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Abstract 

 

Skipjack, the most caught species of tuna globally, is a critical raw material for tuna industry in Thailand, the world’s 

largest tuna-processing hub. However, tuna processors are finding it difficult to manage costs of these imported materials because 

of price fluctuations over time. Whereas most time series forecasting methods used in the literature model only three 

components: trend, seasonality and error, this study proposes a method to handle a fourth component as well: cycle. This method 

smooths monthly price data using a cubic spline that can detect cycles varying in both frequency and amplitude, and thus 

generates plausible forecasts by refitting the model after duplicating data from its most recent cycle. Results show that world tuna 

prices have a slightly upward trend in cyclical patterns with each cycle lasting approximately six years. Peak-to-peak amplitudes 

suggest that prices reached their peak at 2,350 US dollars per metric ton in 2017 and have started to fall, but will rebound after 

2021.  
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1. Introduction 

 

Skipjack, the most commonly caught species of tuna 

globally, is a critical raw material for tuna industry in Thai-

land, the world’s largest tuna-processing hub. However, tuna 

processors have experienced high fluctuations in monthly 

skipjack prices over the past three decades, varying ±41%, 

from 380 to 2,350 US dollars (USD) per metric ton (MT) 

(Atuna, 2017). Economically, the world price of skipjack raw 

material for canning has a relatively high inverse correlation 

with the world catches of skipjack (Owen, 2001). The rapid 

increase of purse-seine fisheries (Hamilton, Lewis, McCoy, 

Havice, & Campling, 2011) using drifting fish aggregating 

 
devices (FAD) has resulted in the fast growth in skipjack 

catches (Davies, Mees, & Milner-Gulland, 2014; Fonteneau, 

Chassot, & Bodin, 2013), reaching two million MT in 2000, 

doubling the 1986 total catch (Food and Agriculture Organi-

zation [FAO], 2017) and causing the collapse in skipjack 

prices during 1999-2000. In the next year, 2001, prices were 

successfully stabilized just by reducing fishing efforts of 

members of the World Tuna Purse Seine Organization (Ha-

milton et al., 2011).  

Currently tuna fisheries’ targeted long-term sus-

tainable tuna supplies are under-governed by tuna regional 

fishery management organizations. Several fishing regulations 

have been implemented, including limiting fishing efforts and 

closing for four months purse-seine fisheries in the tropical 

zone. In spite of the regulations, the capacity for global tuna 

stock renewal recently is being tested by observed rates of 

overfishing. For example, 39 percent of tuna stocks were 
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overfished in 2014, and 4 percent more were exploited within 

one year, from year 2013 (International Seafood Sustainability 

Foundation [ISSF], 2015, 2016). In the most recent decade, 

the volume of world tuna catches has increased while the rates 

of catches have decelerated, and the tuna supply reached the 

optimal level of 5 million MT in 2014 (Lee, McNeil, & Lim, 

2017). For the tuna trade, the monthly skipjack prices jumped 

to their highest levels in history with value of 2,350 USD/MT 

in 2013 and repeatedly through 2017 (Atuna, 2017). Even 

through specific cartels like the Forum Fisheries Agency have 

co-operated in setting catch levels in order to maintain desired 

prices, skipjack prices on purchase contracts have to be agreed 

on by all canners, traders and fishing companies because, for 

example, even a 1 percent increase in tuna prices results in a 

1.55 percent decrease in demand from the canning industry 

(Miyake, Guillotreau, Sun & Ishimura, 2010). Thus, not only 

the uncertainties of global tuna supplies but also the dynamic 

preferences of world tuna consumers connect to variations in 

skipjack prices (World Bank and Nicholas Institute, 2016). 

Given the paucity of data on those changing demand and 

supply factors, this has led to the question of whether skipjack 

prices can be predicted based solely on the historical data of 

tuna prices.  

In time-series analyses, various disciplines have 

methods and techniques to assess patterns and trends. These 

disciplines include demography, climate sciences, fisheries 

practices and finance. Statistical methods in these disciplines 

include multiple linear regression models (Chesoh & Lim, 

2008; Komontree, Tongkumchum, & Karntanut, 2006), vector 

auto regression (Guttormsen, 1999), exponential smoothing 

(Suwanvijit, Lumley, Choonpradubm, & McNeil, 2011), a 

combination of ARIMA models and neural networks (Georga-

karakos, Koutsoubas, & Valavanis, 2006; Gutiérrez-Estrada, 

Silva, Yáñez, Rodrıguez, & Pulido-Calvo, 2007; Naranjo, Pla-

za, Yanez, Barbieri, & Sanchez, 2015), polynomial regression 

(Wanishsakpong & McNeil, 2016), and spline smoothing (Lee 

et al., 2017; McNeil & Chooprateep, 2014; McNeil, Odton, & 

Ueranantasun, 2011; McNeil, Trussell, & Turner,1977; Shar-

ma, Ueranantasun, & Tongkumchum, 2018; Watanabe, 2016; 

Wongsai, Wongsai, & Huete, 2017).  

