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Abstract 
 

We formulate a mathematical model for the classical Chua’s circuit with two nonlinear resistors in terms of a system of 

nonlinear ordinary differential equations.  The existence of two nonlinear resistors implies that the system has three equilibrium 

points. The behaviour of the trajectory in a neighbourhood of each equilibrium point depends on the eigenvalues of the system. 

The eigenvalues can be obtained from a cubic polynomial equation. It turns out that all possible solutions of the cubic equation 

lead to six types of equilibrium points, namely, stable node, unstable node, saddle node, stable focus node, unstable focus node, 

saddle focus node. The chaotic behaviour of the circuit occurs when the equilibrium point is a stable focus node or a saddle focus 

node. The hidden attractor of our Chua’s system is localized through a suitable initial point. 
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1. Introduction 
 

In nonlinear dynamical systems, it is well known that 

there are two types of oscillations, namely, periodic oscillation 

and chaotic oscillation. Chaos system is thus a nonlinear 

dynamic system which has chaotic motion or random changing 

of waveform. It is sensitive to initial conditions and has the self-

similarity property. Chaotic phenomenon has been received 

much attention for a few decades. Such behaviour has been 

successfully applied to signal transmission and cryptography 

(Kolumban, Kennedy, & Chua, 1998; Yang, Wu, & Chua, 

1997; Dmitriev, Panas, & Starkov, 1995). Several types of 

oscillators have been studied and applied for generating chaos, 

e.g. Collpits, Wien bridge, Chua, Lorenz, etc. Among those, 

Chua’s circuit is a famous one. 

Chua’s circuit (Chua, 1992; Sprott, 2000a) is a simple 

electronic circuit that exhibits classic chaos theory behaviour 

(Sprott, 2000b; Piper & Sprott, 2010; Chua & Lin, 1990; Sprott, 

2011).   It produces an oscillating waveform, which is different 

from usual electronic oscillators. The classical Chua’s circuit,

 
shown in Figure 1, consists of only resistors, capacitors, and a 

nonlinear resistor (Morgul, 1995; Aissi & Kazakos, 2008). The 

nonlinear resistor, also called Chua’s diode, consists of many 

op-amps. In the literature, there are many ways to adjust the 

classical Chua’s circuit to a more complicated one having 

chaotic behaviour. These include anti-monotonicity, and 

bubble formation (Kyprianidis, 2006; Stouboulos, Kyprianidis, 

& Papadopoulou, 2008). It is also possible to replace the 

piecewise linear characteristic of the Chua’s diode with a 

smooth cubic function (Kyprianidis & Fotiadou, 2006). 

Applications of Chua’s chaotic systems go to computer science, 

mathematical biology, communication system, weather fore-

cast and other branches of sciences. 

In the literature, an oscillation in a dynamical system 

(e.g. Chua’s system) can be localized numerically if initial 

conditions from its neighbourhood lead to asymptotic beha-

viour that approaches the oscillation. Such an oscillation is 

called an attractor, and its attracting set is called the basin of 

attraction.  There are two types of attractors classified by the 

basin of attractions (Bragin, Vagaitsev, Kuznetsov, & Leonov, 

2011). A hidden attractor, discovered in (Kuznetsov, Leonov, 

& Vagaitsev, 2010; Bragin, Vagaitsev, Kuznetsov, & Leonov, 

2011; Kuznetsov, Leonov, & Seledzhi, 2011), is an attractor 

whose   basin  of   attractions  does  not   intersect   with  small  
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Figure 1. Classical Chua’s circuit. 

 

neighbourhoods of equilibrium points; otherwise an attractor is 

called a self-excited attractor. 

The present paper investigates the classical Chua’s 

circuit by adding a nonlinear resistor, so that the circuit has two 

nonlinear resistors as shown in Figure 2. The circuit of each 

nonlinear resistor is shown in Figure 3. We apply fundamental 

laws in electrical engineering to make a mathematical model of 

the circuit; see Section 2. Such a model is described in terms of 

a system of nonlinear differential equations. Then we shall find 

all equilibrium points of the system; see Section 3. To investi-

gate the trajectory behaviour about a neighbourhood of each 

equilibrium point, we shall classify the type of each equilibrium 

point through the associated eigenvalues; see Section 4. In 

Section 5, we show that our system can be reduced to a simpler 

one via an invertible transformation. Our system has one hidden 

attractor, and its localization is discussed in Section 6. Our 

theory is then illustrated with a numerical simulation in Section 

7. We finish the paper with the conclusion in Section 8.  
 

 
 

Figure 2. Classical Chua’s circuit with two nonlinear resistors. 
 

2. Formulation of Classical Chua’s Circuit to a  

    System of ODEs 
 

In this section, we formulate a mathematical model 

for the classical Chua’s circuit (Figure 3) in terms of a system 

of nonlinear ordinary differential equations (ODEs).    

