

Songklanakarin J. Sci. Technol. 42 (4), 830-835, Jul. - Aug. 2020



**Original Article** 

# Separation axioms on soft bitopological spaces

Piyali Debnath<sup>1</sup> and Binod Chandra Tripathy<sup>2\*</sup>

<sup>1</sup> Department of Mathematics, National Institute of Technology, Agartala, Tripura, 799046 India

<sup>2</sup> Department of Mathematics, Tripura University, Agartala, Tripura, 799022 India

Received: 29 October 2018; Revised: 6 March 2019; Accepted: 2 May 2019

## Abstract

We introduce the notions of soft relative bitopology. We investigated some properties on the separation axioms in soft bitopological spaces, i.e. soft  $T_i$ -spaces for i=1, 2, 3, and 4. Also we have established results on soft regular spaces and soft normal spaces.

Keywords: soft set, soft topology, soft bitopology, soft separation axioms

## 1. Introduction

Mathematical problems become more challenging if uncertainty is involved. In order to find solutions for such types of problems, at different stages and under different situations, many new notions are introduced. One such notion was the introduction of "soft set" by the Russian mathematician Molodtsov (1999). He was trying to model problems on uncertainty in computer science, engineering physics, economics, social sciences, and medical sciences. The significance of the introduced notion was realized by many in the last two decades who have successfully applied "soft set" in different branches of science, where mathematics plays a role. Many researchers have contributed towards the algebraic structure of soft set theory. Maji, Biswas, and Roy

\*Corresponding author Email address: binodtripathy@tripurauniv.in; tripathybc@yahoo.com (2003) studied the theory of soft sets. They discussed the basic soft set definition with examples. Shabir and Naz (2011) defined the theory of soft topological space over an initial universe with a fixed set of parameters. They defined soft topology on the collection  $\tau$  of soft sets over X. Soft bitopological space has been studied by many mathematicians including Cagman, Karataş, and Enginoglu (2011), Chen (2013), Hazra, Majumdar, and Samanta (2012), Hida (2014), Hussain (2015), Hussain and Ahmad (2011), Payghan, Samadi, and Tayebi (2014), Renukadevi and Shanthi (2015), Roy and Samanta (2014), Senel and Cagman (2014), Sezgin and Atagun (2011), Tripathy and Acharjee (2017), and Varol, Shostak, and Aygun (2012).

Kelly (1963) first initiated the concept of bitopological space. He defined a bitopological space  $(X, \tau_1, \tau_2)$  to be a set X with two topologies  $\tau_1$ , and  $\tau_2$  on X and initiated the systematic study of bitopological spaces. Bitopological spaces have been studied not exclusively by Acharjee and Tripathy (2018), Tripathy and Acharjee (2014, 2017), Tripathy and Debnath (2013), Tripathy and Sarma (2011), and Tripathy and Sarma (2012).

In this paper, we continue investigating the properties of soft bitopological space, soft open set, and soft closed set. We also define and discuss the properties of separation axiom, soft  $T_i$ -spaces for i=1, 2, 3, and 4, soft regular spaces, and soft normal spaces and established their several properties.

#### 2. Preliminaries

Throughout this paper the associated symbol "~" represents that the set or operator under consideration is with respect to soft. In this section, we discuss some basic definitions and notions those are defined by various authors. We procure the following existing definitions and notations that will be used in this article.

**Definition 2.1** A soft set  $F_A$  on the universe X is defined by the set of ordered pairs  $F_A = \{(x, f_A(x)): x \in E\}$ , where  $f_A: E \to P(X)$  such that  $f_A(x) = \emptyset$ , if  $x \notin A$ , here  $f_A$  is called approximate function of the soft set  $F_A$ . The value of  $f_A(x)$  may be arbitrary, some of them may be empty, and others may be non-empty. The set of all soft sets over X is denoted by S(X).

**Definition 2.2** Let  $F_A \in S(X)$ . If  $f_A(x) = \emptyset$  for all  $x \in E$ , then  $F_A$  is called an empty set, denoted by  $F_{\phi}$ . That is  $f_A(x) = \emptyset$  means there is no element in X related to the parameter  $x \in E$ .