Most statistical methods used in the literature model 

trend, seasonal, and error components in time-series fore-

casting. For greater plausibility and accuracy an approach was 

needed to handle a fourth component as well: cycle. Our 

approach fits a smooth trend to the seasonally adjusted time 

series data, detects cycles varying in both frequency and 

amplitude and thus creates forecasts by refitting the cubic 

spline model after duplicating data from its most recent cycle. 

This enables us to produce more plausible forecasts than other 

methods that have been used in the literature.  

 
2. Materials and Methods 

 
The data used in this study are monthly skipjack 

tuna prices paid by processors in Thailand for supplies of 

tuna. They are Bangkok prices at cost and freight terms in 

USD/MT for the most commonly traded size, 1.8 kilograms 

and up, of frozen skipjack. The time-series dataset that in-

cludes a 32-year documentation of skipjack prices, monthly, 

from 1986 to 2017 shown in Figure 1 was obtained from two 

sources: FAO (2014) and Atuna (2017).  

These monthly tuna prices were log-transformed to 

satisfy statistical assumptions of normality and homogeneity 

of variance as illustrated in Figure 2, in which (a) the Box-

Cox transformation shows that the optimal λ, an estimate of 

power transformation is close to zero, meaning that a log 

transformation is needed  (Sakia,  1992)  and  (b)  the  normal  
 

 

 
 

Figure 1. Monthly skipjack tuna prices from 1986 to 2017 

 

 

 
 

 
 

Figure 2. (a) A Box-Cox transformation of tuna prices time-series 

showing that the 95% confidence interval for λ does not 

include 1, meaning that a transformation is needed and the 
optimal λ is close to zero, suggesting that a natural log is 

the most appropriate power transformation. (b) A normal 

quantile-quantile plot of studentised residuals of the linear 
model after fitting log-transformed tuna prices, resulting in 

an adjusted r-squared of 84.2%. 
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quantile-quantile plot also confirms that the studentized resi-

duals from the log-linear model are normally distributed. A 

linear regression model then was fitted to the logged tuna 

prices with year and month as predictors. By using weighted-

sum contrasts in the fitted linear model (Tongkumchum & 

McNeil, 2009), the individual 95% confidence intervals con-

firm that both year and month are significant factors in the 

fluctuating prices. The data were seasonally adjusted before 

used as outcome variables for the proposed model. Moreover, 

residuals of this first additive model were used to explore the 

autocorrelation of the time series in order for developing 

appropriate methods to handle the case study of tuna prices. 

A cubic spline model was chosen to fit seasonally 

adjusted logged tuna prices. This is because spline functions 

(Rice, 1969; Wold, 1974) are piecewise polynomials con-

nected by knots located along the range of the time series, and 

cubic splines have desirable optimality with respect to fitting 

and forecasting (Lukas, Hoog & Anderssen, 2010). They 

minimize the integrated squared second derivative and pro-

vide plausible linear forecasts that can be controlled by a 

judicious placement of the knots. The final integrated spline 

log-linear models developed in this study were constructed as 

following equations: 
 

𝑌𝑡 = 𝑆(𝑡) + 𝑧𝑡                                 (1) 
 

where t represents a period of observations (1-384), 𝑌𝑡 is the 

seasonally adjusted logged skipjack prices for period t, 𝑆(𝑡) is 

a cubic spline function for period t and 𝑧𝑡  is the random error. 

A cubic spline function S(t) is expressed as below 

mathematical form: 

 

 𝑆(𝑡) = 𝑎 + 𝑏𝑡 + ∑ 𝑐𝑘 [(𝑡 − 𝑡𝑘)+
3

𝑝−2

𝑘=1

−
(𝑡𝑝 − 𝑡𝑘)

(𝑡𝑝 − 𝑡𝑝−1)
(𝑡 − 𝑡𝑝−1)

+

3

+
(𝑡𝑝−1 − 𝑡𝑘)

(𝑡𝑝 − 𝑡𝑝−1)
(𝑡 − 𝑡𝑝)

+

3
] 

 
where p is number of knots, 𝑡1 <  𝑡2 < ... <  𝑡𝑝 are specified 

time knots and (t − tk)+  is t − tk for t > tk and 0 otherwise, 

and 𝑎, 𝑏 and 𝑐1,𝑐2,..., 𝑐𝑝−2 are parameters to be estimated. 