We divide the circuit in Figure 3 into four parts as 

illustrated in Figures 4-5. Our analysis is based on fundamental 

theory of electrical circuit analysis such as Ohm’s law, Kirch-

hoff’s current law (KCL), Kirchhoff’s voltage law (KVL). 

To analyse the circuit parts in Figure 4, we use the 

following notations.  Let 𝑖𝐿 and 𝑖𝑁𝑅
 be the currents through the 

inductor L and the nonlinear resistor NR. Let 𝑉𝐶1
 and 𝑉𝐶2

 be the 

voltages measured across the capacitors 𝐶1 and 𝐶2. Let 𝑅 be the 

resistance of the variable resistor. Now, the circuit parts in 

Figure 4 can be described as 

 

 
Figure 3. Fully classical Chua’s circuit with two nonlinear resistors. 

 

 
Figure 4. Chua’s circuit analysis. 
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Figure 5. Two nonlinear resistors analysis in Chua’s circuit. 

 

 
𝑑𝑖𝐿
𝑑𝑡

 =  −
𝑉𝐶2

𝐿
,                                                                (1) 

 
𝑑𝑉𝐶2

𝑑𝑡
=

𝑉𝐶1
− 𝑉𝐶2

𝑅𝐶2
+

𝑖𝐿
𝐶2

,                                              (2) 

 
𝑑𝑉𝐶1

𝑑𝑡
=

𝑉𝐶2
− 𝑉𝐶1

𝑅𝐶1
−

𝑖𝑁𝑅

𝐶1
.                                             (3) 

 

The circuit in Figure 5 is a more complicated one 

since it consists of two nonlinear resistors. For the nonlinear 

resistor on the left, using Ohm’s law, we have 𝑉𝑁𝑅
= 𝑖𝑅3

𝑅3, 

𝑉𝑒 = (𝑅2 + 𝑅3)𝑖𝑅3
 and 𝑉𝑁𝑅

− 𝑉𝑒 = 𝑖𝑥𝑅1, where 𝑉𝑒 is the 

voltage of the op-amp on the left hand side. Combining these 

three equations to get  𝑖𝑥 = 𝑅𝑥𝑉𝑁𝑅
 where 

 

 𝑅𝑥 = −
𝑅2

𝑅1𝑅3
. 

 

Similarly, for the nonlinear resistor on the right, we 

obtain that 𝑖𝑦 = 𝑅𝑦𝑉𝑁𝑅
 where 

 

𝑅𝑦 = −
𝑅5

𝑅4𝑅6
.      

 

Using KCL at node c, we have  𝑖𝑁𝑅
− 𝑖𝑥 − 𝑖𝑦 = 0. 

Then the current 
RNi satisfies the relation  

 

 𝑖𝑁𝑅
= (𝑅𝑥 + 𝑅𝑦)𝑉𝑁𝑅

.   

 

However, as pointed out in (Chua & Ying, 1982), the 

behavior of 𝑖𝑁𝑅
 depends on the voltage 𝑉𝐶1

. Indeed, when  Ve < 

Vf , the graph of 𝑖𝑁𝑅
 with respect to 𝑉𝐶1

 is as follows. 

 

From Figure 6, 

 

𝑖𝑁𝑅
= (𝑅𝑥 +

1

𝑅4
)𝑉𝐶1

+
1

2
(𝑅𝑦 −

1

𝑅4
)  

 

( |𝑉𝐶1
+

𝑉𝑓,𝑚𝑎𝑥

𝑉𝑓
𝑉𝐶1

| − |𝑉𝐶1
−

𝑉𝑓,𝑚𝑎𝑥

𝑉𝑓
𝑉𝐶1

|) 

 

where 𝑉𝑓,𝑚𝑎𝑥 is the maximum voltage at a node 𝑓. Introduce 

the following time-scale changing: 

 

𝜏 =
𝑡

𝑅𝐶2
, 𝑥 =

𝑉𝑓

𝑉𝑓,𝑚𝑎𝑥
, 

 

𝑦 =
𝑉𝑓𝑉𝐶2

𝑉𝑓,𝑚𝑎𝑥𝑉𝐶1

, 𝑧 =
𝑉𝑓𝑖𝐿𝑅

𝑉𝑓,𝑚𝑎𝑥𝑉𝐶1

. 

 

Now, the equations (1), (2) and (3)  become the following 

system of ODEs  

 
𝑑𝑥

𝑑𝜏
= (

𝐶2

𝐶1
) (−𝑥 + 𝑦 − 𝑔(𝑥)),                                 (4) 

 

 
𝑑𝑦

𝑑𝜏
= 𝑥 − 𝑦 + 𝑧,                                                         (5) 

 

𝑑𝑧

𝑑𝜏
= −(

𝑅2𝐶2

𝐿
)𝑦,                                                      (6) 

 

where  

 𝑔(𝑥) = 𝑅 (𝑅𝑥 +
1

𝑅4
) 𝑥 +

1

2
𝑅 (𝑅𝑦 −

1

𝑅4
) 

 
(|𝑥 + 1| − |𝑥 − 1|).                                  (7) 
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Figure 6. Reduced form of I-V Characteristic for nonlinear resistors (𝑉𝑒 < 𝑉𝑓). 

