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Abstract 
 
As new classes of generalized open sets and generalized continuous functions, the notions of 𝐿-open sets, 𝐿∗-open sets, 

𝐿-continuous functions, 𝐿∗-continuous functions and weakly 𝐿∗-continuous functions are introduced and investigated. It is proved 

that 𝐿-open sets form a topology and decomposition of continuity is obtained. 
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1. Introduction 
 

Let (𝑋, 𝜏) be a topological space and let 𝐴 ⊆ 𝑋 . 

Denote the set of all countable (resp. Lindelof, compact) 

subsets of 𝑋 by 𝜔(𝑋, 𝜏) (resp. 𝐿(𝑋, 𝜏), 𝐶(𝑋, 𝜏)). A point 𝑥 ∈ 𝑋 

is called a condensation point of 𝐴 if for each 𝑈 ∈ 𝜏  with 𝑥 ∈
𝑈, the set 𝑈 ∩ 𝐴 is uncountable. In 1982, Hdeib defined 𝜔-

closed sets and 𝜔-open sets as follows: 𝐴 is called 𝜔-closed 

(Hdeib, 1982) if it contains all its condensation points. The 

complement of an 𝜔-closed set is called 𝜔-open. Denote the set 

of all 𝜔 -open sets in (𝑋, 𝜏)  by 𝜏𝜔.  Al-Zoubi & Al-Nashef 

(2003),  proved that (𝑋, 𝜏𝜔) is a topological space, 𝜏 ⊆ 𝜏𝜔 and 

{𝑈 − 𝐶: 𝑈  ∈ 𝜏 and  𝐶 ∈  𝜔(𝑋, 𝜏)}  forms a base for 𝜏𝜔 . 𝐴  is 

called co-compact open (notation: coc-open set) (Al Ghour & 

Samarah, 2012) if for every 𝑥 ∈ 𝐴, there exists an open set 𝑈 ⊆
𝑋 and 𝐾 ∈ 𝐶(𝑋, 𝜏) such that 𝑥 ∈ 𝑈 − 𝐾 ⊆ 𝐴. Denote the set of 

all coc-open sets in (𝑋, 𝜏) by 𝜏𝐾. Al Ghour & Samarah (2012) 

investigated coc-open sets, and proved that (𝑋, 𝜏𝐾)  is a 

topological space, 𝜏 ⊆ 𝜏𝐾  and {𝑈 − 𝐾: 𝑈  ∈ 𝜏 and  𝐾 ∈
 𝐶(𝑋, 𝜏)}  forms a base for 𝜏𝐾  and gave a decomposition 

theorem of continuity. It is not difficult to give an example to 

show that 𝜔-open sets are not coc-open sets and vice versa, in 

general. The first main goal of this research is to introduce and 

investigate 𝐿-open sets as a new class of sets that is strictly 

containing  both 𝜔-open  sets  and  coc-open  sets.  The second

 
main goal of this research is to introduce and study 𝐿∗-open sets 

as a new class of sets that is containing strictly the open sets 

and give with the L-open sets a decomposition of open sets. The 

third main goal of this paper is to define three new classes of 

continuous functions via 𝐿-open and 𝐿∗-open sets.  

     Throughout this paper, ℝ, and ℚ denote the set of 

real numbers and the set of rational numbers, respectively. For 

a subset 𝐴 of a topological space (𝑋, 𝜏), 𝐶𝑙𝜏(𝐴) and 𝐼𝑛𝑡𝜏(𝐴) 

will denote the closure of 𝐴 and the interior of 𝐴, respectively. 

Also, we write 𝜏𝐴 to denote the relative topology on 𝐴 when 𝐴 

is nonempty. For a nonempty set 𝑋, we will denote the discrete 

topology on 𝑋 and the indiscrete topology on 𝑋 by τ𝑑𝑖𝑠𝑐  and 

τ𝑖𝑛𝑑, respectively. Finally, τ𝑢 will denote the usual topology on 

ℝ.  

 

2. 𝑳-Open Sets 
 

Definition 2.1. Let (𝑋, 𝜏) be a topological space and 𝐴 ⊆ 𝑋. A 

point 𝑥  in 𝑋  is in 𝐿-closure of 𝐴  (𝑥 ∈ 𝐶𝑙𝐿(𝐴)) if  (𝑈 − 𝐻) ∩
𝐴 ≠ ∅  for any 𝑈 ∈ 𝜏  and 𝐻 ∈ 𝐿(𝑋, 𝜏)  with 𝑥 ∈ 𝑈 − 𝐻 . 𝐴  is 

called 𝐿-closed if 𝐶𝑙𝐿(𝐴) = 𝐴. The complement of an 𝐿-closed 

set is called an 𝐿-open set. Denote the family of all 𝐿-open 

subsets of (𝑋, 𝜏) by τ𝐿. 

The next result follows directly from Definition 2.1:    

 

Proposition 2.2. A subset 𝐴 of a topological space (X, τ) is 𝐿-

open if and only if for every 𝑥 ∈ 𝐴, there exists an open set 𝑈 ⊆
𝑋 and 𝐻 ∈ 𝐿(𝑋, 𝜏) such that 𝑥 ∈ 𝑈 − 𝐻 ⊆ 𝐴.    

     For a topological space (𝑋, 𝜏) denote the family of 

𝐿-open sets {𝑈 − 𝐻: 𝑈  ∈ 𝜏 and 𝐻 ∈ 𝐿(𝑋, 𝜏)} by ℬ𝐿(𝜏).  
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Theorem 2.3. Let (X, τ)  be a topological space. Then the 

collection τ𝐿 forms a topology on 𝑋.  

 

Proof. By the definition one has directly that ∅ ∈ τ𝐿. To see 

that 𝑋 ∈ τ𝐿, let 𝑥 ∈ 𝑋, take 𝑈 = 𝑋 and 𝐻 = ∅. Then 𝑥 ∈ 𝑈 −
𝐻 ⊆ 𝑋.  