Importantly, the key outcome variable of the model (𝑌𝑡) is 

derived from the sub-equation following: 
 

𝒀𝒕 = 𝒀𝒊𝒋 = 𝑷𝒊𝒋 − �̅�𝒋 +  �̅�                                (2) 

 

where 𝑌𝑖𝑗 is the seasonally adjusted of logarithm of skipjack 

tuna prices for month j in year i, 𝑃𝑖𝑗 is the logarithm of skip-

jack tuna prices of month j in year i, �̅�𝑗  is the adjusted means 

of logarithm of skipjack tuna prices for month j, �̅� is the 

overall mean of logarithm of skipjack tuna prices. All data 

analyses and statistical modeling were carried out by using R 

program (R Core Team, 2017). 

The first spline model was fitted to the seasonally 

adjusted logged data with nine knots along the observations in 

which one at the beginning, one at the end, and the rest placed 

at 4-year equally spaced intervals to provide the most 

plausible trend analysis of tuna prices. Fitting the natural 

spline, it includes a number of linear terms corresponding to a 

number of knots in the function and the more knots are placed 

the smoother curve will be but the more parameters need to be 

estimated. For this case of tuna prices, the seasonal adjustment 

only accounts for a very small percentage of the coefficient of 

determination. Then, the second spline model was fitted to the 

same outcome variables but with more knots, 17 of 2-year 

equispaced knots, to obtain the best goodness of fit to the data 

and, importantly, detected cycles varying in both frequency 

and amplitude within the fluctuations of tuna prices. Along 

those cyclical patterns of price fluctuations, the last four data 

points making the peak-to-peak amplitude were pinned and a 

wave period on these curves was spotted as the most recent 

cycle. Data duplication (Dureh, Choonpradub, & Green, 2017; 

Lunn & McNeil, 1995) was then deployed to create future 

cycles by duplicating data from the most recent cycle detected 

in tuna prices where the starting point of the duplicated data is 

the point that most perfectly corresponds to the last 

observation and accommodates the same wave. Additionally, 

the method offers an optional parameter for making duplicated 

data adjustable. Then, we generated plausible forecasts by 

refitting the second spline model to the entire time series plus 

a duplicated future cycle. For the method validation, we also 

did a test by applying the method to a certain years backward 

of data in order to evaluate its ability to detect cyclical 

patterns and to forecast plausible tuna prices. 
 

3. Results 
 

Figure 3 illustrates that seasonal patterns of monthly 

skipjack tuna prices start rising in June and reach the highest 

level in August before falling to the lowest in December, then 

bouncing back and staying stable till May. After eliminating 

these patterns, the seasonally adjusted log-transformed skip-

jack prices are aligned closely along the 95% confidence 

intervals of annual prices. The first cubic spline (Model 1) 

with nine of 4-year equispaced knots fitted to these outcomes 

shows a slightly downward trend in tuna prices starting in 

2018.  

The second cubic spline (Model 2) with 17 of 2-year 

equispaced knots fitting offers the best curve fitting existing 

patterns with high adjusted r-squared, 83% as demonstrated in 

Figure 4. The spline model obviously captures cyclical pat-

terns during the past decade within the rises and falls of 

skipjack tuna prices. Over the 32 years, the peak-to-peak of 

prices was noticeable and repeated almost the same amplitude 

and frequency during 2009 and through to 2017. It started 

from the lowest price (1,145 USD/MT) in October, 2009 to 

the highest price (2,096 USD/MT) in June, 2012, and then 

was down to its lowest, 1,189 USD/MT, in September 2015 

before climbing up to its ultimate highest at 2,308 USD/MT in 

December 2017. These four data points of the peaks were 

pinned and identified a wave period as the most recent cycle. 

The cycle detected along this spline fitting covers approxi-

mately six years, from March 2011 to March 2017 with 1,640 

USD/MT on average. This means that the next cycle started in 

April 2017 and the price of 2,350 USD/MT in November 

2017 probably was a rising peak of the next cycle.  