 

3. Equilibrium Points of the Classical Chua’s System 
 

From the characteristic of nonlinear resistors in 

Figure 6 and the formula (7), we see that the behavior of the 

current 𝑖𝑁𝑅
 depends on the voltage 𝑉𝐶1

, which is considered into 

three cases, namely, Case 1:  −1 ≤ 𝑥 ≤ 1, Case 2: −
𝑉𝑓

𝑉𝑒
≤ 𝑥 ≤

1, Case 3: −1 ≤ 𝑥 ≤
𝑉𝑓

𝑉𝑒
. Let 𝐸𝑖 be the equilibrium point for 

Case 𝑖 where 𝑖 = 1,2,3. Denote ζ =
𝐶2

𝐶1
 and η =

𝑅2𝐶2

𝐿
.  

For Case 1, we have 

 

𝑔(𝑥) = 𝑅 (𝑅𝑥 +
1

𝑅4
) 𝑥 +

1

2
𝑅 (𝑅𝑦 −

1

𝑅4
) 

 

                            (𝑥 + 1 − 1 − 𝑥) =  𝑚0𝑥, 
 

where 𝑚0 = 𝑅(𝑅𝑥 + 𝑅𝑦). It follows that the equations (4) to 

(6) become 

 

ζ(𝑦 − 𝑥) − ζ𝑚0𝑥 = 0,                                                (8) 
 

𝑥 − 𝑦 + 𝑧 = 0,                                                              (9) 

 

−η𝑦 = 0.                                                                     (10) 

 

Thus, the equilibrium for Case 1 is given by (𝑥1, 𝑦1, 𝑧1) =
(0,0,0). 
 

For Case 2, we have 

𝑔(𝑥) = 𝑅 (𝑅𝑥 +
1

𝑅4
) 𝑥 +

1

2
𝑅 (𝑅𝑦 −

1

𝑅4
)                                     

 

                       (−𝑥 − 1 − 1 + 𝑥), =  𝑚1𝑥 + 𝑚0 − 𝑚1, 
 

where 𝑚1 = 𝑅 (𝑅𝑥 +
1

𝑅4
). Now, the equation (4) reduces to 

 
ζ(𝑦 − 𝑥) − ζ(𝑚1𝑥−𝑚0−𝑚1 = 0.                         (11) 

 

From the system of equations (9) to (11), we obtain the 

equilibrium point to be 

 

(𝑥2, 𝑦2, 𝑧2) = (
𝑚1−𝑚0

𝑚1+1
, 0,

𝑚0−𝑚1

𝑚1+1
). 

 
Finally for Case 3, we can see that 

 

 𝑔(𝑥) =  𝑚1𝑥 + 𝑚1−𝑚0, 
 

and thus the equilibrium point is determined by 

 

(𝑥3, 𝑦3, 𝑧3) = (
𝑚0−𝑚1

𝑚1+1
, 0,

𝑚1−𝑚0

𝑚1+1
). 

 

4. Eigenvalues and Trajectories of the System 
 

In this section, we find the eigenvalues for the 

classical Chua’s system and analyze the behaviour of 

trajectories of the system in a neighborhood of each equilibrium 

point. 
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4.1 Finding eigenvalues 
 

We shall formulate our system into a vector 

differential equation. Let us denote 

 

𝑋(𝑡) = [

𝑥(𝑡)

𝑦(𝑡)
𝑧(𝑡)

] and �̇�(𝑡) = [

�̇�(𝑡)

�̇�(𝑡)
�̇�(𝑡)

], 

 

where �̇�(𝑡), �̇�(𝑡) and �̇�(𝑡) are the derivatives of 𝑥(𝑡), 𝑦(𝑡) and 

𝑧(𝑡) with respect to the time t, respectively. 

From the equations (4)-(7), we again consider three 

cases. For Case 1 (−1 ≤ 𝑥 ≤ 1), we obtain the linear system 

 

�̇�(𝑡) = 𝐽𝑋(𝑡)  where  𝐽 = [
−ζ − ζ𝑚0 ζ 0

1 −1 1
0 −η 0

]. 

 

Recall the following the result:  

 

Theorem 1. (see e.g. (Goode, 2000)) The initial value problem  

 

𝑋(𝑡) = 𝐴(𝑡)𝑋(𝑡) + 𝐵(𝑡), 𝑋(𝑡0) = 𝑋0, 
 

where 𝐴(𝑡) and 𝐵(𝑡) are continuous vector-valued functions on 

an interval I, has a unique solution 𝑋(𝑡) on I. 

This theorem guarantees the existence and the 

uniqueness of the trajectories 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡), provided that 

initial values 𝑥(0), 𝑦(0) and 𝑧(0) are given. 

