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Abstract 
 

The convective motion of two incompressible viscous fluids that are different in thermal conductivities, viscosities and 

densities with heat transfer aspects in a rotating inclined channel, in which the pressure gradient is kept constant, is studied. The 

two phases are occupied by two different homogeneous isotropic porous materials having different permeabilities. The flow is 

steady, laminar and fully developed. Due to the inclusion of buoyancy forces, viscous and Darcy dissipation terms, the governing 

equations are non-linear and coupled. The regular Perturbation Method is used to obtain their solutions. The effects of the 

governing parameters such as rotation parameter, porous parameter, angle of inclination, Grashof number, ratio of heights, the 

ratio of viscosities and the ratio of thermal conductivities on the fluid flow are discussed in detail. It is observed that an increase 

in the Coriolis force incorporated through rotation parameter reduces the temperature and primary velocity of the flow. 
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1. Introduction 
 

The role of fluid flow and heat transfer in a system 

containing saturated porous medium has drawn great mathe-

matical and practical interest for understanding the transport 

processes occurring in several engineering systems such as 

heat pipes, geothermal reservoirs and nuclear debris beds. 

Various problems in the field have been studied by many 

researchers, namely Beckermann, Viskanta, and Ramadhyani 

(1988), Bian, Vasseur, Bilgen, and Meng (1996), Chauhan 

and Rema (2005), Hayat, Husain, and Khan (2007), Rudraiah 

(1988), Seddeek (2002), Sunil and Mahajan (2009). Prasad 

(1991) studied convective flow interaction with temperature 

 
distribution in a composite channel partially filled with porous 

medium. Kuznetsov (1998) investigated the Couette flow 

between the fluid and porous layers. Rotating convection flow 

through the porous medium has been studied by Krishna, 

Prasad Rao, and Ramachandra Murthy (2002). Chauhan and 

Rashmi (2012a) studied magnetohydrodynamic (MHD) flow 

through a porous medium in a rotating channel taking Hall 

currents into account. Heat transfer effects on rotating MHD 

flow and rotating MHD Couette flow in a porous medium 

with Hall currents has been analyzed by Chauhan and Rastogi 

(2012). Lima, Assad, and Paiva (2016) have studied two-

phase magneto convection flow with heat transfer in an 

inclined channel. Recently, Siva Reddy, Chamkha Ali, and 

Anjan Kumar (2017) have analyzed the thermal-diffusion and 

diffusion-thermo effects on MHD natural convection flow 

through a porous medium in a rotating system. Even though 

the study on convective flow and temperature distribution 
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through porous medium with inclined geometry is useful in 

many areas particularly in geophysical systems, there appears 

to be a very limited number of researchers, notably Guven, 

Aytac, and Ibrahim (2012), Malashetty, Umavathi, and Kumar 

(2001), Simon and Shagaiya (2013), Sri Ramachandra Murty, 

and Balaji Prakash (2016), Sri Ramachandra Murty, Balaji 

Prakash, & Karuna Sree (2018). The purpose of the present 

study is to analyze the effects of the parameters such as 

inclination angle, rotation parameter and porous parameter 

etc., on MHD convective two-layered flow and heat transfer 

through an inclined porous medium in a rotating system. To 

obtain realistic predictions, we have considered Brinkman 

extended Darcy-Lapwood model following Malashetty, Uma-

vathi, and Kumar (2001). 

 

2. Materials and Methods 

 

The physical representation of the problem is shown 

in Figure 1 It is composed of two inclined plates which are 

parallel and infinite in length along x and z-directions. 

Temperatures of the upper and lower plates,  and  are 

kept constant. ‘Φ’ is the angle made by the inclined channel 

with the horizontal plane. The regions 
2 0h y    and 

10 y h   are loaded with two different homogeneous isotro-

pic porous materials with different permeabilities. These two 

phases are filled with two different incompressible viscous 

fluids with different thermal conductivities, densities and 

viscosities. The two fluids have constant transport properties 

with laminar flow, and fully developed and are assumed to be 

in a steady state. The flow in the channel is navigated by a 

constant pressure gradient p

x

 
 
 

 and temperature gradient 

1 2w wT T T   .  