Let 𝑈1, 𝑈2 ∈ τ𝐿  and let 𝑥 ∈ 𝑈1 ∩ 𝑈2 . For each 𝑖 =
1,2, we find an open set 𝑉𝑖 and  𝐻𝑖 ∈ 𝐿(𝑋, 𝜏) such that 𝑥 ∈ 𝑉𝑖 −
𝐻𝑖 ⊆ 𝑈𝑖 . Take 𝑉 = 𝑉₁ ∩ 𝑉₂  and 𝐻 = 𝐻₁ ∪ 𝐻₂. Then 𝑉  is 

open, 𝐻 ∈ 𝐿(𝑋, 𝜏), and 𝑥 ∈ 𝑉 − 𝐻 ⊆ 𝑈1 ∩ 𝑈2 . It follows that 

𝑈1 ∩ 𝑈2 is 𝐿-open.  

Let {𝑈𝛼: 𝛼 ∈ 𝛥} be a collection of 𝐿-open subsets of 

(𝑋, 𝜏)  and 𝑥 ∈ ⋃ 𝑈𝛼𝛼∈𝛥 . Then there exists 𝛼₀ ∈ 𝛥  such that 

𝑥 ∈ 𝑈 𝛼₀
. Since 𝑈 𝛼₀

 is 𝐿-open, then there exists an open set 𝑉 

and 𝐻 ∈ 𝐿(𝑋, 𝜏), such that 𝑥 ∈ 𝑉 − 𝐻 ⊆ 𝑈 𝛼₀
. Therefore, we 

have 𝑥 ∈ 𝑉 − 𝐻 ⊆ 𝑈 𝛼₀
⊆ ⋃ 𝑈𝛼𝛼∈𝛥 . Hence, ⋃ 𝑈𝛼𝛼∈𝛥  is 𝐿 -

open. 

 
Remark 2.4. Let (𝑋, 𝜏) be a topological space. Then  

(a) The collection ℬ𝐿(𝜏) forms a base for τ𝐿. 

(b) The collection 𝜏 ∪ {𝑋 − 𝐻: 𝐻 ∈ 𝐿(𝑋, 𝜏)} forms a 

subbase for τ𝐿. 

(c) τ𝜔 ∪ τ𝐾 ⊆ τ𝐿.   
 

Remark 2.5. The inclusion in Remark 2.4 (c) is not equality in 

general, to see this, let 𝑋 = ℝ  and 𝜏 = 𝜏𝑢 . Then {1} ∈ τ𝐿 −
(τ𝜔 ∪ τ𝐾) and so  τ𝜔 ∪ τ𝐾 ≠ τ𝐿 . 

The following is an example of a topological space 
(𝑋, 𝜏) such that τ𝜔 = τ𝐿 and τ𝐾 ≠ τ𝐿: 
 

Example 2.6. Let 𝑋 = ℝ and 𝜏 = {𝑋} ∪ {𝑈 ⊆ 𝑋: 1 ∉ 𝑈}. Then 

𝐶(𝑋, τ) = {𝐾 ⊆ 𝑋: 1 ∈ 𝐾} ∪ {𝐾 ⊆ 𝑋: 1 ∉ 𝐾 and 𝐾 is finite} 
and 

𝐿(X, τ)  = {𝐻 ⊆ 𝑋: 1 ∈ 𝐾} ∪ {𝐻 ⊆ 𝑋: 1
∉ 𝐻 and 𝐻 is countable}. 

Thus, τ𝐾 = 𝜏 ∪ {𝑈 ⊆ 𝑋: 1 ∈ 𝑈 and 𝑋 − 𝑈 is finite} and 
  τ𝐿 = τ ∪ {𝑈 ⊆ 𝑋: 1 ∈ 𝑈 and 𝑋 − 𝑈 is countable}. 

Clearly, τ𝜔 = τ𝐿 and τ𝐾 ≠ τ𝐿. 
 

Definition 2.7. (Mukherji & Sarkar, 1979) A topological space 

(𝑋, 𝜏) is called an LC space if each Lindelof subset is closed. 

 

Theorem 2.8. Let (𝑋, 𝜏)  be a topological space. Then the 

following are equivalent:  

(a) (𝑋, 𝜏) is LC.   

(b) 𝜏 = ℬ𝐿(𝜏). 

(c) 𝜏 = τ𝜔 = τ𝐿 . 
 
Proof.  (a) ⇒ (b) 𝜏 ⊆ ℬ𝐿(𝜏)  is obvious. Let 𝑈 − 𝐻 ∈
ℬ𝐿(𝜏) where 𝑈 ∈ 𝜏 and 𝐻 ∈ 𝐿(𝑋, 𝜏). Since (𝑋, 𝜏) is LC, then 

𝐻 is closed and hence 𝑈 − 𝐻 ∈ 𝜏. It follows that ℬ𝐿(𝜏) ⊆  𝜏.  
(b) ⇒ (c) By Remark 2.4 (c), it is sufficient to see that 

τ𝐿 ⊆ 𝜏. By Remark 2.4 (a), ℬ𝐿(𝜏) is a base for τ𝐿. Thus by (b), 

τ𝐿 ⊆ 𝜏.  
 (c) ⇒ (a) If 𝐻 ∈ 𝐿(𝑋, 𝜏), then 𝑋 − 𝐻 ∈ τ𝐿  and by 

(c), 𝑋 − 𝐻 ∈ 𝜏. Therefore, 𝐻 is closed in 𝑋. 

 

Proposition 2.9. For any topological space (𝑋, 𝜏), (𝑋, τ𝐿) is 

LC.  

Proof. Let 𝐻 ∈ 𝐿(𝑋, τ𝐿) . Since 𝜏 ⊆ τ𝐿 , then 𝐿(𝑋, τ𝐿) ⊆
𝐿(𝑋, 𝜏)  and so 𝐻 ∈ 𝐿(𝑋, 𝜏). Thus, we have 𝑋 − 𝐻 ∈ τ𝐿 , and 

hence 𝐻 is closed in (𝑋, τ𝐿). 
 

Corollary 2.10. For any topological space (𝑋, 𝜏), (τ𝐿)𝐿 = τ𝐿.  
 

Proof. This is an immediate consequence of Theorem 2.8 and 

Proposition 2.9.  

As defined in Cameron (1971), a topological space 

(𝑋, 𝜏) is maximal Lindelof if (𝑋, 𝜏) is Lindelof and there exists 

no strictly finer Lindelof topology on 𝑋. 