B. Lee et al. / Songklanakarin J. Sci. Technol. 42 (2), 398-405, 2020   401 

 

 
 

  Figure 3. The plot of 95% confidence intervals of individual independent variables – year (left panel) and  

month (right panel) by using weighted-sum contrasts in the fitted log-linear model. The blue dots  

are seasonally adjusted skipjack prices and the horizontal line represents the overall mean of all 384 
observations. The p-values above the graph indicate statistically significant individual predictors.  

The first cubic spline fitting (solid curve) contains 4-year equispaced knots (plus sign) in which 

the first and last knots are the first and last observations and the model’s adjusted r-squared is 67.7%.  
The predicted trend of next two-years is represented by the dashed line. 

 

 
 

Figure 4. The plot shows cyclical patterns and forecasts for skipjack tuna prices. The blue dotted line  
demonstrates existing patterns from fitting the second spline model with 2-year equispaced knots  

(blue plus). The solid blue line is the most recent cycle of price fluctuations detected from the  

repeated peak-to-peak data points, the four small red circles. The green dots are seasonally  
adjusted observations used for duplicating data for creating a future cycle (orange dots). In the  

graph, the pink curve is forecasts derived from refitting the second spline model to the entire  
time series plus a duplicated future cycle and the solid black line is the trend from the first spline  

model with 4-year equispaced knots (green plus). The values in parenthesis in the legend are  

adjusted r-squared of each spline fitted model except the one after overall mean (1077 USD/MT)  
is the average prices of observations from 1986-2017 used in this fitting. 

 

 
To create a future cycle, we duplicated data from the 

most recent cycle, starting from January 2012 in order to com-

pletely connect the last period (December 2017) of observa-

tions. Moreover, to smoothly accommodate the data repre-

senting the future cycle of the trend in tuna prices, the small 

but noticeably upward slope between the two bottom peaks 

(1,189 -1,145 = 44 USD/MT) was added to the duplicated 

cycle. Then, the second spline model with 2-year equispaced 

knots was fitted again, but to the entire time series plus the 

additional data of the duplicated cycle to generate forecasts of 

tuna prices and its resulting higher adjusted r-squared, 86.2%. 

In this predicted cycle, the skipjack prices would start 

dropping slightly in 2018, about 20 USD/MT monthly to the 

lowest point, 1,250 USD/MT in the middle of 2021 then 

bouncing back. The predicted trend from the first spline model 

in Figure 4 also illustrates a marginally upward trend of 
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cyclical patterns for skipjack tuna prices in the long-term 

forecasts after a short-term slightly downward trend with the 

annual average prices range from 1,570 to 1,641 USD/MT for 

the forecast periods of 2018-2023.  

By running rigorous testing, the method was applied 

to the data from 1986-2014. As demonstrated in Figure 5, the 

second cubic spline model (Model 2) also detected the peak-

to-peak amplitude of price variations covering the six-year 

cycle, from 2008 to 2014. Its prediction of 3-year prices 

during 2015-2017 compared with the actual values resulted in 

errors with mean absolute percentage errors (MAPE) 12.01% 

as exhibited in Table 1. The average forecasts in 2015 were 

higher than the average actual prices 4.2% but lower in 2016 

and 2017 with -8.6% and -5.8 respectively. This indicates high 

price fluctuations within months but in the same rises and falls 

as direction the method captures. When applying the method 

to data from 1986-2012 in order to forecast 5-year further 

backward from the latest year of dataset, the forecasting per-

formance dropped significantly. Figure 6 shows that the prices 

started forming the wave of cycle in 2007, straightly climbed 

to the peak in the mid of 2008, the first time hit 2000 

USD/MT in history and continually fell to the end of 2009 

before bouncing upward to another peak in 2012. But, this 

starting cycle did not have peak amplitudes in the same 

frequency and consequently the forecasts of 2013-2017 from 

this test obtain high MAPE, 21.71%. The forecasts this 

method generates are at least in the right direction of price 

fluctuations through not exactly in the same timeframe 

because the cycles that the spline model detects have variable 

periods.  

 

 
 

 Figure 5.     The plot shows testing results by applying the method to data from 1986-2014 having the overall  
  mean at 1035 USD/MT. It detected the peak-to-peak amplitude of price variations covering the  

  six-year cycle, from 2008 to 2014. The black dots are actual tuna prices of 2015-2017 and the  

  forecasting errors, MAPE from the second cubic spline model (pink curve) are, 12.01%. 
 