**Definition 2.3** Let  $F_A \in S(X)$ . If  $f_A(x) = X$  for all  $x \in A$ , then  $F_A$  is called an A- universal soft set, denoted by  $F_{\tilde{A}}$ . When A = E, then the E-universal soft set is called a universal soft set, denoted by  $\tilde{X}$ . **Definition 2.4** Let  $F_A, F_B \in S(X)$ . Then  $F_A$  is a soft subset of  $F_B$  denoted by  $F_A \subseteq F_B$  if  $f_A(x) \subseteq f_B(x)$  for all  $x \in E$ . Let  $F_A$  and  $F_B$  be soft equal denoted by  $F_A = F_B$  if  $f_A(x) = f_B(x)$  for all  $x \in E$ .

**Definition 2.5** Let  $F_A, F_B \in S(X)$ . Then soft union of  $F_A$  and  $F_B$ , denoted by  $\tilde{F_A \cup F_B}$ , is defined by  $F_{A \cup B} = F_C$ , where  $C = A \cup B$  and for all  $e \in C$ .

$$H(e) = \begin{cases} F(e) & \text{if } e \in A \setminus B \\ G(e) & \text{if } e \in B \setminus A \\ F(e) \cup G(e) & \text{if } e \in A \cap B \end{cases}$$

**Definition 2.6** Let  $F_A \in S(X)$ . The soft power set of  $F_A$  is defined by

$$P(F_A) = \{F_A \subseteq F_A : i \in I\}$$

and its cardinality is defined by  $|\tilde{P}(F_A)| = 2^{\sum_{e \in E} |f_A(x)|}$ , where

 $|f_A(x)|$  is cardinality of A(x).

**Example 2.7** Let  $X = \{x_1, x_2\}$ ,  $E = \{e_1, e_2\}$  and  $\tilde{X} = \{(e_1, \{x_1, x_2\}), (e_2, \{x_1, x_2\})\}$ . Then the soft subsets over  $\tilde{X}$  are the following

$$\begin{split} F_{E_1} &= \{(e_1,\{x_1\})\}, \qquad F_{E_9} = \{(e_1,\{x_1\}), (e_2,\{x_1,x_2\})\} \\ F_{E_2} &= \{(e_1,\{x_2\})\}, \qquad F_{E_{10}} = \{(e_1,\{x_2\}), (e_2,\{x_1\})\}, \\ F_{E_3} &= \{(e_1,\{x_1,x_2\})\}, \qquad F_{E_{11}} = \{(e_1,\{x_2\}), (e_2,\{x_2\})\}, \\ F_{E_4} &= \{(e_2,\{x_1\})\}, \qquad F_{E_{12}} = \{(e_1,\{x_2\}), (e_2,\{x_1,x_2\})\}, \\ F_{E_5} &= \{(e_2,\{x_2\})\}, \qquad F_{E_{13}} = \{(e_1,\{x_1,x_2\}), (e_2,\{x_1\})\}, \\ F_{E_6} &= \{(e_2,\{x_1,x_2\})\}, \qquad F_{E_{14}} = \{(e_1,\{x_1,x_2\}), (e_2,\{x_2\})\}, \\ F_{E_7} &= \{(e_1,\{x_1\}), (e_2,\{x_1\})\}, \qquad F_{E_{15}} = \tilde{X}, \\ F_{E_8} &= \{(e_1,\{x_1\}), (e_2,\{x_2\})\}, \qquad F_{E_{11}} = F_{\varnothing} \end{split}$$
Then we have  $\left|\tilde{P}(F_E)\right| = 2^4 = 16$ .

831

**Definition 2.8** Let  $\tau$  be the collection of soft sets over X, then  $\tilde{\tau}$  is said to be a soft topology on X if it satisfies the following axioms.

1)  $F_{\varnothing}, \tilde{X}$  belong to  $\tau$ .

2) the union of any member of soft sets in τ belongs to τ.
 3) the intersection of any two soft sets in τ belongs to τ. The triplet (X, τ, E) is called soft topological space over X. The members of τ are said to be soft open set.