 

Theorem 2.11. (Cameron, 1971) A Lindelof topological space 

is maximal Lindelof if and only if it is LC. 

 

Corollary 2.12. Let (𝑋, 𝜏) be a topological space. Then (𝑋, τ𝐿) 

is maximal Lindelof if and only if (𝑋, τ𝐿) is Lindelof.  

 

Proof. This is an immediate consequence of Proposition 2.9 

and Theorem 2.11. 

 

Corollary 2.13. A Lindelof topological space (𝑋, 𝜏)  is 

maximal Lindelof if and only if there is a topology 𝜎 on 𝑋 such 

that 𝜎𝐿 = 𝜏.  
 

Proposition 2.14. If (𝑋, 𝜏) is hereditarily Lindelof, then τ𝐿 =
𝜏𝑑𝑖𝑠𝑐 .  
 

Proof. For every 𝑥 ∈ 𝑋, 𝑋 − {𝑥} is Lindelof and so {𝑥} = 𝑋 −
(𝑋 − {𝑥}) ∈ ℬ𝐿(𝜏) ⊆ τ𝐿. It follows that τ𝐿 = 𝜏𝑑𝑖𝑠𝑐 . 

As a conclusion of Proposition 2.14, for any second 

countable topological space (𝑋, 𝜏), τ𝐿 = 𝜏𝑑𝑖𝑠𝑐 .  
The following is an example a nondiscrete topo-

logical space which shows that the converse of Proposition 2.14 

is not true in general: 

  

Example 2.15. Let 𝑋 = ℝ and 𝜏 = {∅} ∪ {𝑈 ⊆ ℝ: ℚ ⊆ 𝑈}. It 

is not difficult to see that 𝐿(𝑋, 𝜏) = {𝐻 ⊆ 𝑋: 𝐻 − ℚ is 

countable} . For every 𝑥 ∈ 𝑋 , take 𝐻 = ℚ  and 𝑈 = ℚ ∪ {𝑥} . 

Then 𝐻 ∈ 𝐶(𝑋, 𝜏), 𝑈 ∈ 𝜏  and {𝑥} = 𝑈 − 𝐻 . This shows that 

τ𝐿 = 𝜏𝑑𝑖𝑠𝑐 .  On the other hand, it is clear that (𝑋, 𝜏)  is not 

hereditarily Lindelof. 

 

Theorem 2.16. Let (𝑋, 𝜏) be a topological space and 𝐴 be a 

nonempty subset of 𝑋. Then (𝜏∣𝐴)𝐿 ⊆ 𝜏𝐿∣𝐴. 

 

Proof. Let 𝐵 ∈ (𝜏∣𝐴)𝐿 and 𝑥 ∈ 𝐵 . Then there exists 𝑉 ∈ 𝜏∣𝐴 

and a Lindelof set 𝐻 ⊆ 𝐴 such that 𝑥 ∈ 𝑉 − 𝐻 ⊆ 𝐵 . Choose 

𝑈 ∈ 𝜏  such that 𝑉 = 𝑈 ∩ 𝐴 . Now 𝑈 − 𝐻 ∈ 𝜏𝐿 

implies that (𝑈 − 𝐻) ∩ 𝐴 ∈ 𝜏𝐿∣𝐴. Hence, 𝐵 ∈ 𝜏𝐿∣𝐴. 

 

Question 2.17. Let (𝑋, 𝜏) be a topological space and 𝐴 be a 

nonempty subset of 𝑋. Is it true that (𝜏∣𝐴)𝐿 = 𝜏𝐿∣𝐴
? 

The following result is a partial answer for Question 

2.17: 

  

Theorem 2.18. Let (𝑋, 𝜏) be a topological space and 𝐴 be a 

nonempty closed set in (X, τ).  Then (𝜏∣𝐴)𝐿 = 𝜏𝐿∣𝐴
. 
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Proof. By Theorem 2.16, (𝜏∣𝐴)𝐿 ⊆ 𝜏𝐿∣𝐴 . Conversely, let 𝐵 ∈

𝜏𝐿∣𝐴
 and 𝑥 ∈ 𝐵 . Choose 𝐶 ∈ 𝜏𝐿  such that 𝐵 = 𝐶 ∩ 𝐴. Choose 

𝑈 ∈ 𝜏  and 𝐻 ∈ 𝐿(𝑋, 𝜏)  such that 𝑥 ∈ 𝑈 − 𝐻 ⊆ 𝐶 . Thus, we 

have 𝑥 ∈ (𝑈 ∩ 𝐴) − (𝐻 ∩ 𝐴) ⊆ 𝐵, 𝑈 ∩ 𝐴 ∈ 𝜏∣𝐴  and  𝐻 ∩ 𝐴 ∈
𝐿(𝐴, 𝜏∣𝐴). It follows that 𝐵 ∈ (𝜏∣𝐴)𝐿. 
 

Theorem 2.19. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  is injective, open, and 

continuous, then 𝑓: (𝑋, 𝜏𝐿) → (𝑌, 𝜎𝐿) is open. 

 
Proof. Let 𝐺 = 𝑈 − 𝐻  where 𝑈 ∈ 𝜏  and 𝐻 ∈ 𝐿(𝑋, 𝜏)  be a 

basic element for 𝜏𝐿 . Since 𝑓  is injective, 𝑓(𝐺) = 𝑓(𝑈) −
𝑓(𝐻). Since 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is open, 𝑓(𝑈) ∈ 𝜎. And since 

𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  is continuous, 𝑓(𝐻)  ∈ 𝐿(𝑌, 𝜎) . This ends 

the proof.  

In Theorem 2.19, the condition 'continuous' cannot be 

dropped as the following example shows: 

  

Example 2.20. Consider 𝑓: (ℝ, 𝜏𝑖𝑛𝑑) → (ℝ, 𝜏), where 𝜏 as in 

Example 2.6 and 𝑓 is the identity function. Then 𝑓 is bijective 

and open. On the other hand, since (ℝ, 𝜏𝑖𝑛𝑑)  is hereditarily 

Lindelof, we have (𝜏𝑖𝑛𝑑)𝐿 = 𝜏𝑑𝑖𝑠𝑐 . Since by Example 2.6 𝜏𝐿 ≠
𝜏𝑑𝑖𝑠𝑐 , 𝑓: (ℝ, (𝜏𝑖𝑛𝑑)𝐿) → (ℝ, 𝜏𝐿) is not open. 

