

Songklanakarin J. Sci. Technol. 42 (2), 280-283, Mar. - Apr. 2020

Original Article

On ω^* -connected spaces

Ahmad Al-Omari^{1*} and Hanan Al-Saadi²

¹ Department of Mathematics, Faculty of Sciences, Al al-Bayt University, Mafraq, 25113 Jordan

² Department of Mathematics, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955 Saudi Arabia

Received: 8 July 2018; Revised: 14 October 2018; Accepted: 5 December 2018

Abstract

In this paper, we introduce the notion of ω -separated sets and ω^* -connected spaces. We obtain several properties of the notion analogous to those of connectedness. We show that the continuous image of the ω^* -connected space is connected.

Keywords: ω -open set, ω -separated, ω -connected, ω -component.

1. Introduction

Let (X, τ) be a topological space with no separation properties assumed. For a subset *H* of a topological space (X, τ) , Cl(H) and Int(H) denote the closure and the interior of *H* in (X, τ) , respectively.

Definition 1.1. (Kuratowski, 1933) Let *H* be a subset of a topolgicl space (X, τ) . A point *p* in *X* is called a condensation point of *H* if, for each open set *U* containing *p*, $U \cap H$ is uncountable.

Definition 1.2. (Hdeib, 1982) A subset *H* of a topological space (X, τ) is called ω -closed if it contains all its condensation points.

The complement of an ω -closed set is called ω -open.

It is well known that a subset *W* of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$, and U - W is countable (Hdeib, 1989). The family of all ω -open sets that is denoted by τ_{ω} is a topology on *X*, which is finer than τ . The interior and closure operators in (X, τ_{ω}) are denoted by Int_{ω} and Cl_{ω} , respectively. Many topological concepts and results related to the ω -closed and ω -open

*Corresponding author

sets appeared in Al Ghour and Zareer (2016), Al-Omari and Noorani (2007a, 2007b), Noiri, Al-Omari and Noorani (2009 a, 2009b), Zorlutuna (2013) and in the references therein. In this paper, we introduce the notion of ω -separated sets and ω^* connected spaces. We obtain several properties of the no-tion analogous to these of connectedness. We show that the continuous image of the ω^* -connected space is connected. Furthermore, we present a connected space that is not ω^* -connected.

2. ω -Separated Sets

Definition 2.1. Nonempty subsets *A* and *B* of a topological space (*X*, τ). The pair (*A*, *B*) are called ω -separated if $Cl(A) \cap B = A \cap Cl_{\omega}(B) = \phi$.

Clearly, every separated set is ω -separated, the converse need not be true in general as the following example shown that.

Example 2.2. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. If $A = \{b\}$ and $B = \{a\}$, then the pair (A, B) form an ω -separated set, but it is not separated. It is clear that the pair (B, A) are not ω -separated set.

Proposition 2.3. Let *A* be a nonempty open set in a space *X* and *B* be a nonempty ω -open set in a space *X* such that $A \cap B = \phi$, then the pair (A, B) are ω -separated.

Email address: omarimutah1@yahoo.com

Proof. Let $A \cap B = \phi$. Then, $A \subseteq X - B$ and $Cl(A) \subseteq Cl_{\omega}(X - B) = X - B$, which implies that $Cl_{\omega}(A) \cap B = \phi$. Again, $B \subseteq X - A$ implies that $C(B) \subseteq Cl(X - A) = X - A$ and so $Cl(B) \cap A = \phi$. Therefore, the pair (A, B) are ω -separated.

Corollary 2.4. Let (X, τ) be topological space. If $A, B \in \tau$ are nonempty open sets such that $A \cap B = \phi$, then *A* and *B* are ω -separated.

Proposition 2.5. Let the pair (A, B) be two ω -separated subsets in a topological space (X, τ) . If $C, D \in X$ are nonempty subsets such that $C \subseteq A$ and $D \subseteq B$, then the pair (C, D) are also ω -separated.