 

 
 

 Figure 6. The plot shows results when applying the method to data from 1986-2012 to test forecasts 5-year further  

backward. In these data, having much lower overall mean at 986 USD/MT, it spoted the starting point  

of cyclical patterns from 2007 to 2012, covering five-year period under changes in tuna fishery  

management. The black dots are actual tuna prices of 2013-2017 and its results high MAPE, 21.71%. 
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At the time of writing, the data of skipjack tuna 

prices during January-November, 2018 from the Thai Union 

Group Public Company Limited (2018) was only publicly 

available. Even through these purchasing contract prices of a 

specific company were obtained from different data source to 

the one we used for data modeling, they are useful to test our 

model since the company is the world’s largest producer of 

canned tuna and procured the largest volume of tuna landings 

in Thailand. By comparing these actual prices to our forecasts 

of 2018, the skipjack prices had a downward trend like the 

cycle we detected but it dropped much faster than the second 

spline model (Model 2) predicts with the large MAPE, 44%, 

as compared in Table 1. Nevertheless, it is interesting to learn 

that these true prices were close to the predicted values from 

the first spline model (Model 1) with much smaller MAPE, 

7.5%. Furthermore, the average prices of these 11 months 

(January-November, 2018) from the forecasts (1,589 USD/ 

MT) were just 2.5% higher than the actual average prices 

(1,550 USD/MT). 

 

4. Discussion and Conclusions 
 

The results of this tuna-prices analysis provide in-

formative answers to the research questions. With our method, 

Skipjack tuna prices are statistically and plausibly predictable. 

We can extract a certain seasonal pattern and detect a cycle of 

price fluctuations from the 32-year tuna prices traded in 

Thailand, the largest marketplace for cannery-grade tuna. 

Possibly, this seasonal pattern of skipjack prices relates to the 

duration of FAD closures for purse-seine fisheries, introduced 

in 2009, starting with three months (July, August and Sep-

tember) and extending to four months (July, August, Septem-

ber, and October) in 2014. This FAD provision evidently has 

affected tuna catches – there has been observed some de-

creases of skipjack catches during the FAD closures and often 

increases in the months immediately following the FAD 

closures (Western and Central Pacific Fisheries Commission 

[WCPFC], 2014). These regulations, intended to help sustain 

tuna stocks, consequently contribute to seasonal patterns in 

tuna prices.  

However, this statistical model development for 

forecasting monthly world tuna prices is a first step. We did 

not compare forecasting performance between our method and 

existing methods but by exploring classical methods like 

autoregressive models in the development stage, the auto-

correlation diagnosis plots in Figure 7 clearly show that there 

is a strong autocorrelation within monthly tuna prices over 

time shown in Figure 7 (a) and residuals autocorrelation of 

either the first spline model in Figure 7 (b) or the second 

spline model in Figure 7 (c) identify many lagged terms signi-

ficantly correlated. The existing autoregressive models cannot 

totally remove those correlated terms to satisfy an assumption 

of linearly unrelated errors for prediction. The highly fluc-

tuated time-series data like this tuna prices data obviously 

needs a new approach for forecasting.  

Unlike most statistical methods used in the litera-

ture, this study offers an approach to model all four time-

series components - trend, seasonality, error and cycle, re-

sulting in greater plausibility of forecasts, since it could draw 

more scientific and useful information out of the historical 

data. Given our world’s complex, global dynamics forecasting 

future tuna prices based on past fluctuations is not a simple 

task. Skijpack tuna prices greatly tie to market demand of 

canned tuna, a global commodity product, which strongly 

affected by many elements such as substitute products, con-

sumer preferences, trade barriers, environmental concerns and

 
 

Table 1. A comparison between predicted values and actual prices 
 

Month 

Forecasts of modeling data from 1986-2014 Forecasts of modeling data from 1986-2018 

2015 2016 2017 2018 

Actual 

price 

Predicted 

value 

(M2) 

% 

Error 

Actual 

price 

Predicted 

value 

(M2) 

% 

Error 

Actual 

price 

Predicted 

value 

(M2) 

% 

Error 

Actual 

price* 

Predicted 

value 

(M2) 

% 

Error 

Predicted 

value 

(M1) 

% 

Error 

               