In order to get the solutions 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) of 

the above system, we shall find the eigenvalues of the matrix 𝐽. 

Indeed, we have det(𝜆𝐼3 − 𝐽) = 0 and thus the characteristic 

equation of J  is given by 

 

𝜆3 + (ζ + ζ𝑚0 + 1)𝜆2 + (ζ𝑚0 + η)𝜆 
 

     +(ζη + ζη𝑚0) = 0.                   (12) 

 

For the second and the third cases (−1 ≤ 𝑥 ≤ 1), the 

coefficient matrix 𝐽 is given by 

 

𝐽 = [
−ζ − ζ𝑚1 ζ 0

1 −1 1
0 −η 0

]. 

 

Similarly, its characteristic equation is 

 

𝜆3 + (ζ + ζ𝑚1 + 1)𝜆2 + (ζ𝑚1 + η)𝜆 
 

     +(ζη + ζη𝑚1) = 0.                             (13) 

 

We shall adopt a treatment on cubic equations (e.g. 

(Guilbeau, 1930)) to this situation. We shall find the solution of 

the cubic equation 

 

λ3 + 𝑏λ2 + 𝑐λ + 𝑑 = 0                             (14) 

 

in which 𝑏 = ζ + ζ𝑚 + 1, 𝑐 = ζ𝑚 + η, and 𝑑 = ζη + ζη𝑚, 
where 𝑚 = 𝑚0 or 𝑚 = 𝑚1.  The numbers of real and complex 

roots are determined by the discriminant of the cubic equation 

defined by 

Δ = 18𝑏𝑐𝑑 − 4𝑏3𝑑 + 𝑏2𝑐2 − 4𝑐3 − 27𝑑2. 
 

The general solution of the cubic equation involves 

calculating: 

 

Δ₀ = 𝑏2 − 3𝑐 and Δ₁ = 2𝑏3 − 9𝑏𝑐 + 27𝑑. 

 
For Δ > 0, the equation has three distinct real roots. More 

precisely, substitutions 𝑡 −
𝑏

3
 into λ, we get 𝑡3 + 𝑝𝑡 + 𝑞 = 0, 

where 𝑝 = −
Δ₀

3
 and 𝑞 =

Δ₁

27
. The solution 𝑡 will be in the form 

𝑡 = 𝑢 + 𝑣, where  

 

𝑢 = √−
𝑞

2
+ √

𝑝3

27
+

𝑞2

4

3

  and  𝑣 = √−
𝑞

2
− √

𝑝3

27
+

𝑞2

4

3

. 

 

Let 𝜔 = −
1

2
+

√3

2
𝑖, 𝐴 = |𝑢| and B =|𝑣|.  Then, there 

are three possible values of 𝑢, namely 𝑢1 = 𝐴, 𝑢2 = 𝜔𝐴 

and 𝑢3 = 𝜔2𝐴. Similarly, there are three positive values of 𝑣, 

namely, 𝑣1 = 𝐵, 𝑣2 = 𝜔𝐵 and 𝑣3 = 𝜔2𝐵. However, the pair 

(𝑢, 𝑣) must satisfies the condition 𝑢𝑣 = −
𝑝

3
. Hence, the 

solutions of (14) are given by 
 

λ1 = 𝐴 + 𝐵 −
𝑏

3
, λ2 = 𝜔𝐴 + 𝜔2𝐵 −

𝑏

3
,   

 

λ3 = 𝜔2𝐴 + 𝜔𝐵 −
𝑏

3
. 

 

For Δ = 0, the equation has a multiple root and all of its roots 

are real. There are two subcases: 

 

Δ₀ = 0: it has a triple same root λ1 = λ2 = λ3 =

−
𝑏

3
. 

 

Δ₀ ≠ 0: it has a double same root  λ1 = λ2 =
9𝑑−𝑏𝑐

∆0
  

and a simple distinct root λ3 =
4𝑏𝑐−9𝑑− 𝑏3

∆0
. 

 

For Δ < 0, the equation has one real root and two non-

real complex conjugate roots.  

 

4.2 Analysis for Trajectories of the system in a  

      neighborhood of equilibrium 
 

The classical Chua’s system can be classified in 

terms of the eigenvalues λ1, λ2, λ3 from the system �̇�(𝑡) =
𝐽𝑋(𝑡) as follows. 

Case 1: λ1, λ2 and λ3 are negative real numbers. In 

this case, the equilibrium point is called a stable node. Thus, the 

trajectories of (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) will converge to the 

equilibrium point for any initial value (𝑥(0), 𝑦(0), 𝑧(0)) 

(Figure 7). 

Case 2: λ1, λ2 and λ3 are positive real numbers. In this 

case, the equilibrium point is called an unstable node. Thus, the 

trajectories of (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) will diverge to the equilibrium 

point for any initial value (𝑥(0), 𝑦(0), 𝑧(0)) (Figure 8). 
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Figure 7. A trajectory of stable node. 