Proof. Suppose that the pair (A, B) are ω -separated and $C(A) \cap B = \phi = A \cap Cl_{\omega}(B)$. Now, $C \cap Cl_{\omega}(D) \subseteq A \cap Cl_{\omega}(B) = \phi$, so $C \cap Cl_{\omega}(D) = \phi$. Similarly, we can prove that $Cl(C) \cap D = \phi$. Hence, the pair (C, D) are ω -separated.

Theorem 2.6. Let (X, τ) be a topological space. If *A* and *B* are ω -separated such that $A \cup B$ is closed set, then one set is closed, and the other is ω -closed.

Proof. Let the pair (A, B) be ω -separated sets and $A \cup B$ is closed. Then, $A \cap Cl_{\omega}(B) = \phi = Cl(A) \cap B$. For every $A \cup B$ is closed, $A \cup B = C(A) \cup Cl(B)$. Now, $C(A) = Cl(A) \cap [Cl(A) \cup Cl(B)] = Cl(A) \cap [A \cup B] = [Cl(A) \cap A] \cup [Cl(A) \cap B] = A \cup \phi = A$, hence *A* is closed. Additionally, $B \subseteq A \cup B$ then we have:

 $Cl_{\omega}(B) \subseteq Cl_{\omega}[A \cup B] \subseteq Cl[A \cup B] = A \cup B$

so $Cl_{\omega}(B) = Cl_{\omega}(B) \cap [A \cup B] = [Cl_{\omega}(B) \cap A] \cup [Cl(B) \cap B]$ = $\phi \cup B = B$.

Hence, *B* is ω -closed.

Theorem 2.7. Let (X, τ) be a topological space. If the pair (A, B) are ω -separated sets of X and $A \cup B \in \tau$, then A and B are ω -open and open, respectively.

Proof. Let the pair (A, B) be ω -separated in X; then, $B = [A \cup B] \cap [X \setminus C(A)]$. Since $A \cup B \in \tau$ and Cl(A) is closed in X, then B is open. Thus, $A = [A \cup B] \cap Cl_{\omega}(B)]$ since the pair (A, B) are ω -separated in X. Additionally, $A \cup B \in \tau \subseteq \tau_{\omega}$ and $Cl_{\omega}(B)$ is ω -closed in X, and then A is ω -open.

Lemma 2.8. (Al-Omari and Noorani (2007a) Let (X, τ) be topological space if Y is an open subspace of a space X and $B \subseteq Y \subseteq X$. Then, $Cl_{\omega}^{Y} = Cl_{\omega}(B) \cap Y$.

Lemma 2.9. Let (X, τ) be topological space and *Y* is an open subspace of a space *X* such that *A*, $B \subseteq Y \subseteq X$. The following statements are equivalent:

The pair (A, B) are ω-separated in Y;
The pair (A, B) are ω-separated in X.

Proof. This is abvious from Lemma 2.8, $Cl_{\mathcal{Y}}^{\mathcal{Y}}(A) \cap B = \phi = A \cap Cl^{\mathcal{Y}}()$ if and only if $Cl_{\omega}(A) \cap B = \phi = A \cap Cl(B)$.

3. *ω**-Connected Spaces

In this section, we discuss some properties of ω^* connected space, which is stronger than connected space.

Definition 3.1. A subset *A* of a topological space (X, τ) is called ω^* -connected if *A* is not the union of any pair of ω -separated sets in (X, τ) .

Clearly, every ω^* -connected, space is connected, the converse need not be true in general as the following example shown that.

Example 3.2. Let \mathbb{R} be the set of real numbers and $X = \mathbb{Q}$ be the set of all rational numbers. Let $(X, \tau_{l|Q})$ be the relative topology with left ray-topology (\mathbb{R}, τ_l) . Then, $(X, \tau_{l|Q})$ is a connected space, but it is not ω^* -connected.

