

 𝑊(𝑛)(𝑋𝑝), 𝑣𝑎𝑟(𝑡𝑙) ∩ 𝑣𝑎𝑟(𝑡𝑘) = ∅ for all 1 ≤ 𝑙 < 𝑘 ≤ 𝑝 and 𝑠1, … , 𝑠𝑛 ∈ 

 𝑊(𝑛)(𝑋𝑛), 𝑣𝑎𝑟(𝑠𝑙) ∩ 𝑣𝑎𝑟(𝑠𝑘) = ∅ for all 1 ≤ 𝑙 < 𝑘 ≤ 𝑛. 

(FC2) 𝑅        𝑛
𝑙𝑖𝑛 𝑛 (𝛽, 𝑥1, … , 𝑥𝑛) = 𝛽. 

  

4. Monoid of Linear Hypersubstitutions for Algebraic Systems of Type ((𝒏), (𝟐)) 

 

In this section, we would like to form the new structure of so-called "Monoid of Linear Hypersubstitutions for Alge-

braic Systems of Type ((𝑛), (2))". The way to approach this, we first define the based set. 

 

Definition 4.1. Let 𝑛 ∈ ℕ+. A linear hypersubstitution for algebraic systems of type ((𝑛), (2)) is a mapping 

 

𝜎: {𝑓} ∪ {𝛾} → 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛) ∪ ℱ((𝑛),(2))

𝑙𝑖𝑛 (𝑊(𝑛)(𝑋2)) 

 

which maps an 𝑛-ary operation symbol 𝑓 to an 𝑛-ary linear term of type (𝑛) and maps a binary relation symbol 𝛾 to a binary 

quantifier free linear formula of type ((𝑛), (2)). We denote the set of all linear hypersubstitutions for algebraic systems of type 

((𝑛), (2)) by 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)).  
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From now on, every element in 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) will be denoted by 𝜎𝑡,𝐹, that means 𝜎𝑡,𝐹(𝑓) = 𝑡 and 𝜎𝑡,𝐹(𝛾) = 𝐹. 

To define a binary operation on 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)), we extend a linear hypersubstitution for algebraic systems 𝜎 to a 

mapping �̂� defined by the following definition. 

Definition 4.2. Let𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)), 𝜋 ∈ 𝑆𝑛 and 𝜙 ∈ 𝑆2. Then we define a mapping 

 �̂�𝑡,𝐹: 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛) ∪ ℱ((𝑛),(2))

𝑙𝑖𝑛 (𝑊(𝑛)(𝑋2)) → 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛) ∪ ℱ((𝑛),(2))

𝑙𝑖𝑛 (𝑊(𝑛)(𝑋2)) 

inductively defined as follows: 

(i) �̂�𝑡,𝐹[𝑥𝑖]:=𝑥𝑖 for every 𝑖 = 1, … , 𝑛. 

(ii) �̂�𝑡,𝐹[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))]≔𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝜎𝑡,𝐹(𝑓), �̂�𝑡,𝐹[𝑥𝜋(1)], … , �̂�𝑡,𝐹[𝑥𝜋(𝑛)]).  

(iii) �̂�𝑡,𝐹[𝑥𝜙(1) ≈ 𝑥𝜙(2)] ≔ �̂�𝑡,𝐹[𝑥𝜙(1)]  ≈ �̂�𝑡,𝐹[𝑥𝜙(2)]. 

(iv) �̂�𝑡,𝐹[𝛾(𝑥𝜙(1), 𝑥𝜙(2))]≔𝑅        2
𝑙𝑖𝑛 2 (𝜎𝑡,𝐹(𝛾), �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]). 

(v) �̂�𝑡,𝐹[¬𝐹] ≔ ¬�̂�𝑡,𝐹[𝐹] for 𝐹 ∈ ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋2)). 

Now, we define a binary operation ∘𝑟on 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2))as follows: 

 

Definition 4.3. Let 𝜎𝑡1,𝐹1
, 𝜎𝑡2,𝐹2

∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) and ∘ be the usual composition of mapping. Then we define a binary opera-

tion ∘𝑟 on 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) by 𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

≔ �̂�𝑡1,𝐹1
∘ 𝜎𝑡2,𝐹2

. 

Next, we prove that a binary operation as we already defined in Definition 4.3 satisfies associative law. To get our 

result, we need some preparations as follows: 

 

Lemma 4.4. For each 𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)), 𝜋 ∈ 𝑆𝑛 and  𝜙 ∈ 𝑆2. Then we have  

(i) �̂�𝑡,𝐹[𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑡, 𝑥𝜋(1), … , 𝑥𝜋(𝑛))] = 𝑆        𝑛

𝑙𝑖𝑛 𝑛(�̂�𝑡,𝐹[𝑡], �̂�𝑡,𝐹[𝑥𝜋(1)], … , �̂�𝑡,𝐹[𝑥𝜋(𝑛)]). 

(ii) �̂�𝑡,𝐹[𝑅        2
𝑙𝑖𝑛 2 (𝛽, 𝑥𝜙(1), 𝑥𝜙(2))] = 𝑅        2

𝑙𝑖𝑛 2 (�̂�𝑡,𝐹[𝛽], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]). 

 

Proof. (i) Let 𝑡 ∈ 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛). We give a proof by induction on the complexity of a linear term 𝑡. Obviously, if 𝑡 = 𝑥𝑖 for all 1 ≤

𝑖 ≤ 𝑛. If 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))  and for every  𝑙 = 1, … , 𝑛 we assume that   �̂�𝑡,𝐹[𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑥𝜋(𝑙), 𝑥𝜋(1), … , 𝑥𝜋(𝑛))] 

= 𝑆        𝑛
𝑙𝑖𝑛 𝑛(�̂�𝑡,𝐹[𝑥𝜋(𝑙)], �̂�𝑡,𝐹[𝑥𝜋(1)], … , �̂�𝑡,𝐹[𝑥𝜋(𝑛)]), then by Theorm 3.3 we get �̂�𝑡,𝐹[𝑆        𝑛

𝑙𝑖𝑛 𝑛(𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝑥𝜋(1), … , 𝑥𝜋(𝑛))] 

 =�̂�𝑡,𝐹[𝑓(𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑥𝜋(1), 𝑥𝜋(1), … , 𝑥𝜋(𝑛)), … , 𝑓(𝑆        𝑛

𝑙𝑖𝑛 𝑛(𝑥𝜋(𝑛), 𝑥𝜋(1), … , 𝑥𝜋(𝑛)))] 

 =𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝜎𝑡,𝐹(𝑓), �̂�𝑡,𝐹[𝑆        𝑛

𝑙𝑖𝑛 𝑛 (𝑥𝜋(1), 𝑥𝜋(1), … , 𝑥𝜋(𝑛))], … , �̂�𝑡,𝐹[𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑥𝜋(𝑛), 𝑥𝜋(1), … , 𝑥𝜋(𝑛))]) 

 =𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝜎𝑡,𝐹(𝑓), 𝑆        𝑛

𝑙𝑖𝑛 𝑛(�̂�𝑡,𝐹[𝑥𝜋(1)], �̂�𝑡,𝐹[𝑥𝜋(1)], … , �̂�𝑡,𝐹[𝑥𝜋(𝑛)]), … , 𝑆        𝑛
𝑙𝑖𝑛 𝑛(�̂�𝑡,𝐹[𝑥𝜋(𝑛)], �̂�𝑡,𝐹[𝑥𝜋(1)], … , �̂�𝑡,𝐹[𝑥𝜋(𝑛)]). 