 
 

Figure 8. A trajectory of unstable node. 

 

Case 3: λ1 is a positive real number, λ2 and λ3 are 

negative real numbers. In this case, the equilibrium point is 

called a saddle node. The trajectories lying on the 𝑥 and 𝑦 axes 

tend toward to equilibrium point, whereas the trajectories lying 

on the 𝑧 axis tends away from equilibrium point (Figure 9 on 

the left hand side). 

Case 4: λ1 is a negative real number, λ2 and λ3 are 

positive real numbers. In this case, the equilibrium point is 

called a saddle node. The trajectories of (𝑥(𝑡), 𝑦(𝑡)) will 

diverge but 𝑧(𝑡) will converge to the equilibrium point for any 

initial value (𝑥(0), 𝑦(0), 𝑧(0)) (Figure 9 on the right hand 

side). 
 

 
 

Figure 9. A trajectory of saddle node with λ1 > 0 > λ2,3 from left 

hand side and λ2,3 > 0 > λ1 from right hand side. 

 

Case 5: λ1 is a negative real number, λ2 and λ3 are 

complex numbers having negative real parts, and λ2 is a 

conjugate of λ3. In this case, the equilibrium point is called a 

stable focus node. Thus, the trajectories of (𝑥(𝑡), 𝑦(𝑡)) will 

converge spiral form and 𝑧(𝑡) will converge to the equilibrium 

point for any initial value (𝑥(0), 𝑦(0), 𝑧(0)) (Figure 10). 

Case 6: λ1 is a positive real numbers, λ2 and λ3 are 

complex numbers having positive real parts, and λ2 is a 

conjugate of λ3. In this case, the equilibrium point is called an 

unstable focus node. The trajectories of (𝑥(𝑡), 𝑦(𝑡)) will 

diverge spiral form and 𝑧(𝑡) will diverge to the equilibrium 

point for any initial value (𝑥(0), 𝑦(0), 𝑧(0)) (Figure 11). 

Case 7: λ1 is a negative real numbers but λ2 and λ3 

are positive reals and pairs of complex-conjugate numbers. In 

    
 

Figure 10. A trajectory of stable focus node. 

 
 

Figure 11. A trajectory of unstable focus node 

 

this case, the equilibrium point is called a saddle focus node. 

Thus, the trajectories of (𝑥(𝑡), 𝑦(𝑡)) will diverge spiral form 

but 𝑧(𝑡) will converge to the equilibrium point for any initial 

value (𝑥(0), 𝑦(0), 𝑧(0)) (Figure 12 on the left hand side). 

Case 8: λ1 is a positive real numbers but λ2 and λ3 

are negative reals and pairs of complex-conjugate numbers. In 

this case, the equilibrium point is called a saddle focus node. 

Thus, the trajectories of (𝑥(𝑡), 𝑦(𝑡)) will converge spiral form 

but 𝑧(𝑡) will diverge to the equilibrium point for any initial 

value (𝑥(0), 𝑦(0), 𝑧(0)) (Figure 12 on the right hand side). 

 

 
Figure 12. A trajectory of saddle focus node with Re(λ2),Re(λ3) >
                    0 > Re(λ1) from left hand side and Re(λ1)  > 0 >
                    Re(λ2),Re(λ3) from right hand side. 

 

5. Reduction of the System 

 
In this section, we show that our system can be 

reduced to a simpler system by introducing an invertible trans-

formation.  
 

From equations (4)-(7), we put them together in the 

following matrix form: 

 
𝑑𝑀

𝑑𝑡
= 𝑃0𝑀 + 𝑄µ(𝑅𝑇𝑀) ,                                        (15) 

 

where 
 

𝑃0 = [
−ζ(𝑚1 + 1 + 𝑘) ζ 0

1 −1 1
0 −η 0

] ,   𝑄 = [
−ζ

0
0

] , 𝑅𝑇 = [
1
0
0
]. 
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From (15), let us introduce an invertible transfor-

mation matrix S such that 𝑀 = 𝑆𝑌.  We shall find the explicit 

formula of S later. Multiplying 𝑆−1 to both sides of (15) yields 

 
𝑑𝑌

𝑑𝑡
= 𝑆−1𝑃0𝑆𝑌 + 𝑆−1𝑄µ(𝑅𝑇𝑆𝑌),         

 

Let  𝐴 = 𝑆−1𝑃0𝑆, 𝐵 = 𝑆−1𝑄, 𝐶𝑇 = 𝑅𝑇𝑆. Then we get 

 
𝑑𝑌

𝑑𝑡
= A𝑌 + 𝐵µ(𝐶𝑇𝑌),                                              (16) 

 

where 

𝐴 = [

0 −𝛼0 0
𝛼0 0 0
0 0 −𝛽

] , 𝐵 = [
𝑏1

𝑏2

1

] , 𝐶𝑇 = [
1
0
𝑐3

], 

 