Example 3.3. Let \mathbb{R} be the set of real numbers and \mathbb{Q} be the set of all rational numbers ($\mathbb{R} - \mathbb{Q} = I$ be the set of all irrational numbers) with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}$. Then, (\mathbb{R} , τ) is con-nected space, but it is not ω *-connected sence the pair (I, \mathbb{Q}) are ω -separated sets.

Theorem 3.4. A topological space (X, τ) is ω^* -connected if and only if *X* cannot be written as the disjoint union of a nonempty ω -open set and a nonempty open set.

Proof. Suppose that *X* is not a union of nonempty disjoint ω -open and open sets *A* and *B* that is $X = A \cup B$. Thus, $Cl(A) \cap B = \phi = A \cap Cl_{\omega}(B)$ since *A* and *B* are disjoint. Hence the pair (*A*, *B*) are ω -separated sets in *X*. So, *X* is not ω^* -connected. This is a contradiction.

Conversely, suppose that X is not ω^* -connected. There exist a pair (A, B) of ω -separated sets and $X = A \cup B$. By Theorem 2.7, $A, B \in X$ are ω -open and open, respectively. Then, X can be written as the disjoint union of a nonempty ω open set and a nonempty open set. This is a contradiction.

Theorem 3.5. A subspace *Y* of a topological space (X, τ) is ω^* -connected if and only if there does not exist any pair of ω -separation for *Y*.

Proof. First, let us assume that the subspace *Y* is ω^* -connected. Thus, we will have to prove that *Y* does not admit any ω -sepa-ration. Suppose that *Y* has a pair of ω -separation.

Hence, there exist nonempty subsets *A* and *B* of *X* such that $Y = A \cup B$, $A \cap Cl(B) = \phi = Cl_{\omega}(A) \cap B$. Now,

$$Cl_{\omega}^{Y}(A) = Cl_{\omega}(A) \cap Y = Cl_{\omega}(A) \cap [A \cup B] = [Cl_{\omega}(A) \cap A] \cup [Cl_{\omega}(A) \cap B] = A$$

This implies that *A* is an ω -closed subset of (Y, τ_Y) . Similarly, $Cl^Y(A) = Cl(B) \cap Y = Cl(B) \cap [A \cup B] = [Cl(B) \cap A] \cup [Cl(B) \cap B] = B$

This implies that *B* is a closed subset of (Y, τ_Y) . Additionally, $Y - B = Y \cap [X - B] = [A \cup B] \cap [X - B] = [A \cap (X - B)] \cup$ $[(X - B) \cap B] = A \cap (X - B) = A$ (since $A \cap B = \phi$). This means that the complement of *B* with respect to *Y* is *A*. Hence, *B* is ω -open such that $B \neq \phi$ and $B \neq Y$ (since $Y = A \cup B$ and $A \neq \phi$), and *B* is both ω -open and closed in *Y*. This implies that the subspace (Y, τ_Y) is not an ω *-connected space. This is a contradiction, and we arrived at this contradiction by assuming that *Y* has a pair of ω -separation. Hence, there does not exist any ω -separation for *Y*.

Conversely, now assume that there is not any pair of ω -separation for *Y*. Now suppose that the subspace (Y, τ_Y) is not an ω -connected space. Then, there exist nonempty ω -closed set *A* and closed set *B* in (Y, τ_Y) such that $Y = A \cup B$ and $A \cap B = \phi$.

Now, $[Cl_{\omega}(A) \cap B = Cl_{\omega}(A) \cap [Y \cap B] = [Cl_{\omega}(A) \cap Y] \cap B = Cl_{\omega}^{\vee}(A) \cap B = A \cap B = \phi$ (since *A* is ω -closed in *Y*, which implies $Cl_{\omega}^{Y}(A) = A$). Similarly, $A \cap Cl(B) = \phi$. This means that *Y* has a pair of ω -separation, and this is a contradiction. We arrived at this contradiction by assuming that the subspace (Y, τ_Y) is not an ω^* -connected space. Hence, the assumption is wrong. This means that (Y, τ_Y) is ω^* -connected.