 

  
 

 
 

 

 
 

 

Figure 1. Physical model 
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Figure 1.  Physical configuration 

 

With the angular velocity  , the entire system is rotated about the y-axis. Then the equations of motion and energy for 

Boussinesq fluids following Malashetty, Umavathi, and Kumar (2001) are: 
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where uί and wί are the primary and secondary velocity distributions corresponding to x and z directions, the coefficient of thermal 

expansion is βi and Ti is the temperature. The no-slip condition is that the velocity must be vanishing at the wall. The 

corresponding boundary and interface conditions on primary and secondary velocity distributions are: 

1 1 1 1 1 2 1 2 2 2 2 2( ) 0, ( ) 0; (0) (0), (0) (0); ( ) 0, ( ) 0 (7)u h w h u u w w u h w h         

dy

du

dy

du 2
2

1
1    and 

dy

dw

dy

dw 2
2

1
1    at y=0.                                                                          

 

As the walls are maintained at varying temperatures Tw1 and Tw2, the boundary conditions on T1 and T2 are: 

 

1 2
1 2 1 1 1 2 2 2 1 2(0) (0), ( ) , ( ) , 0.w w

dT dT
T T T h T T h T K K at y

dy dy
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Here 
1u  is average velocity. 

Using the above transformations, the Equation (1) to Equation (6) transform to: 
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The dimensionless forms of the boundary and interface conditions (8) and (9) change to: 
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1 2
1 1 2 2

1
(1) 1, (0) (0), ( 1) 0, 0. (18)

d d
at y

dy K h dy

 
        

 

Writing q1 = u1 +iw1 and q2 = u2 +iw2, Equation (10) and Equation (15) can be written in complex form as: 
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q and q and 

1 2
q and q  are the complex conjugates of q1 and q2 respectively.

 The respective boundary and interface conditions are: 
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2.1 Solutions of the problem 

 

The governing equations are coupled and non-linear. Here, we consider the Eckert number to be very small. Hence, 

Pr.Ec (=ε) is also small and is used in the Perturbation Method. The solutions are considered in the following form 

 

......),(),(),( 1100  iiiiii qqq                                                                                                                                                     (25) 

 

where  are solutions for the case when ε is equal to zero and are perturbed quantities related to  respectively. 

Substituting the above solutions in equations (19) to (22) and equating the factors of identical existing powers of ε, we obtain 

equations of zeroth-order and first-order approximations for Region I and Region II as follows: 
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The respective boundary conditions given in Equation (23) and (24) will be changed to: 
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Solutions of equations of zeroth-order approximation (26), (27) and (30), (31) applying boundary conditions (34) and (35) are: 
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For the sake of briefness, the constants involved in 

Equations (41) - (50) are not given. Solutions for the equa-

tions of zeroth-order and first-order approximations from 

Equations (26) - (33) are solved numerically by fixing the 

parameters n=1.5, Re=5, b=1 and P = -5. As the solutions for 

the equations of zeroth-order approximation are linear, the 

graphs for temperature distribution are drawn only for first-

order approximations. This shows that the temperature dis-

tribution up to zeroth-order approximation is due to the con-

duction only. In the Figures 1-10, excluding the varying one, 

all other parameters are taken from the set (, h, Gr, R, m, k, 

K, λ) = (30°, 1, 5, 1, 0.5, 0.5, 1, 2). 

3. Results and Discussion 

 
By solving the differential equations analytically, 

approximate solutions for primary as well as secondary velo-

city and temperature distribution are acquired. Numerical 

values of these solutions are computed for various sets of 

parameters and the results are depicted graphically. Here we 

note that when the rotation R=0, these results are in agreement 

with that of Malashetty, Umavathi, and Kumar (2001). 

Primary velocity distribution ‘u’ and secondary 

velocity distribution ‘w’ for different values of the rotation 

parameter R are shown in Figures 2(a)  and  2(b)  respectively. 

 
 

Figure 2. Velocity distribution of R (a) Primary (b) Secondary 
 

 
 

Figure 3. Velocity distribution of K (a) Primary (b) Secondary 
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Figure 4. Velocity distribution of Gr (a) Primary (b) Secondary 

 

 
   

Figure 5. Velocity distribution of h (a) Primary (b) Secondary 
 

         
 

Figure 6. Velocity distribution of Ø (a) Primary (b) Secondary 

(b) 

 

(a) 
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Figure 7. Velocity distribution of m (a) Primary (b) Secondary 
 

 
 

Figure 8. Velocity distribution of λ (a) Primary (b) Secondary 
 

    
 

Figure 9. Velocity distribution of k (a) Primary (b) Secondary 
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Figure 10(i).    Temperature distribution of (a) Ø, (b) k, (c) R, (d) K 

 

It is concluded that ‘u’ reduces with increasing rotation. Since 

R is the ratio of the Coriolis force and the viscous force, as R 

increases the Coriolis force also increases. The increasing 

Coriolis forces oppose the buoyancy force. Hence the velocity 

will be decreased. It is also concluded that as the rotation 

parameter R increases in (0, 1.6), the secondary velocity ‘w’ 

also increases, but outside the range as R increases, it de-

creases. The impact of the ratio on thermal conductivities K is 

shown in Figures 3(a) and 3(b). It is noticed that by increasing 

K there is a rise in the primary and secondary velocities. 