 

3. 𝑳∗-Open Sets 
 

For any topological space (𝑋, 𝜏)  and 𝐴 ⊆ 𝑋 , it is 

clear that 𝐶𝑙𝐿(𝐴) = 𝐶𝑙𝜏𝐿
(𝐴). For simplicity, from now on we 

will use only 𝐶𝑙𝜏𝐿
(𝐴). Also, it is clear that 𝐶𝑙𝜏𝐿

(𝐴) ⊆ 𝐶𝑙𝜏(𝐴). 

The following example shows that 𝐶𝑙𝜏(𝐴) ≠ 𝐶𝑙𝜏𝐿
(𝐴)  in 

general. 

  

Example 3.1. Consider (𝑋, 𝜏) = (𝑅, 𝜏𝑢).  By Proposition 

2.14,  𝜏𝐿 = 𝜏𝑑𝑖𝑠𝑐 . Therefore, 𝐶𝑙𝜏𝐿
(𝐴)(ℚ) = ℚ but 𝐶𝑙𝜏(ℝ) =

ℝ. 
The following definition is reasonable: 

  

Definition 3.2. Let (𝑋, 𝜏) be a topological space and 𝐴 ⊆ 𝑋.  
(a) 𝐴 is called 𝐿∗-closed if 𝐶𝑙𝜏(𝐴) = 𝐶𝑙𝜏𝐿

(𝐴). 

(b) 𝐴 is called 𝐿∗-open if 𝑋 − 𝐴 is 𝐿∗-closed. 

 
Theorem 3.3. For a topological space (𝑋, 𝜏) , we have the 

following  

(a) ∅ and 𝑋 are 𝐿∗-closed sets in (𝑋, 𝜏).  

(b) Every closed set in (𝑋, 𝜏) is 𝐿∗-closed set.  

(c) Every finite union of 𝐿∗-closed sets in (𝑋, 𝜏) is 𝐿∗-

closed set in (𝑋, 𝜏).   
 

Proof.  (a)   It is obvious.  

  (b) Let 𝐴  be closed in (𝑋, 𝜏) . Then 𝐶𝑙𝜏𝐿
(𝐴) ⊆

𝐶𝑙𝜏(𝐴) = 𝐴. It follows that 𝐶𝑙𝜏𝐿
(𝐴) = 𝐶𝑙𝜏(𝐴) = 𝐴 and hence 

𝐴 is an 𝐿∗-closed set in (𝑋, 𝜏).  
 (c) Suppose {𝐴𝑖 ⊆ 𝑋: 1 ≤ 𝑖 ≤ 𝑛} is a finite collec-

tion of 𝐿∗ -closed sets. Then for every 1 ≤ 𝑖 ≤ 𝑛, 𝐶𝑙𝜏(𝐴𝑖) =
𝐶𝑙𝜏𝐿

(𝐴𝑖). Thus,  

 

𝐶𝑙𝜏(⋃ 𝐴𝑖

𝑛

𝑖=1

)  =  ⋃ 𝐶𝑙𝜏(𝐴𝑖)

𝑛

𝑖=1

 

                     =  ⋃ 𝐶𝑙𝜏𝐿
(𝐴𝑖)

𝑛

𝑖=1

 

 

                     = 𝐶𝑙𝜏𝐿
(⋃ 𝐴𝑖

𝑛

𝑖=1

). 

 

It follows that ⋃ 𝐴𝑖
𝑛
𝑖=1  is 𝐿∗-closed. 

 

Corollary 3.4. For a topological space (𝑋, 𝜏) , we have the 

following  

(a) ∅, 𝑋 are 𝐿∗-open sets in (𝑋, 𝜏).  

(b) Every open set in (𝑋, 𝜏) is 𝐿∗-open set.  

(c) Every finite intersection of 𝐿∗-open sets in (𝑋, 𝜏) 

is 𝐿∗-open in (𝑋, 𝜏).  

The following theorem characterizes 𝐿∗-open sets: 

  

Proposition 3.5. A subset 𝐴 of a topological space (𝑋, 𝜏) is 𝐿∗-

open if and only if 𝐼𝑛𝑡𝜏(𝐴) = 𝐼𝑛𝑡𝜏𝐿
(𝐴). 

 

Proof. 𝐴 is 𝐿∗-open if and only if 𝑋 − 𝐴 is 𝐿∗-closed if and only 

if 

 𝐶𝑙𝜏(𝑋 − 𝐴) = 𝐶𝑙𝜏𝐿
(𝑋 − 𝐴) if and only if 𝑋 − 𝐶𝑙𝜏(𝑋 − 𝐴) =

𝑋 − 𝐶𝑙𝜏𝐿
(𝑋 − 𝐴) if and only if 𝐸𝑥𝑡𝜏(𝑋 − 𝐴) = 𝐸𝑥𝑡𝜏𝐿

(𝑋 −

𝐴) if and only if 𝐼𝑛𝑡𝜏(𝐴) = 𝐼𝑛𝑡𝜏𝐿
(𝐴).   

      The union of two 𝐿∗-open sets one of them is open 

need not to be 𝐿∗-open in general, as the following example 

shows: 

  

Example 3.6. Consider the topological space as in Example 

2.6. Let 𝐴 = (0, ∞)  and 𝐵 = (−∞, 0). Then 𝐴  is open, also 

since 𝐼𝑛𝑡𝜏(𝐵) = 𝐼𝑛𝑡𝜏𝐿
(𝐵) = 𝐵 − {1} , then 𝐵  is 𝐿∗ -open. On 

the other hand, 𝐼𝑛𝑡𝜏(𝐴 ∪ 𝐵) = ℝ − {0,1} but 𝐼𝑛𝑡𝜏𝐿
(𝐴 ∪ 𝐵) =

ℝ − {0} which implies that 𝐴 ∪ 𝐵 is not 𝐿∗-open  

        Example 3.6 shows also that the converse of 

Corollary 3.4 (b) is not true in general.  