Theorem 3.6. Let (X, τ) not be an ω^* -connected topological space and $\phi \neq A \subseteq X$, *A* is an open set and ω -closed set in *X*. Suppose, $\phi \neq Y$ is ω^* -connected subspace of *X*. Then, either $Y \subseteq A$ or $Y \subseteq X - A$.

Proof. $X = A \cup B$, where B = X - A implies that: $Y = X \cap Y = [A \cup B] \cap Y = (A \cap Y) \cup (B \cap Y)$. Also $[A \cap Y] \cap C[B \cap Y] \subseteq A \cap Cl_{\omega}(B) = A \cap B = \phi$, which implies that $[A \cap Y] \cap Cl[B \cap Y] = \phi$. Similarly, $Cl[A \cap Y] \cap [B \cap Y] \subseteq Cl_{\omega}(A) \cap B = A \cap B = \phi$. Then $Cl[A \cap Y] \cap [B \cap Y] = \phi$. It is given that Y is an ω^* connected subspace of X. So, it does not imply that $A \cap Y \neq \phi$ and $B \cap Y \neq \phi$. Y cannot admit any pair of ω -separation, since Y is an ω^* -connected subspace of X. Thus, $A \cap Y = \phi$ or $B \cap$ $Y = \phi$ and so $Y \subseteq A$ or $Y \subseteq X - A$.

Theorem 3.7. Let (X, τ) be a topological space and the pair (H, G) are ω -separated sets of *X*. If *A* is an ω^* -connected set of *X* with $A \subseteq H \cup G$, then either $A \subseteq H$ or $A \subseteq G$.

Proof. Let $A \subseteq H \cup G$. Since $A = [A \cap H] \cup [A \cap G]$, then $[A \cap H] \cap Cl[A \cap G] \subseteq H \cap Cl_{\omega}(G) = \phi$. Again, we have $[A \cap G] \cap [A \cap H] \subseteq G \cap Cl(H) = \phi$. Thus, the pair $(A \cap H, A \cap G)$ are ω -separated sets. If $A \cap H$ and $A \cap G$ are nonempty. So, A is not ω^* -connected. This is a contradiction. Thus, either $A \cap H = \phi$ or $A \cap G = \phi$. Hence $A \subseteq H$ or $A \subseteq G$.

Theorem 3.8. If *A* is an ω^* -connected set of a topological space (*X*, τ) and $A \subseteq B \subseteq Cl(A)$, then *B* is ω^* -connected.

Proof. Suppose that *B* is not ω^* -connected. There exist a pair (H, G) of ω -separated sets such that $B = H \cup G$. So, *H* and *G* are nonempty and $G \cap Cl(H) = \phi = H \cap Cl_{\omega}(G)$. Then either $A \subseteq H$ or $A \subseteq G$, by Theorem 3.7. If $A \subseteq G$, then $Cl_{\omega}(A) \subseteq Cl_{\omega}(G)$ and $H \cap Cl_{\omega}(A) = \phi$. Thus $H \subseteq B \subseteq Cl_{\omega}(A)$ and $H = Cl_{\omega}(A) \cap H = \phi$. Hence *H* is an empty set. This is a contradiction, since *H* is nonempty. Now, if $A \subseteq H$. Again, we have *G* is empty. This is a contradiction. Then, *B* is ω^* -connected.

Corollary 3.9. If A is an ω^* -connected set of a topological space (X, τ) , then $Cl_{\omega}(A)$ is ω^* -connected.

Theorem 3.10. Let (X, τ) be a topological space. If $\{N_i: i \in I\}$ be a nonempty family of ω^* -connected sets of X with $\bigcap_{i \in I} N_i$

 $\neq \phi$, then, $\bigcup_{i \in I} N_i$ is ω^* -connected.