Write S = [sij]. From the conditions 𝐴 = 𝑆−1𝑃0𝑆, 𝐵 =
𝑆−1𝑄, 𝐶𝑇 = 𝑅𝑇𝑆, it is straightforward to deduce that  

 

𝑠11 = 1, 𝑠12 = 0, 𝑠13 = 𝑐3, 
 

𝑠21 = 𝑚1 + 1 + 𝑘, 𝑠22 = −
𝛼0

ζ
, 

 

𝑠23 =
𝛽

ζ
+ 𝑐3(𝑚1 + 1 + 𝑘), 

 

𝑠31 = 𝑚1 + 𝑘 −
𝛼0

2

ζ
, 

 

𝑠32 = −
𝛼0

ζ
− 𝛼0(𝑚1 + 1 + 𝑘), 

 

𝑠33 =
ℎ𝑑(1 + ζ − 𝑑)

ζ
+ 𝑐3(𝑚1 + 𝑘)(1 − 𝛽). 

 

Now, the transfer functions of the system (15) and (16) are 

 

𝑊𝑃0
(𝑝) = 𝑅𝑇(𝑃0 − 𝑝𝐼)−1𝑄,                                   (17) 

 

𝑊𝐴(𝑝) = 𝐶𝑇(𝐴 − 𝑝𝐼)−1𝐵.                                      (18) 

 

We obtain that  

 

(𝐴 − 𝑝𝐼)1 =
1

det(𝐴 − 𝑝𝐼)
adj(𝐴 − 𝑝𝐼) 

 

                                 = 
1

(−𝑝−𝛽)(𝑝2+𝛼0
2)

 

 

[

𝑝2 + 𝛽𝑝 −𝛼0𝑝 − 𝛼0𝛽 0

𝛼0𝑝 + 𝛼0𝛽 𝑝2 + 𝛽𝑝 0

0 0 𝑝2 + 𝛼0
2

]. 

 

 

It follows that  

 𝑊𝐴(𝑝) = [1 0 𝑐3]

[
 
 
 
 
 
 

𝑝2 + 𝛽𝑝

(−𝑝 − 𝛽)(𝑝2 + 𝛼0
2)

−𝛼0𝑝 − 𝛼0𝛽

(−𝑝 − 𝛽)(𝑝2 + 𝛼0
2)

0

𝛼0𝑝 + 𝛼0𝛽

(−𝑝 − 𝛽)(𝑝2 + 𝛼0
2)

𝑝2 + 𝛽𝑝

(−𝑝 − 𝛽)(𝑝2 + 𝛼0
2)

0

0 0
𝑝2 + 𝛼0

2

(−𝑝 − 𝛽)(𝑝2 + 𝛼0
2)]

 
 
 
 
 
 

[
𝑏1

𝑏2

1

]     

 

   =  
𝑏1(𝑝

2 + 𝛽𝑝) + 𝑏2(−𝛼0𝑝 − 𝛼0𝛽) + 𝑐3(𝑝
2 + 𝛼0

2)

(−𝑝 − 𝛽)(𝑝2 + 𝛼0
2)

 

 

  =
(𝑏1 + 𝑐3)𝑝

2 + (𝑏1𝛽 − 𝑏2𝛼0)𝑝 + (𝑐3𝛼0
2 − 𝑏2𝛼0𝛽)

−𝑝3 − 𝛽𝑝2 − 𝛼0
2𝑝 + 𝛼0

2𝛽
.                                                                                                 (19) 

Similarly,  

 

𝑊𝑃0
(𝑝) =

(−ζ)𝑝2 + (−ζ)𝑝

−𝑝3 + (−ζ𝑚1 − ζ − ζ𝑘 − 1)𝑝2 + (−ζ𝑚1 − ζ − ζ𝑘 − η)𝑝 + (−ζ𝑚1η − ζη − ζ𝑘η)
.                                     (20) 

 

Since the system (15) and the system (16) are the same system, we have  𝑊𝐴(𝑝) = 𝑊𝑃0
(𝑝). Now, we compare the numerator and 

denominator coefficients of  𝑊𝐴(𝑝) and 𝑊𝑃0
(𝑝). We obtain that 

 

𝑐3 = −ζ − 𝑏1,  𝑏1𝛽 − 𝑏2𝛼0 = −ζ, −𝑐3𝛼0
2 + 𝑏2𝛼0𝛽 = ζη 

 

𝛽 = ζ𝑚1 + ζ + ζ𝑘 + 1, 𝑏1𝛽 − 𝑏2𝛼0 = −ζ, −𝑐3𝛼0
2 + 𝑏2𝛼0𝛽 = ζη. 

