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Abstract 
 

In this paper, a new probability model is produced, which is actually a modification of the Lomax distribution, called 

Flexible Lomax (FL). The Flexible Lomax performs better than Lomax and its other invariants. The statistical properties of the 

Flexible Lomax distribution including quantile function, maximum likelihood estimation, order statistics, and rth moments are 

derived. To illustrate the efficiency of the proposed distribution, we use two real-life data sets and the results are then compared 

by means of AIC, CAIC, BIC, and HQIC. It is shown that the proposed distribution fits these data better than Lomax and its 

different variants. 
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1. Introduction 
 

Statistician often need various lifetime probability 

distributions like Lomax, Weibull-Lomax (Tahir, Cordeiro, 

Mansoor, Zubair, & Tahir, 2015), and Gamma-Lomax 

(Cordeiro, Ortega, & Popovic, 2015). These distributions have 

desirable properties and physical interpretations. This paper 

present a new modification of the Lomax distribution, called 

Flexible Lomax (FL).  

Prior literature provides different modifications of 

the Lomax distribution. Ghitany, Awadhi, and Alkhalfan 

(2007) presented Marshall–Olkin extended Lomax distribution 

and its application to censored data. The probability density 

function of  MOEL   is 
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Lemonte and Cordeiro (2013) introduced an extended Lomax 

distribution with parameters ,  ,  ,  )( ,  a c     and the probabi-

lity density function  

 
 

 

11

1 1 1
1, 1

a c
c x

f x
x xB ac


    

 

 
 
 

           
                  

 


   
  

                                                                                            (1.1) 

 

For other modifications of the Lomax distribution, 

we refer to Afify, Nofal, Yousof, El Gebaly, and (2015), 

Ashour and Eltehiwy (2013, 1(6), 7(7)), Al-Zahrani and Sagor 

(2014), El-Bassiouny, Abdo and Shahen (2015) and Shams 

(2013). Dias, Alizadeh and Cordeiro (2016) introduced       

Beta Nadarajah-Haghighi distribution. Domma and Condino 
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(2013) presented the beta-Dagum distribution. Korkmaz and 

Genç (2017) introduced a new generalized two-sided class of 

distributions with an emphasis on a two-sided generalized 

normal distribution. For the different families of distributions, 

we refer to Aldeni and Famoye (2017), Cordeiro (2017), 

Alzaatreh, Famoye and Ghosh (2016), Alzaatreh and Famoye 

(2014), and Nasir, Aljarrah, Jamal, and Tahir (2017). Otunuga 

(2017) has worked on the Pareto-g extended Weibull 

distribution. For further details on relevant distributions, see 

Eddy (2007), El-Gohary, Alshamrani and Otaibi (2013), 

Famoye, Alzaatreh (2013), Aarset (1987), and Boyd (1988). 

 

2. Flexible Lomax (FL) Distribution 

 

The main objective of the present paper is to 

introduce a new modification of the Lomax distribution with 

increased number of parameters. The proposed distribution 

(FL) has three parameters, and its cumulative distribution 

function takes the form  
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Other statistical characteristics implied by (2.1) are as follows. 
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                               (2.2) 

The hazard rate function of the FL distribution is  
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            (2.3) 

The survival function of the FL distribution is  
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                                       (2.4)                                     

Figure 1 shows the graphs of the probability density function 

and the cumulative distribution function, for various para-

meter values. 

 

 

Figure 1. The Pdf and Cdf of Flexible Lomax. 

 

3. Behavior of the Pdf and Hazard Rate Function 

 

Theorem 3.1. The Pdf of Flexible Lomax distribution  f x  

is  

a. increasing when , 0, 1a b c   

b. decreasing when 0, 0 1, 0a c b     

 

Proof.  The first derivative from Equation (2) is  
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Since 0( )f x  for 0 1c   the ( )f x  is decreasing. If 1c  , then ( ) 0f x  gives the mode  
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For parameter values , 0, 1a b c  ,  
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satisfies ( ) 0f x  , and hence ( )f x  is convex. Figures 1 shows plots for various parameter choices.  