**Example 2.9** Let us consider the soft subsets of  $\tilde{X}$  given in Example 2.7. Then  $\tilde{\tau}_1 = \{\tilde{X}, F_{\phi}, F_{E_4}, F_{E_{10}}\},$  $\tilde{\tau}_2 = \{\tilde{X}, F_{\phi}, F_{E_1}, F_{E_7}, F_{E_{13}}\}, \quad \tilde{\tau}_3 = \{\tilde{P}(F_E)\}$  are soft topologies on  $\tilde{X}$ .

**Definition 2.10** Let  $\tilde{X}$  be a nonempty soft set on the universe X, and  $\tilde{\tau_1}$  and  $\tilde{\tau_2}$  are two different soft topologies on  $\tilde{X}$ . Then  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is called a soft bitopological space.

**Definition 2.11** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space and  $F_A \subseteq \tilde{X}$ . Then  $F_A$  is called  $\tilde{\tau}_{1,2}$  - soft open if  $F_A = F_B \cup F_C$ , where  $F_B \in \tilde{\tau_1}$  and  $F_C \in \tilde{\tau_2}$ . The complement of  $\tilde{\tau}_{1,2}$  - soft open set is called  $\tilde{\tau}_{1,2}$  - soft closed set.

**Example 2.12** Let us consider the two classes of soft subsets  $\tilde{X}$  of Example 2.7  $\tilde{\tau}_1 = \{\tilde{X}, F_{\oslash}, F_{E_4}, F_{E_{10}}\},$  $\tilde{\tau}_2 = \{\tilde{X}, F_{\oslash}, F_{E_1}, F_{E_7}, F_{E_{13}}\}$ . Then  $\tilde{\tau}_{1,2}$  - soft open set are  $\{\tilde{X}, F_{\oslash}, F_{E_1}, F_{E_4}, F_{E_7}, F_{E_{10}}, F_{E_{13}}\}$  and  $\tilde{\tau}_{1,2}$  - soft closed sets are

$$\{X, F_{\varnothing}, F_{E_{12}}, F_{E_{14}}, F_{E_{11}}, F_{E_8}, F_{E_5}\}$$

# 3. Subspace and Soft Separation Axioms on Bitopological Spaces.

**Definition 3.1** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space

and  $ilde{Y}$  be a non-empty soft subset of X , then

$$\tau_{1Y} = \{ \tilde{Y} \cap F_A : F_A \in \tilde{\tau_1} \} \text{ and } \tau_{2Y} = \{ \tilde{Y} \cap F_B : F_B \in \tilde{\tau_2} \}$$

are said to be the soft relative bitopology on Y and  $(\tilde{Y}, \tilde{\tau_{1Y}}, \tilde{\tau_{2Y}})$  is called a soft subspace of  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$ . We can easily verify that  $\tau_{1Y}, \tau_{2Y}$  are in fact, a soft bitopology on Y.

**Definition 3.2** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space and  $\tilde{Y}$  be a non-empty soft subset of  $\tilde{X}$ . Then  $(\tilde{Y}, \tilde{\tau_{1Y}}, \tilde{\tau_{2Y}})$  is called a soft subspace of  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$ . Further  $F_A$  is called  $\tilde{\tau}_{Y1,2}$  - soft open set, if  $F_A = F_B \cup F_C$ , where  $F_B \in \tilde{\tau}_{Y1}$  and  $F_C \in \tilde{\tau}_{Y2}$ .

**Definition 3.3** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space and  $x, y \in X$  such that  $x \neq y$ . If there exist two  $\tilde{\tau_{1,2}}$  - soft

open sets  $F_A$  and  $F_B$  such that

$$x \in F_A$$
 and  $y \notin F_A$  or  
 $y \in F_B$  and  $x \notin F_B$ .  
Then  $\left(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2}\right)$  is called a  $\tilde{\tau_{1,2}}$  soft  $T_0$ -space.

**Definition 3.4** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space and  $x, y \in X$  such that  $x \neq y$ . If there exist two  $\tilde{\tau_{1,2}}$  - soft open sets  $F_A$  and  $F_B$  such that  $x \in F_A$  and  $y \notin F_A$  with  $y \in F_B$  and  $x \notin F_B$ , then  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is called a  $\tilde{\tau_{1,2}}$  soft  $T_1$ space.