 

These imply the following relations 
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𝑘 =
𝛼0

2 − η

ζ
− 𝑚1, 𝛽 = 𝛼0

2 + ζ − η + 1, 𝑏1 =
ζ(𝛽 − 𝛼0

2 − η)

𝛼0
2 + 𝛽2

,                                                                                 (21) 

 

𝑏2 = ζ
η − 𝛽 + 𝛽2

𝛼0(𝛼0
2 + 𝛽2)

,      𝑐3 =
−ζ(η − 𝛽 + 𝛽2)

𝛼0
2 + 𝛽2

.                                                                                                                           (22) 

 

6. Localization of a Hidden Attractor for Classical Chua’s Circuit 
 

In this section, we will discuss the oscillation behaviour in the classical Chua’s circuit with two nonlinear resistors, 

focused on hidden attractors.  

In order to find a hidden attractor of the system, we will find a suitable initial point (𝑥(0), 𝑦(0), 𝑧(0)) so that our system 

will have a chaos. The initial point depends on a parameter 𝑎0, which is the solution of the equation  Φ(𝑎) = 0  where Φ  is  the 

describing function (Bragin, Vagaitsev, Kuznetsov, & Leonov, 2011) defined by 

 

Φ(𝑎) = ∫ 𝜑(𝑎cos (𝜔0𝑡))cos

2𝜋/𝜔0

0

(𝜔0𝑡)dt. 

 

Here, 𝜑(𝑎) = 𝑔(𝑥) − 𝑘𝑥, where 𝑘 is a coefficient of harmonic linearization, 𝑥 = 𝜔0𝑡, 𝑔(𝑥) is the function of 𝑥 in (7) and 

 

𝑔(𝜔0𝑡) =
1

2
𝑅(𝑚0 − 𝑚1)(|𝜔0𝑡 + 1| − |𝜔0𝑡 − 1|). 

 

Then, 𝑔(𝜔0𝑡) is equal to (𝑚0 − 𝑚1)𝜔0𝑡 for all 𝑥 ∈ [0, 1] and it equals the constant 𝑚0 − 𝑚1 when 𝑥 ∈ (1, 2π]. It follows that 

 

Φ(𝑎) = ∫𝑎(𝑚0 − 𝑚1)cos2

𝜏

0

𝑡dt + ∫ (𝑚0 − 𝑚1)cos

2𝜏

𝜏

𝑡dt − ∫ 𝑎𝑘cos2

2𝜋

0

𝑡dt, 

 

where 𝜏 = arccos (
1

𝑎
). Thus, we have 

 

Φ(𝑎) = (𝑚0 − 𝑚1)

[
 
 
 
 

𝑎0 ∫ cos2𝑡

arccos(
1
𝑎0

)

0

dt + ∫ cos

2arccos(
1
𝑎0

)

arccos(
1
𝑎0

)

𝑡dt

]
 
 
 
 

− 𝑎0𝑘 ∫ cos2𝑡dt,

2𝜋

0

 

 

           = (𝑚0 − 𝑚1) [
𝑎0

2
arccos (

1

𝑎0
) +

(1 − 2𝑎0)

2𝑎0
sin (arccos (

1

𝑎0
))] − 𝑎0𝑘𝜋, 

 

= (𝑚0 − 𝑚1) [
𝑎0

2
𝑎𝑟𝑐𝑐𝑜𝑠 (

1

𝑎0
) + (1 − 2𝑎0)

√1 − 𝑎0
2

2𝑎0
2 ] − 𝑎0𝑘𝜋.                                                                                  (25) 

From (Bragin, Vagaitsev, Kuznetsov, & Leonov, 2011), the first step of multistage localization for our Chua’s system is 

 

𝑀(0) = 𝑆𝑌(0) =  𝑆 [
𝑎0 + 𝐎(𝜇)

0
𝐎𝐧−𝟐(𝜇)

], 

 

where 𝐎(𝜇) is the big-O notation of order 𝜇 and 𝐎𝒏−𝟐(𝜇) is the (n-2)-dimensional big-O notation so that all its coordinates are big-

O notations of order 𝜇. We can approximate  𝐎(𝜇) ≈ 0 and 𝐎𝒏−𝟐(𝜇)  ≈ 0. Thus, 

 

[

𝑥(0)

𝑦(0)

𝑧(0)
]   =  𝑆 [

𝑎0

0
0

], 

 

which implies that 
 

𝑥(0) = 𝑎0𝑠11 = 𝑎0, 𝑦(0) = 𝑎0𝑠21 = 𝑎0(𝑚1 + 1 + 𝑘), 𝑧(0) = 𝑎0𝑠31 = 𝑎0 (𝑚1 + 𝑘 −
𝛼0

2

ζ
). 
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7. Numerical Simulation 
 

Consider the classical Chua’s circuit with two nonlinear resistors when the following parameters are given: 𝑅 = 1000 Ω, 
𝑅1 = 250 Ω, 𝑅2 = 250 Ω, 𝑅3 = 500 Ω, 𝑅4 = 750 Ω, 𝑅5 = 180 Ω, 𝑅6 = 400 Ω, 𝐶1 = 10 𝜇𝐹, 𝐶2 = 80 𝜇𝐹, 𝐿 = 70 𝑚𝐻. 