 =𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑆        𝑛

𝑙𝑖𝑛 𝑛(𝜎𝑡,𝐹(𝑓), �̂�𝑡,𝐹[𝑥𝜋(1)], … , �̂�𝑡,𝐹[𝑥𝜋(𝑛)]), �̂�𝑡,𝐹[𝑥𝜋(1)], … , �̂�𝑡,𝐹[𝑥𝜋(𝑛)] ) 

 =𝑆        𝑛
𝑙𝑖𝑛 𝑛(�̂�𝑡,𝐹[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))], �̂�𝑡,𝐹[𝑥𝜋(1)], … , �̂�𝑡,𝐹[𝑥𝜋(𝑛)]). 

(ii) Let 𝛽 ∈ ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋2)). We give a proof by the following steps. 

If 𝛽 has the form 𝑥𝜙(1) ≈ 𝑥𝜙(2), then we have �̂�𝑡,𝐹[𝑅        2
𝑙𝑖𝑛 2 (𝑥𝜙(1) ≈ 𝑥𝜙(2), 𝑥𝜙(1), 𝑥𝜙(2))] 

 =�̂�𝑡,𝐹[𝑆        2
𝑙𝑖𝑛 2(𝑥𝜙(1), 𝑥𝜙(1), 𝑥𝜙(2)) ≈ 𝑆        2

𝑙𝑖𝑛 2(𝑥𝜙(2), 𝑥𝜙(1), 𝑥𝜙(2)))] 

 =𝑆        2
𝑙𝑖𝑛 2(�̂�𝑡,𝐹[𝑥𝜙(1)],�̂�𝑡,𝐹[𝑥𝜙(1)],�̂�𝑡,𝐹[𝑥𝜙(2)]) ≈ 𝑆        2

𝑙𝑖𝑛 2(�̂�𝑡,𝐹[𝑥𝜙(2)],�̂�𝑡,𝐹[𝑥𝜙(1)],�̂�𝑡,𝐹[𝑥𝜙(2)]) 

 =𝑅        2
𝑙𝑖𝑛 2 (�̂�𝑡,𝐹[𝑥𝜙(1)] ≈ �̂�𝑡,𝐹[𝑥𝜙(2)], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]) 

 =𝑅        2
𝑙𝑖𝑛 2 (�̂�𝑡,𝐹[𝑥𝜙(1) ≈ 𝑥𝜙(2)], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]). 
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If 𝛽 has the form 𝛾(𝑥𝜙(1), 𝑥𝜙(2)), then by Theorem 3.3 we have  �̂�𝑡,𝐹[𝑅        2
𝑙𝑖𝑛 2 (𝛾(𝑥𝜙(1), 𝑥𝜙(2)), 𝑥𝜙(1), 𝑥𝜙(2))] 

 =�̂�𝑡,𝐹[𝛾(𝑆        2
𝑙𝑖𝑛 2(𝑥𝜙(1), 𝑥𝜙(1), 𝑥𝜙(2)), 𝛾(𝑆        2

𝑙𝑖𝑛 2(𝑥𝜙(2), 𝑥𝜙(1), 𝑥𝜙(2)))] 

 =𝑅        2
𝑙𝑖𝑛 2 (𝜎𝑡,𝐹(𝛾), �̂�𝑡,𝐹[𝑆        2

𝑙𝑖𝑛 2(𝑥𝜙(1), 𝑥𝜙(1), 𝑥𝜙(2))], �̂�𝑡,𝐹[𝑆        2
𝑙𝑖𝑛 2(𝑥𝜙(2), 𝑥𝜙(1), 𝑥𝜙(2))]) 

 =𝑅        2
𝑙𝑖𝑛 2 (𝜎𝑡,𝐹(𝛾), 𝑆        2

𝑙𝑖𝑛 2(�̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]),  𝑆        2
𝑙𝑖𝑛 2(�̂�𝑡,𝐹[𝑥𝜙(2)], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]). 

 =𝑅        2
𝑙𝑖𝑛 2 (𝑅        2

𝑙𝑖𝑛 2 (𝜎𝑡,𝐹(𝛾), �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]), �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)] ) 

 =𝑅        2
𝑙𝑖𝑛 2 (�̂�𝑡,𝐹[𝛾(𝑥𝜙(1), 𝑥𝜙(2))], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]). 

If 𝛽 has the form ¬𝐹and assume that �̂�𝑡,𝐹[𝑅        2
𝑙𝑖𝑛 2 (𝐹, 𝑥𝜙(1), 𝑥𝜙(2))] = 𝑅        2

𝑙𝑖𝑛 2 (�̂�𝑡,𝐹[𝐹], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]), then we get 

�̂�𝑡,𝐹[𝑅        2
𝑙𝑖𝑛 2 (¬𝐹, 𝑥𝜙(1), 𝑥𝜙(2))] = �̂�𝑡,𝐹[¬(𝑅        2

𝑙𝑖𝑛 2 (𝐹, 𝑥𝜙(1), 𝑥𝜙(2)))] = ¬(�̂�𝑡,𝐹[𝑅        2
𝑙𝑖𝑛 2 (𝐹, 𝑥𝜙(1), 𝑥𝜙(2))]) =

¬(𝑅        2
𝑙𝑖𝑛 2 (�̂�𝑡,𝐹[𝐹], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]) = 𝑅        2

𝑙𝑖𝑛 2 (¬�̂�𝑡,𝐹[𝐹], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]) 

= 𝑅        2
𝑙𝑖𝑛 2 (�̂�𝑡,𝐹[¬𝐹], �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]). 

As a result of Lemma 4.4, we have the following lemma. 

 

Lemma 4.5. Let 𝜎𝑡1,𝐹1
, 𝜎𝑡2,𝐹2

∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)). Then we have 

(𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)∧ = �̂�𝑡1,𝐹1
∘ �̂�𝑡2,𝐹2

. 