**Proposition 3.5** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space and  $\tilde{Y}$  be a non-empty soft subset of  $\tilde{X}$ . If  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is a  $\tilde{\tau_{1,2}}$  soft  $T_0$  - space, then  $(\tilde{Y}, \tilde{\tau_{1Y}}, \tilde{\tau_{2Y}})$  is a  $\tilde{\tau_{1,2}}$  soft  $T_0$  - space.

**Proof.** Suppose 
$$\left(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2}\right)$$
 is a  $\tilde{\tau_{1,2}}$  soft  $T_0$  - space.

Let  $x, y \in Y$  such that  $x \neq y$ . Then there exists two  $\tau_{1,2}$  soft open sets  $F_A$  and  $F_B$  such that  $x \in F_A$  and  $y \notin F_A$  or  $y \in F_B$ and  $x \notin F_B$ .

Now, if  $x \in Y$  implies  $x \in \tilde{Y}$ . So  $x \in \tilde{Y}$  and  $x \in F_A$ . Hence  $x \in \tilde{Y} \cap F_A$ , where  $F_A$  is  $\tilde{\tau}_{1,2}$ -soft open set. Consider  $y \notin F_A$ this means that  $y \notin F(\alpha)$  for some  $\alpha \in E$ . Then  $y \notin Y \cap F(\alpha) = Y(\alpha) \cap F(\alpha)$ . Therefore,  $y \notin \tilde{Y} \cap F_A$ . Similarly it can be established, if  $y \in F_B$  and  $x \notin F_B$  then

 $y \in \tilde{Y} \cap F_B$  and  $x \notin \tilde{Y} \cap F_B$ .

Thus  $(\tilde{Y}, \tilde{\tau_{1Y}}, \tilde{\tau_{2Y}})$  is a  $\tilde{\tau_{1,2}}$  -soft  $T_0$  - space.

In view of the proof of proposition 3.5, we formulate the following statement without proof.

**Proposition 3.6** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space and  $\tilde{Y}$  be a non empty soft subset of  $\tilde{X}$ . If  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is a  $\tilde{\tau}_{1,2}$  soft  $T_1$ - space then  $(\tilde{Y}, \tilde{\tau}_{1Y}, \tilde{\tau}_{2Y})$  is a  $\tilde{\tau}_{1,2}$  soft  $T_1$ - space.

**Definition 3.7** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space and  $x, y \in X$  such that  $x \neq y$ . If there exist two  $\tilde{\tau_{1,2}}$  - soft open sets  $F_A$  and  $F_B$  such that  $x \in F_A$  and  $y \in F_B$  and  $F_A \cap F_B = \emptyset$ , then  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is called a  $\tilde{\tau_{1,2}}$  soft  $T_2$  - space.

Remark 3.8 It can be easily verified that,

Every τ<sub>1,2</sub> soft T<sub>1</sub> - space is a τ<sub>1,2</sub> soft T<sub>0</sub> - space.
 Every τ<sub>1,2</sub> soft T<sub>2</sub> - space is a τ<sub>1,2</sub> soft T<sub>1</sub> - space.

**Proof.** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space and  $x, y \in X$  such that  $x \neq y$ 

1) If  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is a  $\tilde{\tau_{1,2}}$  soft  $T_1$ - space, then there exists two  $\tilde{\tau}_{1,2}$  -soft open sets  $F_A$  and  $F_B$  such that  $x \in F_A$  and  $y \notin F_A$  and  $y \in F_B$  and  $x \notin F_B$ . Obviously then we have  $x \in F_A$  and  $y \notin F_A$  or  $y \in F_B$  and  $x \notin F_B$ . Thus  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is a  $\tilde{\tau}_{1,2}$  soft  $T_0$ - space.

2) If  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is a  $\tilde{\tau_{1,2}}$  soft  $T_2$  - space, then there exists two  $\tilde{\tau}_{1,2}$  - soft open sets  $F_A$  and  $F_B$  such that,  $x \in F_A$ , two  $\tilde{\tau}_{1,2}$ - soft open sets  $F_A$  and  $F_B$  such that,  $x \in F_A$ ,  $y \in F_B$  and  $F_A \cap F_B = \emptyset$ .