 

Theorem 3.2. The hazard rate function of Flexible Lomax  , ,a b c distribution  h x is  

a. increasing when , 0, 1a b c   

b. decreasing when 0, 0 1, 0a c b     

 

Proof.  The derivative of the hazard rate function in Equation (3) is given by   
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  0h x  for 0 1c  , so the hazard rate function is decreasing. If 1c  , then   0h x  specifies the global maximum of 

 h x  at  
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Now, the second derivative of the hazard rate function is  
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For parameter values , 0, 1a b c  ,   0mxh  and hence, the hazard rate function has the ability to model shapes both 

monotonically and non-monotonically in bathtub shape. Figure 2 shows plots of the hazard function of the Flexible Lomax 

distribution for various choices of the parameters. 
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Figure 2. Hazard rate function of the Flexible Lomax 

 

4. Quantile Function and Median  

 

 Among the related statistical functions, the quantile 

function is often useful. The quantile function 
( )( )FLQ x  of 

the  , ,a b cFL  is the real solution to the following equation 
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where ~u Uniform (0,1). 

 

Solving (4.1) for x , the result is 
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For the median, we have to put 
1

2
u  in equation (4.2) to 
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5. Rth Moments 

 

Theorem 5.1. If X  has a Flexible Lomax distribution with 

parameters , ,a b c  then the rth moments (about the origin) 

of X , say ur  do not exist.  
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Now, by using the binomial expansion we have  
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So, equation (5.1.2) takes the form  
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In (5.1.3) the integral is undefined and thus the statement 

proved. However, one can find the moments if k a , and 

they take the form 
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6. Order Statistics 

 

Let 
1 2 3, , ... nX X X X  be ordered random variables, 

then the pdf of the thi order statistic is, 
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The 1st and nth order probability density functions of FL  can 

be obtained by substituting (2.1) and (2.2) in (6.1) is given by, 
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7. Parameter Estimation 

 

In this section, the usual maximum likelihood 

approach is used to estimate the unknown parameters in 

 , ,FL a b c  based on complete information. Let us assume 

that we have a sample 
1 2 3, , ... nX X X X  from  , ,FL a b c . 

The likelihood function is given by 
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Substituting (2.2) in (7.1), we get  
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Then the log-likelihood function is  
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Now we have to compute the first partial derivatives of (7.3) 

and on setting them equal to zero we have 
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The above equations from (7.4) to (7.6) are not in closed form, 

instead numerical methods are needed to get the MLE. 

 

8. Asymptotic Confidence Bounds 

 

Since, the MLE of the unknown parameters , ,a b c  

are not in closed form, it is not possible to derive the exact 

distribution of the MLE. We have derived asymptotic 

confidence bounds for the unknown parameters of 

 , ,FL a b c  based on the asymptotic distribution of MLE. For 

the information matrix, we have to find the second partial 

derivatives of the equations from (7.4) to (7.6), and these are  
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The information matrix is  
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In order to obtain an estimate of V, we have to replace the 

parameters by the corresponding MLE’s, as here 
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By using the above variance-covariance matrix, one can 

derive the (1 - β) 100% confidence intervals for the 

parameters a, b, c in the following forms 
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9. Shannon Entropy 

 
Theorem 9.1. If a random variable X  has  , ,FL a b c  then 

the Shannon entropy  S x
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                        log 1 log 1 og
0 0

1
0

f x dx c f x x dx a
c

ac x
c b

f x l dx
b

 
 


   
         

  
                                               

                            log 1 log 1 og
0 0

1
0

f x dx c f x x dx a
c

ac x
c b

f x l dx
b

 
 


   
         

  
                  (9.1.1) 

On solving Equation (9.1.1) the result is 

                                      

    1 og 1 1 og
ac

S x l c c a l bcH b

  
  
  

     
 (9.1.2) 

 

10. Simulation 
 

Simulation is a statistical tool used to check the 

effectiveness of a model with random data. We choose two 

sets of parameter values with different sample sizes. Equation 

(4.2) is used in the simulation study to generate data from the 

FL  distribution. The simulation experiment is repeated 100 

times each, with sample sizes n = 30, 50 and 70, and with 

parameters 
 

     0.1171833,1  .0205799,  12.1908030 0.2171833,  1.0205799,  13.1908030, , ,a b c  ,   

                    0.1171833,1  .0205799,  12.1908030 0.2171833,  1.0205799,  13.1908030, , ,a b c  ,  

 

to sample the distribution of the proposed model. The average 

bias and the mean square error (MSE) are estimated. The 

values in Table 1 clearly show that as the sample size 

increases, both the bias and the MSE decrease. So, we 

conclude that the sampling distribution will be approximately 

equal to the true distribution as we increase the sample size. 