Proof. Suppose that $\bigcup_{i \in I} Ni$ is not ω^* -connected. Then, $\bigcup_{i \in I} N_i$ = $H \cup G$, where the pair (H, G) are ω -separated sets in X. Since $\bigcap_{i \in I} N_i \neq \phi$, we have $x \in \bigcap_{i \in I} N_i$. Since $x \in \bigcup_{i \in I} N_i$, either $x \in H$ or $x \in G$. If $x \in H$. Since $x \in N_i$ for each $i \in I$, then N_i and H intersect for each $i \in I$. By Theorem 3.7, $N_i \subseteq$ H or $N_i \subseteq G$. Since H and G are disjoint, $N_i \subseteq H$ for all $i \in I$ and hence $\bigcup_{i \in I} N_i \subseteq H$. Then G is empty. This is a contradiction. Suppose $x \in G$. In a similar way, we have that H is empty. This is a contradiction. Thus, $\bigcup_{i \in I} Ni$ is ω^* -connected.

Theorem 3.11. Every continuous image of an ω^* -connected space is a connected space.

Proof. Let $f : X \to Y$ be a continuous function and *X* be an ω^* -connected space. Suppose that f(X) is not a connected subset of *Y*. Thus, there exists nonempty separated sets *A* and *B* with $f(X) = A \cup B$. Since *f* is continuous and $A \cap Cl(B) = \phi = Cl(A) \cap B$, $Cl(f^{-1}(A)) \cap f^{-1}(B) \subseteq f^{-1}(Cl(A)) \cap f^{-1}(B) = f^{-1}[Cl(A) \cap B] = \phi$, $f^{-1}(A) \cap Cl_{\omega}(f^{-1}(B)) \subseteq f^{-1}(A) \cap Cl(f^{-1}(B)) \subseteq f^{-1}(A) \cap f^{-1}Cl(B)) = f^{-1}[A \cap Cl(B)] = \phi$. Since *A* and *B* are nonempty, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty. Hence, $f^{-1}(A)$ and $f^{-1}(B)$ are a pair of ω -separated and $X = f^{-1}(A) \cup f^{-1}(B)$. This is a contradiction since *X* is ω^* -connected. Therefore, (*X*) is connected.

Question: Is a continuous image of an ω^* -connected space ω^* -connected?

Theorem 3.12. If every distinct points of a subset *H* of a space *X* are elements of some ω^* -connected subset of *H*, then *H* is an ω^* -connected subset of *X*.

Proof. Suppose *H* is not ω^* -connected. Then, there exist nonempty sets *A*, $B \in X$ and $Cl(A) \cap B = \phi = A \cap Cl_{\omega}(B)$ and $H = A \cup B$. Since *A* and *B* are nonempty, there exists $a \in A$ and $b \in B$. By hypothesis, *a* and *b* must be elements of an ω^* -connected subset *C* of *H*. Since $C \subseteq A \cup B$, by Theorem 3.7, either $C \subseteq A$ or $C \subseteq B$. Consequently, either both *a* and *b* are in *A* or in *B*. Let *a*, $b \in A$. Hence, $A \cap B \neq \phi$, which is a contradiction to the fact that *A* and *B* are disjoint. Therefore, *H* must be ω^* -connected.

Theorem 3.13. If *A* is an ω^* -connected subset of an ω^* -connected topological space (X, τ) such that X - A is the union of a pair (B, C) of ω -separated sets, then $A \cup C$ are ω^* -connected.