       Let (𝑋, 𝜏) be a topological space. Denote the family 

of all 𝐿∗-open sets in (𝑋, 𝜏) by ℬτ𝐿∗ . By Corollary 3.4 (b), 𝜏 ⊆

ℬτ𝐿∗ . According to Example 3.6, ℬτ𝐿∗  does not form a topology 

on 𝑋 in general. By Corollary 3.4, ℬτ𝐿∗  forms a base for some 

topology on 𝑋. Denote the topology on 𝑋 which has ℬτ𝐿∗  as a 

base by τ𝐿∗ .  
 

Definition 3.7. (Henriksen & Woods, 1988) A topological 

space (𝑋, 𝜏)  is called anti-locally Lindelof if any Lindelof 

subset of 𝑋 has empty interior.  

 

       If 𝑆 is the Sorgenfrey line and (𝑋, 𝜏) is the Cartesian 

product topological space 𝑆 × 𝑆 , then (𝑋, 𝜏)  is anti-locally 

Lindelof (see Corollary 2.4 of (Henriksen & Woods, 1988)). 

  

Theorem 3.8. Open sets in an anti-locally Lindelof topological 

space are 𝐿∗-closed sets.  

 

Proof. Let (𝑋, 𝜏) be a topological space and 𝐴 ∈ 𝜏. Suppose on 

the contrary that there is 𝑥 ∈ 𝐶𝑙𝜏(𝐴) − 𝐶𝑙𝜏𝐿
(𝐴 ). Since 𝑥 ∉

𝐶𝑙𝜏𝐿
(𝐴), there exists 𝐵 ∈  𝜏𝐿  such that 𝑥 ∈ 𝐵 and 𝐵 ∩ 𝐴 = ∅. 

Choose 𝑈 ∈ 𝜏  and 𝐻 ∈ 𝐿(𝑋, 𝜏)  such that  𝑥 ∈ 𝑈 − 𝐻 ⊆ 𝐵 . 

Thus we have 𝑈 ∩ 𝐴 ⊆ 𝐻. Since 𝑥 ∈  𝐶𝑙𝜏(𝐴), then 𝑈 ∩ 𝐴 ≠ ∅ 
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and hence 𝐼𝑛𝑡𝜏(𝐻) ≠ ∅. This contradicts the assumption that 

(𝑋, 𝜏) is anti-locally Lindelof.  

Recall that a topological space (𝑋, 𝜏)  is locally 

indiscrete if every open set in (𝑋, 𝜏) is closed. 

  

Corollary 3.9. If (𝑋, 𝜏)  is anti-locally Lindelof such that 

ℬτ𝐿∗ = 𝜏, then (𝑋, 𝜏) is locally indiscrete.  

 

Proof. Let 𝐴 be an open set in (𝑋, 𝜏). Then by Theorem 3.8, 𝐴 

is 𝐿∗-closed. So 𝑋 − 𝐴 is 𝐿∗-open and by assumption, 𝑋 − 𝐴 is 

open. Thus, 𝐴 is closed.  

In Theorem 3.8 the condition 'anti-locally Lindelof' 

cannot be dropped as we can see by the following example: 

  

Example 3.10. Consider (𝑋, 𝜏) = (ℝ, 𝜏𝑢) as in Example 3.1. 

Take 𝐴 = (0,1), then 𝐶𝑙𝜏𝐿
(𝐴) = 𝐴 but 𝐶𝑙𝜏(𝐴) = [0,1]. 

The following example shows that the converse of 

Corollary 3.4 (b) is not true in general, even if we add the 

condition 'anti-locally Lindelof' on the topological space: 

  

Example 3.11. Let (𝑋, 𝜏) be the Cartesian product topological 

space 𝑆 × 𝑆  where 𝑆  is the Sorgenfrey line, then as we 

mentioned above (𝑋, 𝜏) is anti-locally Lindelof. If every 𝐿∗ -

open set in (𝑋, 𝜏)  is open, then by Corollary 3.9, (𝑋, 𝜏)  is 

locally indiscrete. We are going to show that  (𝑋, 𝜏)  is not 

locally indiscrete. Let 𝐴 = (0, ∞) × ℝ . Then 𝐴 ∈ 𝜏 , on the 

other hand, if 𝐴 is closed, then 𝑋 − 𝐴 =   (−∞, 0] × ℝ ∈ 𝜏 and 

so there exist 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ such that (0,0) ∈ [𝑎, 𝑏) × [𝑐, 𝑑) ⊆
(−∞, 0] × ℝ  which implies that 𝑏 > 0  and ((𝑏/2),0) ∈
(−∞, 0] × ℝ, which is not true. It follows that (𝑋, 𝜏) is not 

locally indiscrete.  

      The following is a decomposition theorem of open-

ness in terms of L-openness and 𝐿∗-openness: 

 

Theorem 3.12. For any topological space (𝑋, 𝜏),  𝜏 = 𝜏𝐿 ∩
 ℬτ𝐿∗ .  

 

Proof. By Proposition 2.4 (c), 𝜏 ⊆ 𝜏𝜔 ⊆ 𝜏𝐿, and by Corollary 

3.4 (b), 𝜏 ⊆ ℬτ𝐿∗ . It follows that 𝜏 ⊆ 𝜏𝐿 ∩  ℬτ𝐿∗ . Conversely, let 

𝐴 ∈ 𝜏𝐿 ∩ ℬτ𝐿∗ . Since 𝐴 is 𝐿∗-open, then 𝐼𝑛𝑡𝜏(𝐴) = 𝐼𝑛𝑡𝜏𝐿
(𝐴). 

Also, since A is 𝐿 -open then 𝐼𝑛𝑡𝜏𝐿
(𝐴) = 𝐴 . It follows that 

𝐼𝑛𝑡𝜏(𝐴) = 𝐴 and hence 𝐴 ∈ 𝜏. It follows that 𝜏𝐿 ∩  ℬτ𝐿∗ ⊆ 𝜏. 
 

Corollary 3.13. For any topological space (𝑋, 𝜏), 𝜏 = 𝜏𝐿 ∩ τ𝐿∗. 