 

Proof. Let 𝑡 ∈ 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛), we give a proof by induction on the complexity of a linear term 𝑡. If 𝑡 = 𝑥𝑖  ; 1 ≤ 𝑖 ≤ 𝑛, then 

(𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)
∧

[𝑥𝑖] = 𝑥𝑖 = �̂�𝑡1,𝐹1
[𝑥𝑖] = �̂�𝑡1,𝐹1

[�̂�𝑡2,𝐹2
[𝑥𝑖]] = (�̂�𝑡1,𝐹1

∘ �̂�𝑡2,𝐹2
)[𝑥𝑖]. If 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), then by Lemma 4.4 

we have that (𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)
∧

[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))] 

=𝑆        𝑛
𝑙𝑖𝑛 𝑛((𝜎𝑡1,𝐹1

∘𝑟 𝜎𝑡2,𝐹2
)(𝑓), (𝜎𝑡1,𝐹1

∘𝑟 𝜎𝑡2,𝐹2
)

∧
[𝑥𝜋(1)], … , (𝜎𝑡1,𝐹1

∘𝑟 𝜎𝑡2,𝐹2
)

∧
[𝑥𝜋(𝑛)]) 

=𝑆        𝑛
𝑙𝑖𝑛 𝑛(�̂�𝑡1,𝐹1

[𝜎𝑡2,𝐹2
(𝑓)], �̂�𝑡1,𝐹1

[�̂�𝑡2,𝐹2
[𝑥𝜋(1)]], … , �̂�𝑡1,𝐹1

[�̂�𝑡2,𝐹2
[𝑥𝜋(𝑛)]]) 

=�̂�𝑡1,𝐹1
[𝑆        𝑛

𝑙𝑖𝑛 𝑛(𝜎𝑡2,𝐹2
(𝑓), �̂�𝑡2,𝐹2

[𝑥𝜋(1)], … , �̂�𝑡2,𝐹2
[𝑥𝜋(𝑛)])] 

=�̂�𝑡1,𝐹1
[�̂�𝑡2,𝐹2

[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))]] 

  = (�̂�𝑡1,𝐹1
∘ �̂�𝑡2,𝐹2

)[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))]. 

Let 𝛽 ∈ ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋2)). We give a proof by the following steps. 

If 𝛽 has the form 𝑥𝜙(1) ≈ 𝑥𝜙(2), then we have (𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)∧[𝑥𝜙(1) ≈ 𝑥𝜙(2)] 

= (𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)∧[𝑥𝜙(1)] ≈ (𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)
∧

[𝑥𝜙(2)] 

= (�̂�𝑡1,𝐹1
∘ �̂�𝑡2,𝐹2

)[𝑥𝜙(1)] ≈ (�̂�𝑡1,𝐹1
∘ �̂�𝑡2,𝐹2

)[𝑥𝜙(2)] 

= �̂�𝑡1,𝐹1
[�̂�𝑡2,𝐹2

[𝑥𝜙(1)]] ≈ �̂�𝑡1,𝐹1
[�̂�𝑡2,𝐹2

[𝑥𝜙(2)]] 

= �̂�𝑡1,𝐹1
[𝑥𝜙(1)] ≈ �̂�𝑡1,𝐹1

[𝑥𝜙(2)] 

= 𝑥𝜙(1) ≈ 𝑥𝜙(2) 

= (�̂�𝑡1,𝐹1
∘ �̂�𝑡2,𝐹2

)[𝑥𝜙(1) ≈ 𝑥𝜙(2)]. 

If 𝛽 has the form 𝛾(𝑥𝜙(1), 𝑥𝜙(2)), then by Lemma 4.4 we have that (𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)
∧

[𝛾(𝑥𝜙(1), 𝑥𝜙(2))] 

=𝑅        2
𝑙𝑖𝑛 2 ((𝜎𝑡1,𝐹1

∘𝑟 𝜎𝑡2,𝐹2
)(𝛾), (𝜎𝑡1,𝐹1

∘𝑟 𝜎𝑡2,𝐹2
)

∧
[𝑥𝜙(1)], (𝜎𝑡1,𝐹1

∘𝑟 𝜎𝑡2,𝐹2
)

∧
[𝑥𝜙(2)]) 

=𝑅        2
𝑙𝑖𝑛 2 (�̂�𝑡1,𝐹1

[𝜎𝑡2,𝐹2
(𝛾)], �̂�𝑡1,𝐹1

[�̂�𝑡2,𝐹2
[𝑥𝜙(1)]], �̂�𝑡1,𝐹1

[�̂�𝑡2,𝐹2
[𝑥𝜙(2)]]) 

=�̂�𝑡1,𝐹1
[𝑅        2

𝑙𝑖𝑛 2 (𝜎𝑡2,𝐹2
(𝛾), �̂�𝑡2,𝐹2

[𝑥𝜙(1)], �̂�𝑡2,𝐹2
[𝑥𝜙(2)])] 

=�̂�𝑡1,𝐹1
[�̂�𝑡2,𝐹2

[𝛾(𝑥𝜙(1), 𝑥𝜙(2))]] 
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= (�̂�𝑡1,𝐹1

∘ �̂�𝑡2,𝐹2
)[𝛾(𝑥𝜙(1), 𝑥𝜙(2))]. 

If 𝛽 has the form¬𝐹 and assume that (𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)∧[𝐹] = (�̂�𝑡1,𝐹1
∘ �̂�𝑡2,𝐹2

)[𝐹], then we obtain that 

(𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)∧[¬𝐹] = ¬(𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

)∧[𝐹] = ¬(�̂�𝑡1,𝐹1
∘ �̂�𝑡2,𝐹2

)[𝐹] = ¬�̂�𝑡1,𝐹1
[�̂�𝑡2,𝐹2

[𝐹]] = �̂�𝑡1,𝐹1
[¬�̂�𝑡2,𝐹2

[𝐹]] =

�̂�𝑡1,𝐹1
[�̂�𝑡2,𝐹2

[¬𝐹]] = (�̂�𝑡1,𝐹1
∘ �̂�𝑡2,𝐹2

)[¬𝐹]. 

It follows from Lemma 4.5 that the binary operation ∘𝑟 satisfies associative law. We prove this fact in the next lemma. 

 

Lemma 4.6. For any 𝜎𝑡1,𝐹1
, 𝜎𝑡2,𝐹2

, 𝜎𝑡3,𝐹3
∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)), we hav 

(𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

) ∘𝑟 𝜎𝑡3,𝐹3
= 𝜎𝑡1,𝐹1

∘𝑟 (𝜎𝑡2,𝐹2
∘𝑟 𝜎𝑡3,𝐹3

). 

 

Proof. By using Lemma 4.5 and the fact that ∘satisfies associative law, it can be shown that ∘𝑟 satisfies associative law. In fact, 

we have (𝜎𝑡1,𝐹1
∘𝑟 𝜎𝑡2,𝐹2

) ∘𝑟 𝜎𝑡3,𝐹3
= (𝜎𝑡1,𝐹1

∘𝑟 𝜎𝑡2,𝐹2
)

∧
∘ 𝜎𝑡3,𝐹3

= (�̂�𝑡1,𝐹1
∘ �̂�𝑡2,𝐹2

) ∘ 𝜎𝑡3,𝐹3
= �̂�𝑡1,𝐹1

∘ (�̂�𝑡2,𝐹2
∘ 𝜎𝑡3,𝐹3

) = �̂�𝑡1,𝐹1
∘

(𝜎𝑡2,𝐹2
∘𝑟 𝜎𝑡3,𝐹3

) = 𝜎𝑡1,𝐹1
∘𝑟 (𝜎𝑡2,𝐹2

∘𝑟 𝜎𝑡3,𝐹3
). 