Figures 4(a) and 4(b) represent ‘u’ and ‘w’ for varied values 

of the Grashof number Gr. As Gr increases, both the velocities 

also increase with the rise in the value of Gr. The impact of 

the ratio of heights ‘h’ on ‘u’ and ‘w’ is depicted in Figures 

5(a) and 5(b) respectively. The impact of increasing ‘h’ is to 

enhance both the velocities. The impact of the inclination 

angle  on ‘u’ and ‘w’ is depicted in Figures 6(a) and 6(b) 

respectively. As the buoyancy force enhances with an increase 

in the inclination angle, both the primary as well as secondary 

velocities increase with the increasing values of . Figures 

7(a) and 7(b) show the impact of the ratio of viscosities, ‘m’ 

on primary as well as secondary velocities, respectively. It is 

observed that by increasing ‘m’ there is an increase both in the 

primary and secondary velocities. Figures 8(a) and 8(b) repre-

sent the impact of porous parameter λ on primary as well as 

 

secondary velocities. It is observed that as the value of λ 

increases there is a decrease in both the velocities in two 

regions because of the drag caused by the porous matrix on 

the flow of the first region, which also affects the flow of the 

free viscous fluid phase. Also, it is noticed that the effect of 

greater λ on the velocity is more pronounced when compared 

to smaller λ. Figures 9(a) and 9(b) indicate the impact of 

permeability of porous medium k, showing that increased k 

increases both the primary and secondary velocities. 

The impact of the angle of inclination  on tempera-

ture θ is represented in Figure 10(a). The increased values of  

enhance the temperature because as  increases the buoyancy 

force also increases. Figure 10(b) indicates the effect of 

permeability of the porous medium k on temperature θ, 

indicating a proportionate increase in heat transfer. Figure 

10(c) represents the impact of R on θ, the temperature dis-

tribution. It is observed that the temperature reduces with an 

increase in rotation. As the rotation parameter R increases, the 

temperature decreases because increasing rotation increases 

the Coriolis force, which in turn opposes the buoyancy force. 

Thus, the velocity will be decreased, leading to a reduction in 

the temperature. Figure 10(d) indicates the effect of the ratio 

of thermal conductivities K on temperature θ; the larger the 

ratio of thermal conductivities, the greater the amounts of heat 

transfer. Figure 10(e) shows the impact of Gr on temperature 
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Figure 10(ii).   Temperature distribution of (e) Gr, (f) m, (g) h, (h) λ 

 

θ. It is noticed that with an increase in Gr there is also an 

increase in the temperature distribution. Figure 10(f) depicts 

the impact of the ratio of viscosities m on the temperature 

distribution. Increase in ratio of viscosities enhances the 

temperature of the flow. Figure 10(g) exhibits the effect of the 

ratio of heights h on the temperature θ; increasing the value of 

h increases the temperature. The effect of porous parameter λ 

on temperature distribution θ is shown in Figure 10(h). It is 

observed that similar to its effect on the fluid flow, an in-

creasing value of λ decreases the temperature field.  
 

4. Conclusions 
 

              It is noticed that the impact of the porous parameter 

is to retard the temperature, primary velocity and secondary 

velocity in both phases. The increase in buoyancy force incor-

porated through Grashof number and the angle of inclination 

enhances the temperature, primary velocity and secondary 

velocity for both the layers. The increase in Coriolis force 

incorporated through the rotation parameter reduces the tem-

perature and primary velocity of the flow in both phases. The 

flow and thermal aspects of the fluids in the channel are 

enhanced by an increase in the ratio of viscosities of the fluids 

and the ratio of heights of the two phases. The results of the 

two-layered flow and temperature distribution through an 

 

inclined porous medium could be useful in recharge/discharge 

problems like the flow of geophysical fluids, packed-bed 

energy storage, etc.  
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