We have the following parameters 

 

ζ = 8.4562, η = 12.0732,          𝑚0 = −0.1768,  𝑚1 = −1.1468. 
 

From (21), we have 𝑘 = 0.2098. To find a suitable indicial point of the system, we have to solve the equation Φ(𝑎) = 0, 
where Φ is given by the equation (21). Indeed, we have  

 

0 = (𝑚0 − 𝑚1) [
𝑎0

2
arccos (

1

𝑎0
) + (1 − 2𝑎0)

√1 − 𝑎0
2

2𝑎0
2 ] − 𝑎0𝑘𝜋                       

  

= (−0.97) [
𝑎0

2
arccos (

1

𝑎0
) + (1 − 2𝑎0)

√1 − 𝑎0
2

2𝑎0
2 ] − 𝑎00.2098𝜋                

 

An approximated solution 𝑎0 via MATLAB is given 

by 𝑎0 = 9.4287. It follows from the previous discussion that 

an initial point is given by  𝑥(0) = 2.0392, 𝑦(0) = 0.5945,
𝑧(0) = −13.4705. A numerical simulation for the equations 

(4)-(7) with the initial point via MATLAB is illustrated in the 

following figures. 

 

 
 

Figure 13. Attractors of the classical Chua’s equations in two dimen-

sions. 

 

 
 

Figure 14. Attractors of the classical Chua’s equations in three dimen-
sions. 

From the classical Chua’s circuit, we formulate the 

following system 

 
𝑑𝑥

𝑑𝜏
= 8(−𝑥 + 𝑦 − 𝑔(𝑥)),      

 

 
𝑑𝑦

𝑑𝜏
= 𝑥 − 𝑦 + 𝑧,                      

 
𝑑𝑧

𝑑𝜏
= −1142.8571𝑦,                        

 

where 𝑔(𝑥) = −0.6667𝑥 − 0.9667(|𝑥 + 1| − |𝑥 − 1|). This 

system has three equilibrium points, namely, 

 

𝐸1 = (0,0,0), 

 

𝐸2 = (
𝑚1−𝑚0

𝑚1+1
, 0,

𝑚0−𝑚1

𝑚1+1
) = (6.6076, 0, −6.6076),  

 

𝐸3 = (
𝑚0−𝑚1

𝑚1+1
, 0,

𝑚1−𝑚0

𝑚1+1
) = (−6.6076, 0, 6.6076). 

 

The eigenvalues of the system corresponding to each 

equilibrium point are given by  

 

𝐸1: λ1 = −7.9587,  λ2 = −0.0038 + 3.2494𝑖,  
                 

 
λ3

= −0.0038 − 3.2494𝑖,  

 

𝐸2: λ1 = 2.2193,  λ2 = −0.9916 + 2.4068𝑖,  
                 λ3 = −0.9916 − 2.4068𝑖, 
 

𝐸3: λ1 = 2.2193,  λ2 = −0.9916 + 2.4068𝑖,  
                 λ3 = −0.9916 − 2.4068𝑖. 
 

Thus, the equilibrium point 𝐸1 is a stable focus node, 

that is, the trajectory of (𝑥(𝑡), 𝑦(𝑡)) converges spiral form and 

𝑧(𝑡) converges to the equilibrium point for any initial value 
(𝑥(0), 𝑦(0), 𝑧(0)). On the other hands, the equilibrium points 

𝐸2 and 𝐸3 are saddle focus nodes, that is, the trajectory of 

(𝑥(𝑡), 𝑦(𝑡)) will diverge spiral form but 𝑧(𝑡) converges to the 

equilibrium point for any initial value (𝑥(0), 𝑦(0), 𝑧(0)).   
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From Figures 13 and 14, we see that a chaotic 

behaviour occurs in our Chua’s system has. The self-excited 

attractor of our system is appeared in the green lines, while the 

hidden attractor of our system is shown by the red lines in 

Figures 13 and 14. 

 

8. Conclusions 
 

We apply fundamental laws in electrical engineering 

to formulate a mathematical model for the classical Chua’s 

circuit with two nonlinear resistors (Figure 3) in terms of the 

system of ordinary nonlinear differential equations (4)-(6).  

Each nonlinear resistor in the circuit plays a role like an op-

amp. The existence of two nonlinear resistors implies that the 

system has three equilibrium points. The behavior of the 

trajectory in a neighborhood of each equilibrium point depends 

on the eigenvalues of the system. To obtain the eigenvalues for 

each equilibrium point, we must solve a cubic polynomial 

equation. It turns out that all possible solutions of the cubic 

equation lead to six types of equilibrium points, namely, stable 

node, unstable node, saddle node, stable focus node, unstable 

focus node, saddle focus node. The chaotic behaviour of the 

circuit occurs when the equilibrium point is a stable focus node 

or a saddle focus node. The hidden attractor of our Chua’s 

system is localized through a suitable initial point.  
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