1 1180 1225 3.8 1000 1205 20.5 1700 1522 -10.5 1550 2160 39.4 1596 2.9 

2 1130 1212 7.2 1275 1218 -4.5 1700 1563 -8.0 1480 2191 48.0 1594 7.7 

3 1000 1201 20.1 1600 1232 -23.0 1550 1607 3.6 1700 2216 30.4 1593 -6.3 

4 990 1192 20.4 1650 1250 -24.3 1500 1651 10.1 1800 2236 24.2 1591 -11.6 

5 1010 1185 17.3 1500 1269 -15.4 1750 1696 -3.1 1600 2250 40.6 1590 -0.6 

6 1150 1180 2.6 1500 1292 -13.9 1850 1742 -5.8 1600 2256 41.0 1589 -0.7 

7 1300 1177 -9.5 1400 1317 -5.9 1950 1789 -8.3 1300 2254 73.4 1587 22.1 

8 1450 1176 -18.9 1450 1345 -7.2 2100 1835 -12.6 1450 2246 54.9 1586 9.4 

9 1400 1178 -15.9 1450 1376 -5.1 2150 1881 -12.5 1650 2231 35.2 1585 -4.0 

10 1150 1181 2.7 1400 1409 0.7 2350 1926 -18.0 1525 2210 44.9 1584 3.8 

11 1000 1187 18.7 1500 1445 -3.7 2100 1970 -6.2 1400 2183 56.0 1582 13.0 

12 950 1195 25.8 1600 1482 -7.4 1800 2011 11.7 
     

               

Average 

in year 
1143 1191 4.2 1444 1320 -8.6 1875 1766 -5.8 1550 2221 43.3 1589 2.5 

MAPE 
  

13.6 
  

11.0 
  

9.2 
  

44.4 
 

7.5 

 

Notes: M1 is the first cubic spline model (Model 1) with nine of 4-year equispaced knots for trend analysis. M2 is the second cubic spline model 
(Model 2) with 17 of 2-year equispaced knots for pattern analysis.  

*retrieved from publicly available source on the website of Thai Union Group Public Company Limited (2018). 
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Figure 7. The autocorelation plots showing significant autocorrela-
tion within data (a) and residuals of both the first spline 

model (b) and the second spline model (c). The legend ex-

hibits coefficients of significant correlated lagged terms 
and its standard errors in brackets. 

 
 

even the global economy (Miyake, Guillotreau, Sun, & Ishi-

mura, 2010). Thus, the model development, validation and 

interpretation were carefully preceded by principal criteria, 

not only how well the model statistically fits past data but 

also, importantly, how plausibly the model will forecast future 

data corresponding to the realities of the world tuna industry. 

From the model testing, our method may fail to 

consistently give high accurate estimates of future prices of 

market demand-driven tuna because its price fluctuations have 

variable periods involved in the cycles. However, its forecasts 

provide at least plausible long-term price trends and cycles 

economically corresponding to demand and supply in world 

tuna trade. Tuna canneries can use these scientific results for 

material requirement planning and to be a reference when 

negotiating contract prices with tuna suppliers and traders. 

Since the six-year cycles detected in this study also illustrate 

that the peak-to-peak of skipjack price variations was quite 

wide, -900 to +1,120 USD/MT, changes from -43 to +94 per-

cent, such variation may become a topic for future discussion 

in a forum like the annual world tuna trade conference 

attended by tuna supply-chain stakeholders. Seeking an agree-

ment to narrow such price fluctuations would help reduce 

business risks among related stakeholders not only tuna pro-

cessors, but also fishers and traders. 

This forecasting method should be broadly appli-

cable to other similar time-series data, not just records of tuna 

prices. Moreover, our duplication method could be also ex-

tended further by using Efron’s bootstrap resampling tech-

nique (Efron & Tibshirani, 1998) to provide a range for 

plausible forecasts. The cycles that the spline detects have 

variable periods and if we could get a better estimate of the 

next period they would be spot-on. Given that we have several 

cycles, we could then get different sets of forecasts based on 

different duration of the next cycle. Such further innovative 

aspect would make the model more dynamically correspond to 

real economic cycles, which have a chance to repeat in the 

future but not be the exact same duration as in the past. For 

those further improvement, to evaluate forecasting perfor-

mance of the methods will require a fully-fledged Monte 

Carlo simulation study which beyond the scope of the present 

study.  
 

Acknowledgements 
 

This research is supported by the Centre of Excel-

lence in Mathematics, the Commission on Higher Education, 

Thailand. Moreover, we wish to acknowledge Prof. S.K. Ahn 

and Department of Finance & Management Science, Carson 

College of Business, Washington State University, USA for 

supporting data sources used in this tuna study under the 

research collaboration during 2016-2017.  
 