 

11. Applications 

 

In this section, we provide an application of the FL 

distribution to two real data sets to illustrate its usefulness and 

to compare its goodness-of-fit with other modified Lomax 

distributions: that is with the Exponential Lomax (EL), 

Weibull Lomax (WL), POLO distribution, and Lomax distri-

butions (L) using Kolmogorov–Smirnov (K–S) statistic, 
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Table 1. Bias and MSE for the  , ,FL a b c estimators. 

 

, ,a b c  n  MSE a   MSE b   MSE c   Bias a   Bias b   Bias c  

        

0.1171833,  
1.0205799, 

12.1908030 

30 0.001083286 0.002753764 16.33397 0.006100566 0.0163594 2.865952 
50 0.0007489411 0.002113883 10.90313 0.004527526 0.0187895 2.540668 

70 0.0004189042 0.000968446 9.954652 0.009813031 0.009749671 2.517321 

0.2171833, 
1.0205799, 

13.1908030 

30 0.002761192 0.001604763 20.01106 0.002984398 0.0210973 3.502663 
50 0.002249977 0.001255249 18.95682 0.01282321 0.0227793 3.521208 

70 0.0009731424 0.000827839 12.50464 0.008513989 0.0198048 2.909101 
        

 

Akaike information criterion (AIC), Consistent Akaike 

Information Criterion (CAIC), Bayesian information criterion 

(BIC), and Hannan Quinn information criterion (HQIC). The 

mathematical forms of these criteria are 

ˆ2 ( ; ) 2iAIC L y p                                   (11.1) 

2 ( 1)

1

p p
AICc AIC

n p


 

 
                              (11.2) 

 2 log( ) 1CAIC L P n                             (11.3) 

  ˆlog 2 ( ; )iBIC P n L y                           (11.4) 

 2 2 log log( )maxH P nLQIC                   (11.5) 

where L is the maximized likelihood function and 
iy  is the 

given random sample, ̂  is the maximum likelihood esti-

mator, and p is the number of parameters in the model. 

 

Data set 1: Losses due to wind catastrophes. 

The first data set represents the losses due to wind 

catastrophes recorded in 1977, taken from Boyd (1988). The 

data set consists of 40 exemplars that were recorded to the 

nearest $1,000,000 and include only losses of $ 2,000,000 or 

more. The following data set provides the losses (in millions 

of dollars): 2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6, 

8,8,9,15,17,22,23,24,25,27,32,43.  

The maximum likelihood estimates are given in 

Table 2, and Table 3 presents the values of (AIC), (CAIC), 

(BIC), and (HQIC).  

 

Data set 2: Breaking stresses of carbon fibers.  

The second real data set represents the breaking 

stresses of carbon fibers of 50 mm length presented by 

Nichols and Padgett (2006) . The data are as follows. 3.70, 

2.74,2.73,2.50,3.60,3.11,3.27,2.87,1.47,3.11,4.42,2.41,3.19,3.

22,1.69,3.28,3.09,1.87,3.15,4.90,3.75,2.43,2.95,2.97,3.39,2.96

,2.53,2.67,2.93,3.22,3.39,2.81,4.20,3.33,2.55,3.31,3.31,2.85,2.

56,3.56,3.15,2.35,2.55,2.59,2.38,2.81,2.77,2.17,2.83,1.92,1.41

,3.68,2.97,1.36,0.98,2.76,4.91,3.68,1.84,1.59,3.19,1.57,0.81,5.

56,1.73,1.59,2.00,1.22,1.12,1.71,2.17,1.17,5.08,2.48,1.18,3.51

,2.17,1.69,1.25,4.38,1.84,0.39,3.68,2.48,0.85,1.61,2.79,4.70,2.

03,1.80,1.57,1.08,2.03,1.61,2.12,1.89,2.88,2.82,2.05,3.65. 

The maximum likelihood estimates for the data on 

breaking stresses of the carbon fibers are given in Table 4, and 

Table 5 presents the values of (AIC), (CAIC), (BIC), and 

(HQIC). 

Table 2 and Table 4 present the maximum like-

lihood estimates of the Flexible Lomax distribution. Table 3 

and Table 5 represents the AIC, CAIC, BIC, and HQIC, which 

are goodness of fit criteria. In Tables 3 and 5 we see that the 

values of AIC, CAIC, BIC, and HQIC were the least for the 

Flexible Lomax distribution among the distributions tested, 

indicating the best fit with this one. Hence the FL was 

preferable with these data sets over Lomax, Exponential 

Lomax, Weibull Lomax and POLO distributions. 