Proof. Suppose $A \cup B$ is not ω^* -connected. Then, there exist a pair (G, H) of nonempty ω -separated sets such that $A \cup B = G \cup H$. Thus, $A \subseteq A \cup B = G \cup H$, since A is ω^* -connected and, by Theorem 3.7, either $A \subseteq G$ or $A \subseteq H$. If $A \subseteq G$. Since $A \cup B = G \cup H$, $A \subseteq G$, then $A \cup B \subseteq G \cup H$ and hence $G \cup H \subseteq G \cup B$. Hence, $H \subseteq B$. Since a pair (B, C) are ω -separated, also a pair (H, C) are ω -separated. Thus, H is ω -separated from a pair (G, C). Now, $C(H) \cap [G \cup C] = [Cl(H) \cap G] \cup [Cl(H) \cap C] = \phi$, and $H \cap Cl_{\omega}[G \cup C] = H \cap [Cl_{\omega}(G) \cup Cl_{\omega}(C)] = [H \cap Cl_{\omega}(G)] \cup [H \cap Cl_{\omega}(C)] = \phi$.

Therefore, *H* is ω -separated from $G \cup C$. Since $X - A = B \cup C$, $X = A \cup [B \cup C] = [A \cup B] \cup C = [G \cup H] \cup C$, and since $A \cup B = G \cup H$, $X = [G \cup C] \cup H$. Thus, *X* is the

union of a pair of nonempty ω -separated sets ($G \cup C$, H), which is a contradiction. There is a similar contradiction if $A \subseteq H$. Then, $A \cup B$ is ω^* -connected. Also, we can prove that $A \cup C$ is ω^* -connected.

Theorem 3.14. If *A* and *B* are ω *-connected sets of a topological space (*X*, τ) and none of them is ω -separated, we have $A \cup B$ is ω *-connected.

Proof. Let *A* and *B* be ω^* -connected in a space *X*. If $A \cup B$ is not ω^* -connected. Then, there exist a pair of nonempty disjoint ω -separated sets (*G*, *H*) and $A \cup B = G \cup H$. By Theorem 3.7 and since *A* and *B* are ω^* -connected, either $A \subseteq G$ and $B \subseteq H$ or $B \subseteq G$ and $A \subseteq H$.

Now, if $A \subseteq G$ and $B \subseteq H$, then $A \cap H = B \cap G = \phi$. Therefore, $[A \cup B] \cap G = [A \cap G] \cup [B \cap G] = [A \cap G] \cup \phi = A \cap G = A$.

Additionally, $[A \cup B] \cap H = [A \cap H] \cup [B \cap H] = \phi \cup [B \cap H] = B \cap H = B.$

Similarly, if $B \subseteq G$ and $A \subseteq H$, then $[A \cup B] \cap G = B$ and $[A \cup B] \cap H = A$. Now, $[(A \cup B) \cap H] \cap Cl_{\omega}[(A \cup B) \cap G] \subseteq (A \cup B) \cap H \cap Cl_{\omega}(A \cup B) \cap Cl_{\omega}(G) = (A \cup B) \cap H \cap Cl_{\omega}(G) = \phi$ and $Cl[(A \cup B) \cap H] \cap [(A \cup B) \cap G] \subseteq Cl(A \cup B) \cap Cl_{\omega}(G) = \phi$.

Therefore, the pair $((A \cup B) \cap H, (A \cup B) \cap G)$ are ω -separated sets. Thus, by Proposition 2.5, we have that the pair (A, B) are ω -separated, which is a contradiction. Hence, $A \cup B$ is ω^* -connected.

Example 3.15. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{b\}, \{b, c\}, \{a, b, d\}\}$. If $A = \{c\}$ and $B = \{d\}$, the *A* and *B* are ω^* -connected. But $A \cup B = \{c, d\}$ is not ω^* -connected since the pairs (A, B) and (B, A) are ω -separated.

Example 3.16. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{b\}, \{b, c\}, \{a, b, d\}\}$. If $A = \{b\}$ then A is ω^* -connected. But Cl(A) = X is not ω^* -connected since the pair (H, G) are ω -separated where $H = \{a, c, d\}$ and $G = \{b\}$.

Definition 3.17. Let (X, τ) be topological space and $x \in X$. The union of all ω^* -connected subsets of *X* containing *x* is called the ω -component of *X* containing *x*.