References 
 

Atuna. (2017, December 21). Frozen Skipjack whole round 

1.8 kg up CFR Bangkok. Retrieved from http:// 

www.atuna.com/index.php/en/tuna-prices/skipjack-

cfr-bangkok 

Chesoh, S., & Lim, A. (2008). Forecasting fish catches in the 

Songkhla Lake basin. ScienceAsia, 34, 335-340.  

Davies, T. K., Mees, C. C., & Milner-Gulland, E. J. (2014). 

The past, present and future use of drifting fish 

aggregating devices (FADs) in the Indian Ocean. 

Marine Policy, 45, 163-170. doi:10.1016/j.marpol. 

2013.12.014 

Dureh, N., Choonpradub, C., & Green, H. (2017). Comparing 

methods for testing association in tables with zero 

cell counts using logistic regression. Proceeding of 

the International Conference on Computing, Mathe-

matics and Statistics (iCMS 2015), 129-135. 

Efron, B., & Tibshirani, R. J. (1998). An Introduction to the 

Bootstrap. New York, NY: CRC Press LLC. 

Fonteneau, A., Chassot, E., & Bodin, N. (2013). Global spa-

tio-temporal patterns in tropical tuna purse seine 

fisheries on drifting fish aggregating devices 

(DFADs): Taking a historical perspective to inform 

current challenges. Aquatic Living Resources, 26(1), 

37-48. doi: 10.1051/alr/2013046 

Food and Agriculture Organization. (2014). Globefish Com-

modity Update (May 2014): Tuna. Retrieved from 

http://www.fao.org/in-action/globefish/publications/ 

details-publication/en/c/356793/ 

Food and Agriculture Organization. (2017, March 28). Global 

production by production source 1950-2015. Re-

trieved from http://www.fao.org/fishery/statistics/ 

software/fishstatj/en 

Georgakarakos, S., Koutsoubas, D., & Valavanis, V. (2006). 



B. Lee et al. / Songklanakarin J. Sci. Technol. 42 (2), 398-405, 2020   405 

 

Time series analysis and forecasting techniques 

applied on loliginid and ommastrephid landings in 

Greek waters. Fisheries Research, 78(1), 55-71. doi: 

10.1016/j.fishres.2005.12.003 

Gutiérrez-Estrada, J. C., Silva, C., Yáñez, E., Rodrıguez, N., 

& Pulido-Calvo, I. (2007). Monthly catch fore-

casting of anchovy Engraulis ringens in the north 

area of Chile: Non-linear univariate approach. 

Fisheries Research, 86, 188-200. doi:10.1016/j. 

fishres.2007.06.004 

Guttormsen, A. G. (1999). Forecasting weekly salmon prices: 

Risk management in fish farming. Aquaculture Eco-

nomics and Management, 3(2), 159-166. doi:10.10 

80/13657309909380242 

Hamilton, A., Lewis, A., McCoy, M. M., Havice, E., & Cam-

pling, L. (2011) Market and Industry Dynamics in 

the Global Tuna Supply Chain. Honiara, Solomon 

Islands: Pacific Islands Forum Fisheries Agency. 

International Seafood Sustainable Foundation. (2015). ISSF 

Tuna Stock Status Update, 2015: Status of the world 

fisheries for tuna (ISSF Technical Report 2015-

03A). International Seafood Sustainability Founda-

tion, Washington, DC.  

International Seafood Sustainable Foundation. (2016). ISSF 

Tuna Stock Status Update, 2016: Status of the world 

fisheries for tuna (ISSF Technical Report 2016-05). 

International Seafood Sustainability Foundation, 

Washington, DC. 

Komontree, P., Tongkumchum, P., & Karntanut, W. (2006). 

Trends in marine fish catches at Pattani Fishery Port 

(1999-2003). Songklanakarin Journal of Science 

and Technology, 28(4), 887-895. 

Lee, B., McNeil, D. R., & Lim, A. (2017). Spline interpolation 

for forecasting world tuna catches. Proceeding of 

the International Statistical Institute Regional Sta-

tistics Conference 2017: Enhancing Statistics, Pros-

pering Human Life. The Hague, The Netherland: 

The International Statistical Institute.  

Lukas, M. A., Hoog, F. R., & Anderssen, R. S. (2010). Effi-

cient algorithms for robust generalized cross-vali-

dation spline smoothing. Journal of Computational 

and Applied Mathematics, 235(1), 102-107. doi:10. 