Let 𝜎𝑖𝑑 be a linear hypersubstitution for algebraic systems which maps the operation symbol 𝑓to the linear term 

𝑓(𝑥1, … , 𝑥𝑛)and maps the relation symbol 𝛾 to the linear formula 𝛾(𝑥1, 𝑥2), i.e.  𝜎𝑖𝑑(𝑓) = 𝑓(𝑥1, … , 𝑥𝑛) and 𝜎𝑖𝑑(𝛾) = 𝛾(𝑥1, 𝑥2). 

A linear hypersubstitution 𝜎𝑖𝑑 is claimed to be an identity, which we will prove this fact in the next lemma. 

 

Lemma 4.7. For any linear term 𝑡 ∈ 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛) and linear formula 

𝛽 ∈ ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋2)), we have �̂�𝑖𝑑[𝑡] = 𝑡 and �̂�𝑖𝑑[𝛽] = 𝛽. 

 

Proof. Let 𝑡 ∈ 𝑊(𝑛)
𝑙𝑖𝑛(𝑋𝑛), we give a proof by induction on the complexity of a linear term 𝑡. If𝑡 = 𝑥𝑖with𝑖 = 1, … , 𝑛, then 

�̂�𝑖𝑑[𝑥𝑖] = 𝑥𝑖. If 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) where 𝜋 ∈ 𝑆𝑛, then we get �̂�𝑖𝑑[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))] =

𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝜎𝑡,𝐹(𝑓), �̂�𝑡,𝐹[𝑥𝜋(1)], … , �̂�𝑡,𝐹[𝑥𝜋(𝑛)]) = 𝑆        𝑛

𝑙𝑖𝑛 𝑛(𝑓(𝑥1, … , 𝑥𝑛), 𝑥𝜋(1), … , 𝑥𝜋(𝑛)) = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)). Next, let 𝛽 ∈

ℱ((𝑛),(2))
𝑙𝑖𝑛 (𝑊(𝑛)(𝑋2)) , 𝜙 ∈ 𝑆2, we give a proof by the following steps. 

If 𝛽 has the form 𝑥𝜙(1) ≈ 𝑥𝜙(2), then we have �̂�𝑖𝑑[𝑥𝜙(1) ≈ 𝑥𝜙(2)] = �̂�𝑖𝑑[𝑥𝜙(1)] ≈ �̂�𝑖𝑑[𝑥𝜙(1)] = 𝑥𝜙(1) ≈ 𝑥𝜙(2). If 𝛽 has the 

form𝛾(𝑥𝜙(1), 𝑥𝜙(2)), then �̂�𝑖𝑑[𝛾(𝑥𝜙(1), 𝑥𝜙(2))] = 𝑅        2
𝑙𝑖𝑛 2 (𝜎𝑡,𝐹(𝛾), �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)]) = 𝑅        2

𝑙𝑖𝑛 2 (𝛾(𝑥1, 𝑥2), 𝑥𝜙(1), 𝑥𝜙(2)) =

𝛾(𝑥𝜙(1), 𝑥𝜙(2)). If 𝛽 has the form ¬𝐹 and assume that �̂�𝑖𝑑[𝐹] = 𝐹, then �̂�𝑖𝑑[¬𝐹] = ¬�̂�𝑖𝑑[𝐹] = ¬𝐹. 

 

Lemma 4.8. Let 𝜎𝑖𝑑 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)).Then we have 𝜎𝑖𝑑is an identity element with respect to ∘𝑟. 

 

Proof. First, we prove that 𝜎𝑖𝑑 is a left identity element by using Lemma 4.7. Let 𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)).  Then we 

have(𝜎𝑖𝑑 ∘𝑟 𝜎𝑡,𝐹)(𝑓) = (�̂�𝑖𝑑 ∘ 𝜎𝑡,𝐹)(𝑓) = �̂�𝑖𝑑[𝜎𝑡,𝐹(𝑓)] = 𝜎𝑡,𝐹(𝑓) and (𝜎𝑖𝑑 ∘𝑟 𝜎𝑡,𝐹)(𝛾) = (�̂�𝑖𝑑 ∘ 𝜎𝑡,𝐹)(𝛾) = �̂�𝑖𝑑[𝜎𝑡,𝐹(𝛾)] =

𝜎𝑡,𝐹(𝛾). Now, we show that 𝜎𝑖𝑑 is a right identity element. Let 𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)). By Theorem 3.3, we obtain that 

(𝜎𝑡,𝐹 ∘𝑟 𝜎𝑖𝑑)(𝑓) = (�̂�𝑡,𝐹 ∘ 𝜎𝑖𝑑)(𝑓) = �̂�𝑡,𝐹[𝜎𝑖𝑑(𝑓)] = �̂�𝑡,𝐹[𝑓(𝑥1, … , 𝑥𝑛)] = 𝑆        𝑛
𝑙𝑖𝑛 𝑛 (𝜎𝑡,𝐹(𝑓), �̂�𝑡,𝐹[𝑥1], … , �̂�𝑡,𝐹[𝑥1]) =

𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝜎𝑡,𝐹(𝑓), 𝑥1, … , 𝑥𝑛) = 𝜎𝑡,𝐹(𝑓) and (𝜎𝑡,𝐹 ∘𝑟 𝜎𝑖𝑑)(𝛾) = (�̂�𝑡,𝐹 ∘ 𝜎𝑖𝑑)(𝛾) = �̂�𝑡,𝐹[𝜎𝑖𝑑(𝛾)] = �̂�𝑡,𝐹[𝛾(𝑥1, 𝑥2)] 

= 𝑅        2
𝑙𝑖𝑛 2 (𝜎𝑡,𝐹(𝛾), �̂�𝑡,𝐹[𝑥1], �̂�𝑡,𝐹[𝑥2]) = 𝑅        2

𝑙𝑖𝑛 2 (𝜎𝑡,𝐹(𝛾), 𝑥1, 𝑥2) = 𝜎𝑡,𝐹(𝛾). This implies that 𝜎𝑖𝑑 ∘𝑟 𝜎𝑡,𝐹 = 𝜎𝑡,𝐹 = 𝜎𝑡,𝐹 ∘𝑟 𝜎𝑖𝑑. 

Therefore, 𝜎𝑖𝑑 is an identity element. 
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Theorem 4.9. ℋ𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) ≔ (𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)),∘𝑟 , 𝜎𝑖𝑑) is a monoid. 

Proof. From Lemma 4.6 and 4.8, the conclusion holds. 

 

5. Idempotent and Regular Elements in 𝓗𝒚𝒑𝒍𝒊𝒏((𝒏), (𝟐)) 

 

In this section we study some semigroup properties of ℋ𝑦𝑝𝑙𝑖𝑛((𝑛), (2)), especially we characterize idempotency and 

regularity of 𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)). We first introduce some notations and definitions of idempotent and regular elements in 

𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) with respect to ∘𝑟. 