 

Corollary 3.14. If (𝑋, 𝜏) is a hereditarily Lindelof topological 

space, then ℬτ𝐿∗ = 𝜏.  

 

Proof. By Proposition 2.16, 𝜏𝐿 = 𝜏𝑑𝑖𝑠𝑐. Theorem 3.12 ends the 

proof.  

 

Corollary 3.15. If (𝑋, 𝜏)  is a second countable topological 

space, then ℬτ𝐿∗ = 𝜏. 

 

Proposition 3.16. If (𝑋, 𝜏) is an LC topological space, then 

ℬτ𝐿∗ = 𝜏𝑑𝑖𝑠𝑐 . 

 

Proof. Let 𝐴 ⊆ 𝑋 . By Theorem 2.8, we have 𝐼𝑛𝑡𝜏(𝐴) =
𝐼𝑛𝑡𝜏𝐿

(𝐴) and hence 𝐴 is 𝐿∗-open. 

Corollary 3.17. For any topological space (𝑋, 𝜏), (𝜏𝐿) 𝐿∗ =
𝜏𝑑𝑖𝑠𝑐 .  
 

Proof. By Proposition 2.9, (𝑋, 𝜏𝐿) is LC. So by Proposition 

3.16, we must have (𝜏𝐿) 𝐿∗ = 𝜏𝑑𝑖𝑠𝑐 .  
 

4. 𝑳-Continuity and 𝑳∗-Continuity 
 

Definition 4.1. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)   is called 𝐿 -

continuous (resp. 𝐿∗ -continuous, weakly 𝐿∗ -continuous) at a 

point 𝑥 ∈ 𝑋, if for every 𝑉 ∈ 𝜎 with 𝑓(𝑥) ∈ 𝑉 there is 𝑈 ∈ 𝜏𝐿 

(resp. 𝑈 ∈ ℬτ𝐿∗ , 𝑈 ∈ τ𝐿∗) such that 𝑥 ∈ 𝑈 and 𝑓(𝑈) ⊆ 𝑉.  If 𝑓 

is 𝐿-continuous (resp. 𝐿∗-continuous, weakly 𝐿∗-continuous) at 

each point of 𝑋, then 𝑓 is said to be 𝐿-continuous (resp. 𝐿∗-

continuous, weakly 𝐿∗-continuous). 

The following result follows immediately and its 

proof is left to the reader: 

  

Proposition 4.2. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is 

(a) 𝐿-continuous if and only if 𝑓: (𝑋, 𝜏𝐿) → (𝑌, 𝜎) is 

continuous.  

(b) 𝐿∗ -continuous if and only if for each 𝑉 ∈
𝜎, 𝑓⁻¹(𝑉) is  𝐿∗-open.  

(c) Weakly 𝐿∗-continuous if and only if 𝑓: (𝑋, τ𝐿∗) →
(𝑌, 𝜎) is continuous. 

 

Corollary 4.3. Every 𝐿∗ -continuous function is weakly 𝐿∗ -

continuous   

 

Proof. The proof follows directly from parts (b) and (c) of 

Proposition 4.2.  

The following example shows that Corollary 4.3 is 

not reversible in general. It is also an example of an 𝐿 -

continuous function that is not 𝐿∗-continuous. 

  
Example 4.4. Let (𝑋, 𝜏), 𝐴 and 𝐵 be the topological space and 

the sets as in Example 3.6. Let 𝑌 = {𝑎, 𝑏} and 𝜎 = {∅, 𝑌, {𝑏}}. 

Define 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) by  𝑓(0) = 𝑎 and  𝑓(𝑥) = 𝑏 

otherwise. As it can be seen from Example 3.6, 𝐴 ∪ 𝐵 ∈ τ𝐿∗ −
ℬτ𝐿∗ . Since 𝑓⁻¹({𝑏}) = 𝐴 ∪ 𝐵 ∈ τ𝐿∗ − ℬτ𝐿∗ , then 𝑓  is 

weakly  𝐿∗ -continuous that is not 𝐿∗ -continuous. Also, since 

𝑓⁻¹({𝑏}) = 𝐴 ∪ 𝐵 ∈ 𝜏𝐿, then 𝑓 is 𝐿-continuous.  

The following example shows that 𝐿-continuity does 

not imply even weakly 𝐿∗-continuity in general: 

 
Example 4.5. Let (𝑋, 𝜏) = (ℝ, 𝜏𝑢)  and (𝑌, 𝜎) = (ℝ , 𝜏𝑑𝑖𝑠𝑐). 
Since (ℝ, 𝜏𝑢)  is second countable, then by Proposition 2.14 

(𝑋, 𝜏𝐿) = (ℝ , 𝜏𝑑𝑖𝑠𝑐) and by Corollary 3.15, ℬτ𝐿∗ = 𝜏. So the 

identity function 𝐼: (𝑋, 𝜏) → (𝑌, 𝜎) is an 𝐿-continuous function 

that is not weakly  𝐿∗-continuous.  

The following is an example of an  𝐿∗ -continuous 

function that is not 𝐿-continuous:  

  

Example 4.6. Let (𝑋, 𝜏) be the topological space as in Example 

2.6, 𝑌 = {𝑎, 𝑏}  and 𝜎 = {∅, 𝑌, {𝑎}} . Define 𝑓: (𝑋, 𝜏) →
(𝑌, 𝜎) by 𝑓(1) = 𝑎  and  𝑓(𝑥) = 𝑏  otherwise. Since 

𝐼𝑛𝑡𝜏({1}) = 𝐼𝑛𝑡𝜏𝐿
({1}) = ∅ , then 𝑓⁻¹({𝑎}) = {1} ∈ ℬτ𝐿∗  and 

hence 𝑓 is  𝐿∗-continuous. On the other hand, since 𝑓−1({𝑎}) =
{1} ∉ 𝜏𝐿, then 𝑓 is not 𝐿-continuous.  
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In the following result we list two decomposition 

theorems for continuity:     

  

Proposition 4.7. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function. Then the 

following are equivalent:  

(a) 𝑓 is continuous.  

(b) 𝑓 is both 𝐿-continuous and  𝐿∗-continuous.  