1016/j.cam.2010.05.016 

Lunn, M., & McNeil, D. R. (1995). Applying Cox regression 

to competing risks. Biometrics, 51(2), 524-532. doi: 

10.2307/2532940 

McNeil, D. R., Trussell, T. J., & Turner, J. C. (1977). Spline 

interpolation of demographic data. Demography, 

14(2), 245-252. doi:10.2307/2060581 

McNeil, N., & Chooprateep, S. (2014). Modeling sea surface 

temperatures of the North Atlantic Ocean. Theore-

tical and Applied Climatology, 116, 11-17. 

McNeil, N., Odton, P., & Ueranantasun, A. (2011). Spline 

interpolation of demographic data revisited. Song-

klanakarin Journal of Science and Technology, 33 

(1), 117-120. 

Miyake, M., Guillotreau, P., Sun, C. H., & Ishimura, G. (20 

10). Recent developments in the tuna industry: 

stocks, fisheries, management, processing, trade and 

markets (Fisheries and Aquaculture Technical Paper 

No. 543). Rome, Italy. Food and Agricultural Orga-

nization. 

Naranjo, L., Plaza, F., Yanez, E., Barbieri, M. A., & Sanchez, 

F. (2015). Forecasting of jack mackerel landings 

(Trachurus murphyi) in central-southern Chile 

through neural networks. Fisheries Oceanography, 

24, 219-228. doi:10.1111/fog.12105 

Owen, A. D. (2001). The relationship between the world price 

for skipjack and yellowfin tuna raw material for 

canning and supply from the WCPO and FFA mem-

ber countries’ EEZs (Forum Fisheries Agency Re-

port. No. 01/32). Honiara, Solomon Islands: Pacific 

Islands Forum Fisheries Agency. 

R Core Team. (2017). R: A language and environment for sta-

tistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. Retrieved from http:// 

www.R-project.org/ 

Rice, J. R. (1969). The approximation of functions, vol. II. 

Massachusetts, MA: Addison-Wesley.  

Sakia, R. M. (1992). The Box-Cox transformation technique: 

A review. The Statistician, 41, 169-178. 

Sharma, I., Ueranantasun, A., & Tongkumchum, P. (2018). 

Modeling of satellite data to identify the seasonal 

patterns and trends of vegetation index in Kath-

mandu valley, Nepal from 2000 to 2015. Jurnal 

Teknologi, 80(4), 125-133. 

Suwanvijit, W., Lumley, T., Choonpradub, C., & McNeil, N. 

(2011). Long-Term Sales Forecasting Using Lee-

Carter and Holt-Winters Methods. Journal of Ap-

plied Business Research, 27(1), 87-102. doi:10.19 

030/jabr.v27i1.913 

Thai Union Group Public Company Limited. (2018, Decem-

ber 04). Monthly Frozen (whole) Skipjack Tuna 

Raw Material Prices (Bangkok Landings, WPO). 

Retrieved from http://investor.thaiunion.com/raw_ 

material.html 

Tongkumchum, P., & McNeil, D. R. (2009). Confidence inter-

vals using contrasts for regression model. Songkla-

nakarin Journal of Science and Technology, 31(2), 

151-156. 

Wanishsakpong, W., & McNeil, N. (2016). Modelling of daily 

maximum temperatures over Australia from 1970 to 

2012. Meteorological Applications, 23, 115-122. 

doi:10.1002/met.1536 

Watanabe, K. (2016). In-season forecast of chum salmon 

return using smoothing spline. Fisheries and Aqua-

culture Journal, 7, 173. doi:10.4172/2150-3508.100 

0173 

Western and Central Pacific Fisheries Commission. (2014). 

Summary Report: Commission for the conservation 

and management of highly migratory fish stocks in 

the western and central pacific ocean. Eleventh 

Regular Session, Samoa. 

Wold, S. (1974). Spline Functions in Data Analysis. Techno-

metrics, 16(1), 1-11. doi:10.2307/1267485 

Wongsai, N., Wongsai, S., & Huete, A. R. (2017). Annual 

seasonality extraction using the cubic spline func-

tion and decadal trend in temporal daytime MODIS 

LST Data. Remote Sensing, 9(12), 1254. doi:10. 

3390/rs9121254 

World Bank and Nicholas Institute. (2016). Tuna Fisheries. 

Pacific Possible Background Report No. 3. Sydney, 

Australia: World Bank. 
 

https://jurnalteknologi.utm.my/index.php/jurnalteknologi/issue/view/333
http://investor.thaiunion.com/raw_material.html
http://investor.thaiunion.com/raw_material.html