For any 𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)), 𝜋 ∈ 𝑆𝑛, 𝜙 ∈ 𝑆2we denote : 

𝐵1 ≔ {𝜎𝑡,𝐹  | 𝑡 = 𝑥𝑖 ∈ 𝑋𝑛, 𝐹 = 𝑥𝜙(1) ≈ 𝑥𝜙(2)}, 

𝐵2 ≔ {𝜎𝑡,𝐹  | 𝑡 = 𝑥𝑖 ∈ 𝑋𝑛, 𝐹 = 𝛾(𝑥𝜙(1), 𝑥𝜙(2))}, 

𝐵3 ≔ {𝜎𝑡,𝐹  | 𝑡 = 𝑥𝑖 ∈ 𝑋𝑛, 𝐹 = ¬(𝑥𝜙(1) ≈ 𝑥𝜙(2))}, 

𝐵4 ≔ {𝜎𝑡,𝐹  | 𝑡 = 𝑥𝑖 ∈ 𝑋𝑛 , 𝐹 = ¬𝛾(𝑥𝜙(1), 𝑥𝜙(2))}, 

𝐵5 ≔ {𝜎𝑡,𝐹  | 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝐹 = 𝑥𝜙(1) ≈ 𝑥𝜙(2)}, 

𝐵6 ≔ {𝜎𝑡,𝐹  | 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝐹 = 𝛾(𝑥𝜙(1), 𝑥𝜙(2))}, 

𝐵7 ≔ {𝜎𝑡,𝐹  | 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝐹 = ¬(𝑥𝜙(1) ≈ 𝑥𝜙(2))}, 

𝐵8 ≔ {𝜎𝑡,𝐹  | 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝐹 = ¬𝛾(𝑥𝜙(1), 𝑥𝜙(2))}. 

We note that 𝑃 = {𝐵1, … , 𝐵8} is a partition of 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)). 

The concepts of an idempotent element and a regular element are defined in ℋ𝑦𝑝𝑙𝑖𝑛((𝑛), (2)). An element  𝜎𝑡,𝐹 ∈

𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) is said to be idempotent if 𝜎𝑡,𝐹 ∘𝑟 𝜎𝑡,𝐹 = 𝜎𝑡,𝐹, that is, (𝜎𝑡,𝐹 ∘𝑟 𝜎𝑡,𝐹)(𝑓) = 𝜎𝑡,𝐹(𝑓)and  (𝜎𝑡,𝐹 ∘𝑟 𝜎𝑡,𝐹)(𝛾) =

𝜎𝑡,𝐹(𝛾). And 𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) is called regularif there is an element 𝜎�́�,�́� ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) such that 𝜎𝑡,𝐹 =

𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹. The semigroup ℋ𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) is called regular if every element in 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) is regular.        

Furthermore, we denote the set of all idempotent and regular in ℋ𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) by 𝐸 (𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2))) and 

𝑅𝑒𝑔 (𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2))), respectively. 

 

Lemma 5.1. (Burris, 1981) Suppose 𝐹 is a formula insome ℱ(𝜏,�́�)(𝑊𝜏(𝑋𝑛)). Then the following pair of formula is equivalent: 

¬(¬𝐹) ≡ 𝐹. 

 

Lemma 5.2. Let 𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)). Then 𝜎𝑡,𝐹 is idempotent if and only if  �̂�𝑡,𝐹[𝑡] = 𝑡 and �̂�𝑡,𝐹[𝐹] = 𝐹. 

 

Proof. Assume that 𝜎𝑡,𝐹 is idempotent, i.e., (𝜎𝑡,𝐹 ∘𝑟 𝜎𝑡,𝐹)(𝑓) = 𝜎𝑡,𝐹(𝑓) and  (𝜎𝑡,𝐹 ∘𝑟 𝜎𝑡,𝐹)(𝛾) = 𝜎𝑡,𝐹(𝛾).  We now consider 

�̂�𝑡,𝐹[𝑡] = �̂�𝑡,𝐹[𝜎𝑡,𝐹(𝑓)] = (�̂�𝑡,𝐹 ∘ 𝜎𝑡,𝐹)(𝑓) = (𝜎𝑡,𝐹 ∘𝑟 𝜎𝑡,𝐹)(𝑓) = 𝜎𝑡,𝐹(𝑓) = 𝑡 and �̂�𝑡,𝐹[𝐹] = �̂�𝑡,𝐹[𝜎𝑡,𝐹(𝛾)] = (�̂�𝑡,𝐹 ∘ 𝜎𝑡,𝐹)(𝛾) =

(𝜎𝑡,𝐹 ∘𝑟 𝜎𝑡,𝐹)(𝛾) = 𝜎𝑡,𝐹(𝛾) = 𝐹. Conversely, let �̂�𝑡,𝐹[𝑡] = 𝑡 and �̂�𝑡,𝐹[𝐹] = 𝐹. Then we have(𝜎𝑡,𝐹 ∘𝑟 𝜎𝑡,𝐹)(𝑓) = (�̂�𝑡,𝐹 ∘

𝜎𝑡,𝐹)(𝑓) = �̂�𝑡,𝐹[𝜎𝑡,𝐹(𝑓)] = �̂�𝑡,𝐹[𝑡] = 𝑡 = 𝜎𝑡,𝐹(𝑓) and (𝜎𝑡,𝐹 ∘𝑟 𝜎𝑡,𝐹)(𝛾) = (�̂�𝑡,𝐹 ∘ 𝜎𝑡,𝐹)(𝛾) = �̂�𝑡,𝐹[𝜎𝑡,𝐹(𝛾)] = �̂�𝑡,𝐹[𝐹] = 𝐹 =

𝜎𝑡,𝐹(𝛾). This shows that 𝜎𝑡,𝐹is idempotent. 

 

Proposition 5.3. 𝜎𝑖𝑑 is idempotent. 
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Proof. Since 𝜎𝑖𝑑 is an identity in 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) and by Lemma 4.7, we obtain that �̂�𝑖𝑑[𝑡] = 𝑡 and �̂�𝑖𝑑[𝐹] = 𝐹. By Lemma 5.2, 

we have that 𝜎𝑖𝑑 is idempotent. 

 

Theorem 5.4. Let𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)). Then the following statements hold. 

(i) Every 𝜎𝑡,𝐹 ∈ 𝐵1 is idempotent. 

(ii) Every 𝜎𝑡,𝐹 ∈ 𝐵3 is idempotent. 

(iii) Every 𝜎𝑡,𝐹 ∈ 𝐵4 is not idempotent. 

 

Proof. We first prove that 𝜎𝑡,𝐹 ∈ 𝐵1 is idempotent. To do this, let 𝜎𝑡,𝐹 ∈ 𝐵1 with 𝑡 = 𝑥𝑖 and 𝐹 = 𝑥𝜙(1) ≈ 𝑥𝜙(2). We consider 

�̂�𝑡,𝐹[𝑥𝑖] = 𝑥𝑖  and �̂�𝑡,𝐹[𝑥𝜙(1) ≈ 𝑥𝜙(2)] = �̂�𝑡,𝐹[𝑥𝜙(1)] ≈ �̂�𝑡,𝐹[𝑥𝜙(2)] = 𝑥𝜙(1) ≈ 𝑥𝜙(2). By Lemma 5.2, 𝜎𝑡,𝐹 ∈ 𝐵1 is idempotent. 