(c) 𝑓  is both 𝐿 -continuous and weakly  𝐿∗ -conti-

nuous.  

 

Proof. (a) ⇔ (b) The Proof follows immediately from Theorem 

3.12 and Proposition 4.2.  

(a) ⇔ (c) The Proof follows directly from Corollary 3.13 and 

Proposition 4.2. 

      As defined in (Hdeib, 1989), a function 𝑓: (𝑋, 𝜏) →
(𝑌, 𝜎) is 𝜔-continuous if the inverse image of each open set is 

𝜔-open. 

Any 𝜔 -continuous function is 𝐿 -continuous, 

however, the function 𝐼 in Example 4.5 is 𝐿-continuous but not 

𝜔-continuous.   
 

Remark 4.8. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  be a function for which 

(𝑋, 𝜏) is LC. Then the following are equivalent:  

(a) 𝑓 is continuous.  

(b) 𝑓 is 𝜔-continuous.  

(c) 𝑓 is 𝐿-continuous.  

 

Proof. This is an immediate consequence of Theorem 2.8. 

 

Remark 4.9. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is any function for which 

(𝑋, 𝜏) is LC, then 𝑓 is  𝐿∗-continuous.  

 

Proof. This is an immediate consequence of Proposition 3.16. 

 

Remark 4.10. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function with (𝑋, 𝜏) 

is hereditarily Lindelof (in particular, (𝑋, 𝜏)  is second 

countable). Then the following are equivalent:  

(a) 𝑓 is continuous.  

(b) 𝑓 is  𝐿∗-continuous.  

 

Proof. This follows from Corollary 3.14. 

 

Theorem 4.11. (a) If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  is 𝐿-continuous and 

𝑔: (𝑌, 𝜎) → (𝑍 , 𝜇) is continuous, then 𝑔 ∘ 𝑓 ∶ (𝑋, 𝜏) → (𝑍 , 𝜇) 

is 𝐿-continuous.  

(b) If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  is 𝐿∗ -continuous and 

𝑔: (𝑌, 𝜎) → (𝑍 , 𝜇) is continuous, then 𝑔 ∘ 𝑓 ∶ (𝑋, 𝜏) → (𝑍, 𝜇) 

is  𝐿∗-continuous.  

(c) If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is weakly  𝐿∗-continuous and 

𝑔: (𝑌, 𝜎) → (𝑍 , 𝜇) is continuous, then 𝑔 ∘ 𝑓 ∶ (𝑋, 𝜏) → (𝑍 , 𝜇) 

is weakly  𝐿∗-continuous.  

 

Proof. (a) Since 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎 ) is  𝐿 -continuous, then by 

Proposition 4.2 (a), 𝑓: (𝑋, 𝜏𝐿) → (𝑌, 𝜎)  is continuous. 

Therefore, 𝑔 ∘ 𝑓 ∶ (𝑋, 𝜏𝐿) → (𝑍 , 𝜇)  is continuous. Again by 

Proposition 4.2 (a), it follows that 𝑔 ∘ 𝑓 ∶ (𝑋, 𝜏) → (𝑍 , 𝜇) is 𝐿-

continuous.  

(b) Let 𝑊 ∈ 𝜇 . Since 𝑔: (𝑌, 𝜎) → (𝑍 , 𝜇)  is 

continuous, then 𝑔⁻¹(𝑊) ∈ 𝜎 . Since 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is 𝐿∗ -

continuous, then 𝑓⁻¹(𝑔⁻¹(𝑊)) ∈ ℬτ𝐿∗ . Therefore, (𝑔 ∘

𝑓)⁻¹(𝑊) = 𝑓⁻¹(𝑔⁻¹(𝑊)) ∈ ℬτ𝐿∗ . 

(c)Similar to that used in (a) 

      The following Example shows in Theorem 4.11 (a) 

that the continuity condition on 𝑔  cannot be replaced by 𝐿-

continuity: 

 

Example 4.12. Let 𝑋 = ℝ, 𝑌 = {𝑎, 𝑏, 𝑐}, 𝑍 = {𝑚, 𝑛}, 𝜏 be as in 

Example 2.6, 𝜎 = {∅, 𝑌, {𝑏}, {𝑏, 𝑐}} , and 𝜇 = {∅, 𝑍, {𝑚}} . 

Define the function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  by 𝑓(𝑥) = 𝑎  if 𝑥 ∈
{0,1}  and 𝑓(𝑥) = 𝑐  otherwise, and define the function 

𝑔: (𝑌, 𝜎) → (𝑍 , 𝜇) by 𝑔(𝑎) = 𝑔(𝑏) = 𝑚 and 𝑔(𝑐) = 𝑛. Then 

𝑓  and 𝑔  are 𝐿 -continuous functions, but 𝑔 ∘ 𝑓  is not 𝐿 -

continuous since (𝑔 ∘ 𝑓)−1({𝑚}) = {0,1} ∉ 𝜏𝐿 .  
 

Questions 4.13. Is it true that the composition of two  𝐿∗ -

continuous (resp. weakly  𝐿∗ -continuous) functions is  𝐿∗ -

continuous (resp. weakly  𝐿∗-continuous)? 

 

Theorem 4.14. Let {𝑓𝛼 ∶ (𝑋, 𝜏) → (𝑌𝛼 , 𝜎𝛼): 𝛼 ∈ 𝛥} be a family 

of functions. Then the function 𝑓: (𝑋, 𝜏) → (∏ 𝑌𝛼𝛼∈𝛥  , 𝜏𝑝𝑟𝑜𝑑) 

defined by 𝑓(𝑥) = (𝑓𝛼(𝑥))
𝛼∈𝛥

 is 𝐿 -continuous (resp.  𝐿∗ -

continuous, weakly  𝐿∗-continuous) if and only if for each 𝛼 ∈
𝛥 , 𝑓𝛼  is 𝐿 -continuous (resp.  𝐿∗ -continuous, weakly  𝐿∗ -

continuous).  