Since,  $\tilde{F_A \cap F_B} = \emptyset$ , so  $x \notin F_B$  and  $y \notin F_A$ . Thus

 $\left(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2}\right)$  is a  $\tilde{\tau_{1,2}}$  soft  $T_1$ - space.

**Proposition 3.9** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space  $G_A$  and  $G_B$  be two  $\tilde{\tau}_{1,2}$ -soft closed sets such that

and  $\tilde{Y}$  be a non-empty soft subset of  $\tilde{X}$ . If  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is a  $\tilde{\tau}_{1,2}$  soft  $T_2$ -space, then  $(\tilde{Y}, \tilde{\tau_{1Y}}, \tilde{\tau_{2Y}})$  is a  $\tilde{\tau}_{1,2}$  soft  $T_2$ -space.

**Proof.**  $x, y \in Y$  such that  $x \neq y$ . Then there exists two  $\tau_{1,2}$  soft open sets  $F_A$  and  $F_B$  such that  $x \in F_A$ ,  $y \in F_B$ , and  $F_A \cap F_B = \emptyset$ . So, for each  $\alpha \in E, x \in F_A(\alpha), y \in F_B(\alpha)$ , and  $F_A(\alpha) \cap F_B(\alpha) = \emptyset$ . This implies  $x \in Y \cap F_A(\alpha), y \in Y \cap F_B(\alpha)$ , and  $F_A(\alpha) \cap F_B(\alpha) \neq \emptyset$ . Hence  $x \in \tilde{Y} \cap F_A$ ,  $y \in \tilde{Y} \cap F_B$ , and  $(\tilde{Y} \cap F_A) \cap (\tilde{Y} \cap F_B) \neq \emptyset$ , where  $(\tilde{Y} \cap F_A)$  and  $(\tilde{Y} \cap F_B)$  are  $\tau_{Y1,2}$  - soft open sets. Thus  $(\tilde{Y}, \tau_{1Y}, \tau_{2Y})$  is a  $\tau_{1,2}$  soft  $T_2$  - space.

**Definition 3.10** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space,  $G_A$  be a  $\tilde{\tau}_{1,2}$  - soft closed set and  $x \in X$  such that  $x \in G_A$ . If there exist two  $\tilde{\tau}_{1,2}$  - soft open sets  $F_B$  and  $F_C$ such that  $x \in F_B$ ,  $G_A \subset F_C$ , and  $F_B \cap F_C = \emptyset$ , then  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is called a  $\tilde{\tau}_{1,2}$  soft regular space.

**Definition 3.11** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space. Then  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is said to be a  $\tilde{\tau}_{1,2}$  soft  $T_3$ - space, if it is  $\tilde{\tau}_{1,2}$  soft regular space and  $\tilde{\tau}_{1,2}$  soft  $T_1$ - space.

**Definition 3.12** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space,

 $G_A$  and  $G_B$  be two  $\tau_{1,2}$ -soft closed sets such that  $G_A \cap G_B = \emptyset$ . If there exist two  $\tau_{1,2}$ -soft open sets  $F_C$  and  $F_D$  such that  $G_A \subset F_C$ ,  $G_B \subset F_D$  and  $F_C \cap F_D = \emptyset$ . then  $\left(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2}\right)$  is called a  $\tilde{\tau_{1,2}}$  soft normal space.

**Definition 3.13** Let  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  be a soft bitopological space. Then  $(\tilde{X}, \tilde{\tau_1}, \tilde{\tau_2})$  is said to be a  $\tilde{\tau_{1,2}}$  soft  $T_4$ -space, if it is  $\tilde{\tau_{1,2}}$  soft normal space and  $\tilde{\tau_{1,2}}$  soft  $T_7$ -space.

Remark 3.14 It can be easily verified that

every τ<sub>1,2</sub> soft T<sub>3</sub>-space need not be a τ<sub>1,2</sub> soft T<sub>2</sub>-space.
 every τ<sub>1,2</sub> soft T<sub>4</sub>-space need not be a τ<sub>1,2</sub> soft T<sub>3</sub>-space.