Lemma 3.18. Each ω -component of a topological space (X, τ) is a maximal ω *-connected set of X.

Lemma 3.19. The set of all distinct ω -components of a topological space (*X*, τ) forms a partition of *X*.

Proof. Let *A* and *B* be distinct ω -components of *X*. If *A* and *B* intersect. Then, by Theorem 3.10, $A \cup B$ is ω^* -connected in *X*. Since $A \subseteq A \cup B$, then *A* is not maximal. Hence, *A* and *B* are disjoint.

Lemma 3.20. Each ω -component of a topological space (*X*, τ) is an ω -closed in *X*.

Proof. Let *A* be an ω -component of *X*. By Corollary 3.9, *Cl* (*A*) is ω^* -connected and $A = Cl_{\omega}(A)$. Thus, *A* is an ω -closed in *X*.

Example 3.21. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{b\}, \{b, c\}, \{a, b, d\}\}$. If $A = \{b\}$ then the ω -component of A is A which is not closed.

Theorem 3.22. Each ω^* -connected subset of a space *X* which is open and ω -closed is ω -component of *X*.

Proof. Let *A* be an ω^* -connected of *X* which is open and ω closed. For $x \in A$. If *C* is the ω -component containing *x*, then $A \subseteq C$ (since *A* is an ω^* -connected subset of *X* containing *x*). Let $A \subset C$. Then, $C \neq \phi$ and $C \cap (X - A) \neq \phi$. Thus, X - A is closed and ω -open and $[A \cap C] \cap [(X - A) \cap C] = \phi$ (since *A* is open and ω -closed). Additionally, $[A \cap C] \cup [(X - A) \cap C]$ $= [A \cup (X - A)] \cap C = C$. Also, *A* and X - A are nonempty disjoint open and ω -open sets, respectively, and $A \cap Cl(X - A) = \phi = Cl_{\omega}(A) \cap (X - A)$. Then we have that $(A \cap C) \cap Cl[(X - A) \cap C] = \phi = Cl_{\omega}(A \cap C) \cap [(X - A) \cap C]$. Hence the pair $[A \cap C]$ and $[(X - A) \cap C]$ are ω -separated sets. This is a contradiction, then A = C. Hence, *A* is an ω -component of *X*.

4. Conclusions

In the present work, we have continued to study the properties of connected spaces. We introduced ω -separated sets and ω^* -connected. Moreover, we have also established several results and presented their fundamental properties with the help of some examples.

Acknowledgements

The authors wish to thank the referees for their useful comments and suggestions.

References

- Al-Ghour, S., & Zareer, W. (2016). Omega open sets in generalized topological spaces. *The Journal of Nonlinear Sciences and Applications*, 9, 3010-3017.
- Al-Omari, A., & Noorani, M. S. M. (2007). Regular generalized ω-closed sets. International Journal of Mathematics and Mathematical Sciences, Article ID 16292.
- Al-Omari, A., & Noorani, M. S. M. (2007). Contra- ω-continuous and almost contra-ω-continuous. International Journal of Mathematics and Mathematical Sciences, Article ID 040469.
- Hdeib, H. Z. (1982). ω-closed mapping. Revista Colombiana de Matematicas, 16(1-2), 65-78.
- Hdeib, H. Z. (1989). ω-continuous functions. Dirasat Journal, 16(2), 136-142.
- Kuratowski, K. (1933). Topology I. Warsaw, Poland.
- Noiri, T., Al-Omari, A., & Noorani, M. S. M. (2009a). Weak forms of ω-open sets and decompositions of continuity. *European Journal of Pure and Applied Mathematics*, 2(1), 73-84.
- Noiri, T., Al-Omari, A., & Noorani, M. S. M. (2009b). Slightly ω-continuous functions. *Fasciculi Mathematici*, 41, 97-106.
- Zorlutuna I. (2013). ω-continuous multifunctions. *Filomat*, 27 (1), 155-162.