 

12. Total Time on a Test (TTT) 

 

The TTT plot plays an important role in identifying 

the appropriate model to fit given data on failure rates. This 

plot tells us the different forms of the failure rate. If the TTT 

plot shows a straight line (diagonal), this indicates a constant 

failure rate. The failure rates will increase if this plot is 

concave, and decrease if it is convex. With a bath-tub shape, 

this plot first decreases and then increases. Similarly, if the 

failure rates follow an inverted bath-tub shape, then the curve 

is first concave and then convex. The TTT plot is determined 

by the following formula 

 

https://www.sciencedirect.com/science/article/pii/S0167947313002806#br000125
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Table 2. Maximum likelihood estimates. 
 

Model Estimates 

  

 , ,FL a b c  0.09592249 1.78995495 9.98465605 _ 

 , ,POLO a b c  0.1721965 14.4944336 4.9109785 _ 

 , ,EL a b c  28.842426 1.481920 2.482791 _ 

 , , ,WL a b c d  2.8345778 1.9742578 1.0284592 0.2073842 

 ,L a b  2.259102 13.107217 _ _ 

     

    

Table 3. Goodness of fit Criteria: AIC, CAIC, BIC, HQIC. 

 

Model AIC CAIC BIC HQIC 
     

 , ,FL a b c  229.9754 230.6611 234.9661 231.766 

 , ,POLO a b c  236.8627 237.5484 241.8534 238.6533 

 , ,EL a b c  237.7877 238.4734 242.7784 239.5783 

 , , ,WL a b c d  249.5339 250.7104 256.1881 251.9214 

 ,L a b  252.6833 253.0166 256.0104 253.877 

     

  

Table 4. Maximum likelihood estimates. 

 

Model Estimates 

  

 , ,FL a b c  8.517311 5.811554 3.009885 _ 

 , ,POLO a b c  1.629216 26.053456 1.458921 _ 

 , ,EL a b c  3.8661 28.4134 _ _ 

 , , ,WL a b c d  0.993276790 0.044379520 0.004883925 _ 

 ,L a b  5.4732949 1.5096438 4.7310404 0.2643016 

     

 

Table 5. Goodness of fit Criteria: AIC, CAIC, BIC, HQIC. 

 

Model AIC CAIC BIC HQIC 

     

 , ,FL a b c  288.5164 288.7664 296.3319 291.6794 

 , ,POLO a b c  826.0647 826.2582 834.6208 829.5411 

 , ,EL a b c  835.54 835.64 841.25 837.86 

 , , ,WL a b c d  836.079 836.2725 844.635 839.5553 

 ,L a b  828.6928 829.018 840.1009 833.328 

     

                                               

 : :

1
:

:

1

, 1,2,3,...

r

i n i n

i
i nn

i n

i

x n r x
r

G r x n
n

x





 
 

   
 





          (12.1) 

 

where 
:i nx   are the order statistics against /r n .  

  

 

The TTT plots for the data Losses due to wind 

catastrophes and for breaking stresses of carbon fibers are 

given in Figure 3. The graphs clearly show that the proposed 

distribution has importance for cases with both monotonic and 

non-monotonic hazard rates.  
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Losses due to wind catastrophes                                                                     Breaking stress of carbon fibers 

 
Figure 3. Hazard rate function of the Flexible Lomax. 

 

13. Conclusions 

 
In this paper, we presented a new modification with  

three parameters of the Lomax distribution, called the Flexible 

Lomax distribution (FL). Associated statistical functions of the 

FL distribution were obtained, like the hazard function, the 

survival function, mode, order statistics, etc. Furthermore, the 

model parameters can be estimated with the maximum 

likelihood approach. A simulation study was formulated and 

run, showing that bias and mean square error decrease with 

sample size for the FL distribution. The application of the FL 

distribution was then demonstrated using two real data sets, 

with AIC, CAIC, BIC, and HQIC criteria. In these lifetime 

data sets the FL distribution outperformed the other dis-

tributions tested. Hence, we conclude that the FL distribution 

is more flexible than Lomax, Exponential Lomax, and POLO 

distributions, and is expected to perform comparatively well 

with appropriate data sets. 
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