# References

- Acharjee, S., & Tripathy, B.C. (2018). *p-j*-generator and *pI-j*-generator in bitopology. *Boletim da Sociedade Paranaense de Matematica*, 36(2), 17-31.
- Cagman, N., Karataş, S., & Enginoglu, S. (2011). Soft topology. Computer and Mathematics with Applications, 62, 351-358.
- Chen, B. (2013). Soft semi open sets and related properties in soft topological spaces. *Applied Mathematics and Information Science*, 7(1), 287-294.
- Hazra, H., Majumdar, P., & Samanta, S.K. (2012). Soft topology. *Fuzzy Information and Engineering*, 1, 105-115.
- Hida, T. (2014). A comparison of two formulations of soft compactness. Annalas of Fuzzy Mathematics and Informatics, 8(4), 511-525.
- Hussain, S. (2015). A note on soft connectedness. Journal of the Egyptian Mathematical Society, 23(1), 6-11.

- Hussain, S., & Ahmad, B. (2011). Some properties of soft topological spaces. *Computer and Mathematics with Applications*, 62, 4058-4067.
- Kelly, J. C. (1963). Bitopological spaces. Proceedings of the London Mathematical Society, 13(3), 71-83.
- Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computer and Mathematics with Applications, 45, 555-562.
- Min, W. K. (2011). A note on soft topological spaces. Computer and Mathematics with Applications, 62, 3524-3528.
- Molodtsov, D. (1999). Soft set theory–first results. *Computer* and Mathematics with Applications, 37, 19-31.
- Payghan, E., Samadi, B., & Tayebi, A. (2014). Some results related to soft topological spaces. *Facta Univer*sitatis Series Mathematics Informatics, 29(4), 325-336.
- Renukadevi, V., & Shanthi, S. D. (2015). Note on soft topological spaces. Journal of Advanced Research in Pure Mathematics, 7(1), 1-15.
- Roy, S., & Samanta, T. K. (2014). A note on a soft topological space. *Punjab University Journal of Mathematics*, 46(1), 19-24.
- Shabir, M., & Naz, M. (2011). On soft topological spaces. Computer and Mathematics with Applications, 61, 1768-1799.
- Senel, G., & Cagman, N. (2014). Soft closed sets on soft bitopological spaces. Journal of New Results in Sciences, 5, 57-66.
- Sezgin, A., & Atagun, A. O. (2011). On operations of soft sets. Computer and Mathematics with Applications, 61, 1457-1467.

- Tripathy, B. C., & Acharjee, S. (2014). On (γ, δ)-Bitopological semi-closed set via topological ideal. *Proyecciones Journal of Mathematics*, 33(3), 245-257.
- Tripathy, B. C., & Acharjee, S. (2017). Some results on soft bitopology. Boletim da Sociedade Paranaense de Matematica, 35(1), 269-279.
- Tripathy, B. C., & Debnath, S. (2013). γ-open sets and γcontinuous mappings in fuzzy bitopological spaces. *Journal of Intelligent and Fuzzy Systems*, 24(3), 631-635.
- Tripathy, B. C., & Sarma, D. J. (2011). On *b*-locally open sets in bitopological spaces. *Kyungpook Mathematical Journal*, 51(4), 429-433.
- Tripathy, B. C., & Sarma, D. J. (2012). On pairwise *b*-locally open and pairwise *b*-locally closed functions in bitopological spaces. *Tamkang Journal of Mathematics*, 43(4), 533-539.
- Varol, B. P., Shostak, A., & Aygun, H. (2012). A new approach to soft topology. *Hecettepe Journal of Mathematics*, 41(5), 731-741.
- Yuksel, S., Dizman, T., Yildizam, G., & Sert, U. (2013). Application of soft sets to diagnose the prostate cancer risk. *Journal of Inequality and Applications*, 229, doi:10.1186/1029-242X-2013-229
- Zorlutuna, I., Akdag, M., Min, W. K., & Atmaca, S. (2012). Remarks on soft topological spaces. Annalas of Fuzzy Mathematics and Informatics, 3(2), 171-185.