Next, let 𝜎𝑡,𝐹 ∈ 𝐵3 with 𝑡 = 𝑥𝑖 and 𝐹 = ¬(𝑥𝜙(1) ≈ 𝑥𝜙(2)). We consider  �̂�𝑡,𝐹[𝑥𝑖] = 𝑥𝑖 and �̂�𝑡,𝐹[¬(𝑥𝜙(1) ≈ 𝑥𝜙(2))] =

¬(�̂�𝑡,𝐹[𝑥𝜙(1) ≈ 𝑥𝜙(2)]) = ¬(𝑥𝜙(1) ≈ 𝑥𝜙(2)) and then by Lemma 5.2, 𝜎𝑡,𝐹 ∈ 𝐵3 is idempotent. Lastly, let 𝜎𝑡,𝐹 ∈ 𝐵4 with 𝑡 = 𝑥𝑖 

and 𝐹 = ¬𝛾(𝑥𝜙(1), 𝑥𝜙(2)). To show that it is not idempotent, we consider  

�̂�𝑡,𝐹[¬𝛾(𝑥𝜙(1), 𝑥𝜙(2))] = ¬(�̂�𝑡,𝐹[𝛾(𝑥𝜙(1), 𝑥𝜙(2))]) 

 = ¬ (𝑅        2
𝑙𝑖𝑛 2 (𝜎𝑡,𝐹(𝛾), �̂�𝑡,𝐹[𝑥𝜙(1)], �̂�𝑡,𝐹[𝑥𝜙(2)])) 

 = ¬ (𝑅        2
𝑙𝑖𝑛 2 (¬𝛾(𝑥𝜙(1), 𝑥𝜙(2)), 𝑥𝜙(1), 𝑥𝜙(2))) 

 
= ¬ (¬ (𝑅        2

𝑙𝑖𝑛 2 (𝛾(𝑥𝜙(1), 𝑥𝜙(2)), 𝑥𝜙(1), 𝑥𝜙(2)))) 

 = 𝛾 (𝑥𝜙(𝜙(1)), 𝑥𝜙(𝜙(2))) 

 ≠ ¬𝛾(𝑥𝜙(1), 𝑥𝜙(2)). 

Therefore, every 𝜎𝑡,𝐹 ∈ 𝐵4 is not idempotent. 

The following example shows that there is an element in 𝐵2 which is not idempotent. 

 

Example 5.5. Let ((3), (2)) be a type, i.e., we have one ternary operation symbol and one binary relation symbol, say 𝑓 and 𝛾, 

respectively. If we consider 𝜎𝑡,𝐹 ∈ 𝐵2 with 𝑡 = 𝑥2 and 𝐹 = 𝛾(𝑥2, 𝑥1), then we obtain �̂�𝑡,𝐹[𝛾(𝑥2, 𝑥1)] = 𝑅        2
𝑙𝑖𝑛 2 (𝜎𝑡,𝐹(𝛾), 𝑥2, 𝑥1) =

𝑅        2
𝑙𝑖𝑛 2 (𝛾(𝑥2, 𝑥1), 𝑥2, 𝑥1) = 𝛾(𝑥1, 𝑥2) ≠ 𝛾(𝑥2, 𝑥1). So, 𝜎𝑡,𝐹 in this form is not idempotent. 

We have to find some necessary conditions for the element in 𝐵2 which is idempotent element. The next theorem 

shows such condition. 

 

Theorem 5.6. Let𝜎𝑡,𝐹 ∈ 𝐵2. Then 𝜎𝑡,𝐹 is idempotent if and only if  𝜙(𝑗) = 𝑗 for all 𝑗 = 1,2. 

 

Proof. Let 𝜎𝑡,𝐹 ∈ 𝐵2. Then we have 𝑡 = 𝑥𝑖 and 𝐹 = 𝛾(𝑥𝜙(1), 𝑥𝜙(2)). Assume that 𝜙(𝑗) ≠ 𝑗 for some 𝑗 = 1,2. We prove that  𝜎𝑡,𝐹 

is not idempotent. To show this, we consider �̂�𝑡,𝐹[𝛾(𝑥𝜙(1), 𝑥𝜙(2))] = �̂�𝑡,𝐹[𝛾(𝑥2, 𝑥1)] = 𝑅        2
𝑙𝑖𝑛 2 (𝛾(𝑥2, 𝑥1), 𝑥2, 𝑥1) =  𝛾(𝑥1, 𝑥2) ≠

𝛾(𝑥2, 𝑥1) and then by Lemma 5.2, 𝜎𝑡,𝐹 is not idempotent. Conversely, assume that the condition holds. Clearly, �̂�𝑡,𝐹[𝑥𝑖] = 𝑥𝑖 and 

we see that �̂�𝑡,𝐹[𝛾(𝑥𝜙(1), 𝑥𝜙(2))] = �̂�𝑡,𝐹[𝛾(𝑥1, 𝑥2)] = 𝑅        2
𝑙𝑖𝑛 2 (𝛾(𝑥1, 𝑥2), 𝑥1, 𝑥2) = 𝛾(𝑥1, 𝑥2) and thus by Lemma 5.2 we get that 

𝜎𝑡,𝐹is idempotent. 

Now, it comes to characterize the idempotent element in 𝐵5, … , 𝐵8. We first show that all elements in 𝐵8 are not idem-

potent and then show that the idempotency of 𝐵5, 𝐵6, 𝐵7 need the some conditions. In fact, we have the following results. 
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Theorem 5.7. Every 𝜎𝑡,𝐹 ∈ 𝐵8 is not idempotent. 

 

Proof. Let 𝜎𝑡,𝐹 ∈ 𝐵8 with 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝐹 = ¬𝛾(𝑥𝜙(1), 𝑥𝜙(2)). Suppose the contrary that 𝜎𝑡,𝐹 is idempotent, by Lemma 

5.2, we obtain that  �̂�𝑡,𝐹[𝑡] = 𝑡 and �̂�𝑡,𝐹[𝐹] = 𝐹. Obviously, �̂�𝑡,𝐹[¬𝛾(𝑥𝜙(1), 𝑥𝜙(2))] ≠ ¬𝛾(𝑥𝜙(1), 𝑥𝜙(2)) since we have already 

shown this inequality holds in Theorem 5.4 (iii). It contradicts to the result of our assumption. Therefore, 𝜎𝑡,𝐹 is not idempotent. 

Next, we show that there is an element in 𝐵5 which is not idempotent as the following example. 