 

Proof. Only we prove it for  𝐿∗ -continuous, the others are 

similar. Suppose that 𝑓 is  𝐿∗-continuous and let 𝛽 ∈ 𝛥. Then 

𝑓𝛽  = 𝜋𝛽 ∘ 𝑓  where 𝜋𝛽 : (∏ 𝑌𝛼𝛼∈𝛥 , 𝜏𝑝𝑟𝑜𝑑) → (𝑌𝛽 , 𝜎𝛽)  is the 

projection function on 𝑌𝛽 . Since 𝜋𝛽  is continuous, then by 

Theorem 4.11 (b), 𝑓𝛽  is  𝐿∗-continuous. Conversely, suppose 

for each 𝛼 ∈ 𝛥 , 𝑓𝛼  is  𝐿∗ -continuous. Let 𝐴  be any subbasic 

open set of (∏ 𝑌𝛼𝛼∈𝛥  , 𝜏𝑝𝑟𝑜𝑑), say 𝐴 = 𝜋𝛽
⁻¹

 
(𝑈) for some 𝛽 ∈ 𝛥 

and 𝑈 ∈ 𝜎𝛽 . Then 𝑓−1(𝐴) = 𝑓−1 (𝜋𝛽
⁻¹(𝑈)) = ( 𝜋𝛽 ∘

𝑓)
−1

(𝑈) = 𝑓𝛽
⁻¹(𝑈). Since by assumption 𝑓𝛽 is  𝐿∗-continuous, 

then we have 𝑓𝛽
⁻¹(𝑈) ∈ ℬτ𝐿∗ . By Proposition 4.2 (b), it follows 

that 𝑓 is  𝐿∗-continuous. 
 

Corollary 4.15. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is 𝐿-continuous 

(resp.  𝐿∗-continuous, weakly  𝐿∗-continuous) if and only if the 

graph function ℎ: (𝑋, 𝜏) → (𝑋 × 𝑌, 𝜏𝑝𝑟𝑜𝑑) , given by ℎ(𝑥) =

(𝑥, 𝑓(𝑥))  for every 𝑥 ∈ 𝑋  is 𝐿 -continuous (resp.  𝐿∗ -

continuous, weakly  𝐿∗-continuous). 

 

Theorem 4.16. The restriction of an 𝐿-continuous function on 

a nonempty closed set is 𝐿-continuous.  

 

Proof. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  be 𝐿 -continuous and 𝐴  be a 

nonempty closed set. Let 𝑈 ∈ 𝜎 . Then 𝑓−1(𝑈) ∈ 𝜏𝐿 . So by 

Theorem 2.18, we have (𝑓∣𝐴  )
−1(𝑈) = 𝑓−1(𝑈) ∩ 𝐴 ∈ (𝜏∣𝐴)𝐿 .  

It follows that the restriction function 𝑓∣𝐴: (𝐴, 𝜏∣𝐴) →
(𝑌, 𝜎) is 𝐿-continuous.  
 

Question 4.17. Is it true that the restriction of an  𝐿∗-continuous 

(resp. weakly  𝐿∗-continuous) function on a nonempty closed 

set is  𝐿∗-continuous (resp. weakly  𝐿∗-continuous)? 

 

Proposition 4.18. Let (𝑋, 𝜏) be a topological space and let 𝐴 

and 𝐵  be two 𝐿 -closed sets in (𝑋, 𝜏)  with 𝑋 = 𝐴 ∪ 𝐵 . If 

𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  is a function such that 𝑓∣𝐴 ∶ (𝐴, 𝜏∣𝐴) →
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(𝑌, 𝜎) and  𝑓∣𝐵 ∶ (𝐵, 𝜏∣𝐵) → (𝑌, 𝜎)  are 𝐿 -continuous functions, 

then 𝑓 is 𝐿-continuous.  

 

Proof. It is similar to that used in Theorem 4.8 of (Al Ghour & 

Samarah, 2012) and left to the reader. 

 

Corollary 4.19. Let (𝑋, 𝜏) be a topological space, 𝐴 and 𝐵 be 

two closed sets in (𝑋, 𝜏)  with 𝑋 = 𝐴 ∪ 𝐵  and 𝑓: (𝑋, 𝜏) →
(𝑌, 𝜎) be a function. Then 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is 𝐿-continuous 

iff 𝑓∣𝐴 ∶ (A, 𝜏∣𝐴) → (𝑌, 𝜎) and  𝑓∣𝐵 ∶ (A, 𝜏∣𝐵) → (𝑌, 𝜎)  are 𝐿 -

continuous  

 

Proof. This is an immediate consequence of Theorem 4.16 and 

Proposition 4.18. 

 

Theorem 4.20. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function. If there is 

𝐴 ∈ 𝜏𝐿 containing 𝑥 ∈ 𝑋  such that the restriction of 𝑓   to 𝐴, 

𝑓∣𝐴 ∶ (A, 𝜏∣𝐴) → (𝑌, 𝜎)  is 𝐿 -continuous at  𝑥 , then  𝑓  is  𝐿 -

continuous at 𝑥.  

 

Proof. Let 𝑉 ∈ 𝜎 with 𝑓(𝑥) ∈ 𝑉. Since 𝑓∣𝐴 is 𝐿-continuous at 

𝑥, there is 𝑈 ∈ (𝜏∣𝐴)𝐿 such that 𝑥 ∈ 𝑈 and (𝑓∣𝐴)(𝑈) = 𝑓(𝑈) ⊆
𝑉 . By Theorem 2.16, (𝜏∣𝐴)𝐿 ⊆ 𝜏𝐿∣𝐴

 and so 𝑈 ∈  𝜏𝐿∣𝐴
. Since 

𝐴 ∈ 𝜏𝐿, then 𝑈 ∈  𝜏𝐿. This ends the proof. 

 

Corollary 4.21. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function. If ℬ is a 

cover of 𝑋 which consists of nonempty 𝐿-open sets such that 

for each 𝐴 ∈ ℬ, 𝑓∣𝐴 ∶ (A, 𝜏∣𝐴) → (𝑌, 𝜎) is 𝐿-continuous, then 𝑓 

is 𝐿-continuous.  

 

Proof. Let 𝑥 ∈ 𝑋. Choose 𝐴𝑥 ∈ ℬ such that 𝑥 ∈ 𝐴𝑥 . Then by 

Theorem 4.20, 𝑓 is 𝐿-continuous at 𝑥. 
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