 

Example 5.8. Let ((3), (2)) be a type, i.e., we have one ternary operation symbol and one binary relation symbol, say 𝑓 and 𝛾, 

respectively. If we consider 𝜎𝑡,𝐹 ∈ 𝐵5 with 𝑡 = 𝑓(𝑥3, 𝑥1, 𝑥2) and 𝐹 = 𝑥1 ≈ 𝑥2., then we have �̂�𝑡,𝐹[𝑓(𝑥3, 𝑥1, 𝑥2)] 

= 𝑆        3
𝑙𝑖𝑛 3(𝑓(𝑥3, 𝑥1, 𝑥2), 𝑥3, 𝑥1, 𝑥2) = 𝑓(𝑥2, 𝑥3, 𝑥1). By Lemma 5.2, we conclude that 𝜎𝑡,𝐹 is not idempotent. 

We remark here that if we let 𝜎𝑡,𝐹 ∈ 𝐵5,…,𝐵8, then �̂�𝑡,𝐹[𝐹] has the same situation in the previous theorems. So, we are 

interesting in the way to find some conditions for the idempotency of �̂�𝑡,𝐹[𝑡].The next theorem shows that if we set some 

conditions, then we get the characterization of idempotent elements in 𝐵5, 𝐵6, 𝐵7. 

 

Theorem 5.9. Let𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)). Then the following statements hold. 

(i) 𝜎𝑡,𝐹 ∈ 𝐵5 is idempotent if and only if 𝜋(𝑖) = 𝑖 for all 𝑖 = 1, … , 𝑛. 

(ii) 𝜎𝑡,𝐹 ∈ 𝐵6is idempotent if and only if 𝜋(𝑖) = 𝑖 for all 𝑖 = 1, … , 𝑛 and  𝜙(𝑗) = 𝑗 for all 𝑗 = 1,2. 

(iii) 𝜎𝑡,𝐹 ∈ 𝐵7 is idempotent if and only if 𝜋(𝑖) = 𝑖 for all 𝑖 = 1, … , 𝑛. 

 

Proof.  (i) Let 𝜎𝑡,𝐹 ∈ 𝐵5with𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) and 𝐹 = 𝑥𝜙(1) ≈ 𝑥𝜙(2). Now we may assume that if 𝜋(𝑖) ≠ 𝑖 for some 𝑖 =

1, … , 𝑛. Then �̂�𝑡,𝐹[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))] = 𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝑥𝜋(1), … , 𝑥𝜋(𝑛)) = 𝑓(𝑥𝜋(𝜋(1)), … , 𝑥𝜋(𝜋(𝑛))). By our as-

sumption, 𝑓(𝑥𝜋(𝜋(1)), … , 𝑥𝜋(𝜋(𝑛))) ≠ 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) and thus 𝜎𝑡,𝐹is not idempotent. Conversely, assume that the condition 

holds. To show that 𝜎𝑡,𝐹 is idempotent we consider �̂�𝑡,𝐹[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))] = �̂�𝑡,𝐹[𝑓(𝑥1, … , 𝑥𝑛)] = 𝑓(𝑥1, … , 𝑥𝑛) so that  

�̂�𝑡,𝐹[𝑡] = 𝑡. We can prove similarly to the proof of Theorem 5.4(i) that �̂�𝑡,𝐹[𝐹] = 𝐹. Therefore, 𝜎𝑡,𝐹 is idempotent. 

(ii) Let 𝜎𝑡,𝐹 ∈ 𝐵6 with = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) and 𝐹 = 𝛾(𝑥𝜙(1), 𝑥𝜙(2)). We first assume that 𝜋(𝑖) ≠ 𝑖 for some 𝑖 =

1, … , 𝑛 or 𝜙(𝑗) ≠ 𝑗 for some 𝑗 = 1,2. Then by the same manner as in the proof of (i) we can show that  𝜎𝑡,𝐹 is not idempotent. 

Conversely, assume that the condition holds. Clearly,   �̂�𝑡,𝐹[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))] = �̂�𝑡,𝐹[𝑓(𝑥1, … , 𝑥𝑛)] = 𝑓(𝑥1, … , 𝑥𝑛)  and thus 

�̂�𝑡,𝐹[𝑡] = 𝑡. Moreover, we have that  �̂�𝑡,𝐹[𝛾(𝑥𝜙(1), 𝑥𝜙(2))] = �̂�𝑡,𝐹[𝛾(𝑥1, 𝑥2)] = 𝛾(𝑥1, 𝑥2), that is  �̂�𝑡,𝐹[𝐹] = 𝐹. By Lemma 5.2, 

𝜎𝑡,𝐹 is idempotent. 

(iii) By using Lemma 5.1, we can prove similarly to the proof of (i) that this statement holds. 

Note that every idempotent element is regular. We characterize all regular elements in 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)), we consider 

𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) which is not idempotent. The characterization of regularity in 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) can be shown in the next 

theorem. 

 

Theorem 5.10. Let 𝜎𝑡,𝐹 ∈ 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)). Then the following statements hold. 

(i) Every 𝜎𝑡,𝐹 ∈ 𝐵2 is regular. (iv)   Every 𝜎𝑡,𝐹 ∈ 𝐵6 is regular. 

(ii) Every 𝜎𝑡,𝐹 ∈ 𝐵4 is regular. (v)    Every 𝜎𝑡,𝐹 ∈ 𝐵7 is regular. 

(iii) Every 𝜎𝑡,𝐹 ∈ 𝐵5 is regular. (vi)   Every 𝜎𝑡,𝐹 ∈ 𝐵8 is regular. 
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Proof. (i) Let 𝜎𝑡,𝐹 ∈ 𝐵2 with𝑡 = 𝑥𝑖 and 𝐹 = 𝛾(𝑥𝜙(1), 𝑥𝜙(2)). We consider regularity of 𝜎𝑡,𝐹 ∈ 𝐵2 only the case of 𝜙(𝑗) ≠ 𝑗 for 

some 𝑗 = 1,2. To do this, we choose 𝜎�́�,�́� ∈ 𝐵2 with �́� = 𝑥𝑖 and �́� = 𝛾(𝑥𝜙−1(1), 𝑥𝜙−1(2)) such that  (𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹)(𝑓) =

𝑥𝑖 = 𝜎𝑡,𝐹(𝑓) and (𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹)(𝛾) = �̂�𝑡,𝐹[�̂��́�,�́�[𝛾(𝑥𝜙(1), 𝑥𝜙(2))]] = �̂�𝑡,𝐹[𝑅        2
𝑙𝑖𝑛 2 (𝜎�́�,�́�(𝛾), 𝑥𝜙(1), 𝑥𝜙(2))] =

�̂�𝑡,𝐹[𝑅        2
𝑙𝑖𝑛 2 (𝛾(𝑥𝜙−1(1), 𝑥𝜙−1(2)), 𝑥𝜙(1), 𝑥𝜙(2))] = �̂�𝑡,𝐹 [𝛾(𝑥𝜙(𝜙−1(1)), 𝑥𝜙(𝜙−1(2)))] = �̂�𝑡,𝐹[𝛾(𝑥(𝜙∘𝜙−1)(1), 𝑥(𝜙∘𝜙−1)(2))] =

�̂�𝑡,𝐹[𝛾(𝑥1, 𝑥2)] = 𝑅        2
𝑙𝑖𝑛 2 (𝛾(𝑥𝜙(1), 𝑥𝜙(2)), 𝑥1, 𝑥2) = 𝛾(𝑥𝜙(1), 𝑥𝜙(2)) = 𝜎𝑡,𝐹(𝛾). This implies that,  𝜎𝑡,𝐹 is regular. 

(ii) Similarly to the proof of (i) and by using Lemma 5.1, we can show that every 𝜎𝑡,𝐹 ∈ 𝐵4 is regular. 

(iii) Let 𝜎𝑡,𝐹 ∈ 𝐵5 with 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) and 𝐹 = 𝑥𝜙(1) ≈ 𝑥𝜙(2). We consider in the case of 𝜋(𝑖) ≠ 𝑖 for some 

𝑖 = 1, … , 𝑛, then there exists 𝜎�́�,�́� ∈ 𝐵2 with �́� = 𝑓(𝑥𝜋−1(1), … , 𝑥𝜋−1(𝑛)) and �́� = 𝑥𝜙(1) ≈ 𝑥𝜙(2) such that  (𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹)(𝑓) 

= �̂�𝑡,𝐹 [�̂��́�,�́�[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))]] 

= �̂�𝑡,𝐹[𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝜎�́�,�́�(𝑓), 𝑥𝜋(1), … , 𝑥𝜋(𝑛))] 

= �̂�𝑡,𝐹[𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑓(𝑥𝜋−1(1), … , 𝑥𝜋−1(𝑛)), 𝑥𝜋(1), … , 𝑥𝜋(𝑛))] 

= �̂�𝑡,𝐹 [𝑓 (𝑥𝜋(𝜋−1(1)), … , 𝑥𝜋(𝜋−1(𝑛)))] 

= �̂�𝑡,𝐹[𝑓(𝑥𝜋∘𝜋−1(1), … , 𝑥𝜋∘𝜋−1(𝑛))] 

= �̂�𝑡,𝐹[𝑓(𝑥1, … , 𝑥𝑛)] 

= 𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝑥1, … , 𝑥𝑛) 

= 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) 

= 𝜎𝑡,𝐹(𝑓). 

And (𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹)(𝛾) = �̂�𝑡,𝐹[�̂��́�,�́�[𝑥𝜙(1) ≈ 𝑥𝜙(2)]] = �̂�𝑡,𝐹 [�̂��́�,�́�[𝑥𝜙(1)] ≈ �̂��́�,�́�[𝑥𝜙(2)]] = �̂�𝑡,𝐹[𝑥𝜙(1) ≈ 𝑥𝜙(2)] = 𝑥𝜙(1) ≈

𝑥𝜙(2). 

(iv) Let 𝜎𝑡,𝐹 ∈ 𝐵6 with 𝑡 = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) and 𝐹 = 𝛾(𝑥𝜙(1), 𝑥𝜙(2)).  

To prove that 𝜎𝑡,𝐹 is regular, we consider in three cases: If 𝜋(𝑖) = 𝑖 for all 𝑖 = 1, … , 𝑛 and 𝜙(𝑗) ≠ 𝑗 for some 𝑗 = 1,2, then there 

exists 𝜎�́�,�́� ∈ 𝐵6 with �́� = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) and 𝐹 =́ 𝛾(𝑥𝜙−1(1), 𝑥𝜙−1(2)) such that (𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹)(𝑓) 

= �̂�𝑡,𝐹[�̂��́�,�́�[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))]] 

=�̂�𝑡,𝐹[𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝑥𝜋(1), … , 𝑥𝜋(𝑛))] 

= �̂�𝑡,𝐹[𝑓 (𝑥𝜋(𝜋(1)), … , 𝑥𝜋(𝜋(𝑛)))] 

= �̂�𝑡,𝐹[𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))] 

= 𝑆        𝑛
𝑙𝑖𝑛 𝑛(𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)), 𝑥𝜋(1), … , 𝑥𝜋(𝑛)) 

= 𝑓 (𝑥𝜋(𝜋(1)), … , 𝑥𝜋(𝜋(𝑛))) 

= 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) 

= 𝜎𝑡,𝐹(𝑓). 

 

Similarly to the proof of (i), we have that (𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹)(𝛾) = 𝜎𝑡,𝐹(𝛾). 

If 𝜋(𝑖) ≠ 𝑖 for some 𝑖 = 1, … , 𝑛 and 𝜙(𝑗) = 𝑗 for all 𝑗 = 1,2, then there exists 𝜎�́�,�́� ∈ 𝐵6 with �́� = 𝑓(𝑥𝜋−1(1), … , 𝑥𝜋−1(𝑛))and 

𝐹 =́ 𝛾(𝑥𝜙(1), 𝑥𝜙(2)) such that (𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹)(𝑓) = 𝜎𝑡,𝐹(𝑓), it follows from (iii). Moreover, we consider 

(𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹)(𝛾) 
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= �̂�𝑡,𝐹[�̂��́�,�́�[𝛾(𝑥𝜙(1), 𝑥𝜙(2))]] 

=�̂�𝑡,𝐹[𝑆        2
𝑙𝑖𝑛 2(𝛾(𝑥𝜙(1), 𝑥𝜙(2)), 𝑥𝜙(1), 𝑥𝜙(2))] 

= �̂�𝑡,𝐹[𝛾 (𝑥𝜙(𝜙(1)), 𝑥𝜙(𝜙(1)))] 

= �̂�𝑡,𝐹[𝛾(𝑥𝜙(1), 𝑥𝜙(2))] 

= 𝑆        2
𝑙𝑖𝑛 2(𝛾(𝑥𝜙(1), 𝑥𝜙(2)), 𝑥𝜙(1), 𝑥𝜙(2)) 

= 𝛾 (𝑥𝜙(𝜙(1)), 𝑥𝜙(𝜙(2))) 

= 𝛾(𝑥𝜙(1), 𝑥𝜙(2)) 

= 𝜎𝑡,𝐹(𝛾). 

Finally, if 𝜋(𝑖) ≠ 𝑖 for some 𝑖 = 1, … , 𝑛and 𝜙(𝑗) ≠ 𝑗 for some 𝑗 = 1,2, then there exists 𝜎�́�,�́� ∈ 𝐵6 with �́� =

𝑓(𝑥𝜋−1(1), … , 𝑥𝜋−1(𝑛)) and 𝐹 =́ 𝛾(𝑥𝜙−1(1), 𝑥𝜙−1(2)) such that (𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹)(𝑓) = 𝜎𝑡,𝐹(𝑓) and (𝜎𝑡,𝐹 ∘𝑟 𝜎�́�,�́� ∘𝑟 𝜎𝑡,𝐹) 

(𝛾) = 𝜎𝑡,𝐹(𝛾). Therefore, we conclude that 𝜎𝑡,𝐹 is regular. 

(v) This statement can be proved by using Lemma 5.1 and the same process as we proved in (iii). 

(vi) This statement can be proved by using Lemma 5.1 and the same process as we proved in (iv). 

 Consequence of this section, every linear hypersubstitution is regular and then 𝐻𝑦𝑝𝑙𝑖𝑛((𝑛), (2)) is a regular semigroup. 
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