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Abstract
In this paper, some new identities for (s,t)-Pell and (s,t) - Pell-Lucas numbers are obtained by using matrix
methods. Moreover, the solutions of some Diophantine equations are presented by applying these identities.
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1. Introduction

Let s,t be any real number with 52 +t>0,s>0andt #0. Then the (s,t)-Pell sequences {Pn(s,t)} N [1]
n

is defined by
P (s,t) =2sP _ (s,t) +tP _, (s,t), forall n2, 1)

with initial ~ conditions A, (s,6)=0 and A(s,t)=1 . The fist few terms of {P (s,t)} are
n neN
2 3
0,1, 2s,4s +t,8s +4st andso on. The terms of this sequence are called (s,t)-Pell numbers and we denoted

the nth (s,t) - Pell numbers by Pn(s,l‘). The (s,t) - Pell numbers for negative subscripts can be defined as

—P (s,t)
P_n(s,t) = n—n, for aln=1. Then it follows that Pn(s,t) = 2sP

n—1
(—t)
(s,t)-Pell-Lucas sequences {Qn (s, t)}

(s,t)+ tPn_Z(s,t), for aln € . Also,

N [1] is defined byQO(S,f) =2, 0Q,(s,t)=2s and

Q,(s,;t)=2sQ _ (s,t) +tQ__,(s,t), forall n >2, 2)

2 3
The first few terms of {Qn(S,t)} are 2,2s,4s +2t,8s +6st and so on. The terms of this sequence are

neN

called (s,t)-Pell-Lucas numbers and we denoted the nth (s,t)-Pell-Lucas numbers by Q,(s,t). The (s,t)-Pell-Lucas
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Q,(s,t)

numbers for negative subscripts are defined as Q_n(s,t)z o for all n21. It can be seen that

(—t)"
Qn(s,t)=25Pn(s,t)+2tF;7_1(s,t) and Qn(s,t)ZPn+1(s,t)+tF;7_1(s,t) for al n€Z, For more detailed

information about (s,t)-Pell and (s,t)-Pell-Lucas numbers can be found in [1].

From the definitions of (s,t)-Pell and (s,t)-Pell-Lucas numbers, we have that the characteristic equation of (1)

and (2) are in the form

x = 2sx+t (3)

[ 2
and the root of equation (3) are X =s+ Vs +t and,BZs— s+t . We note that o+ =2s,

[ 2
o — ,B =2Vs +t and aﬂ = —t. Also, from the definitions of (s,t)-Pell and (s,t)-Pell-Lucas numbers, we
have thatif s= %, t=1, then the classical Fibonacci and Lucas sequence are obtained, and if s =1, t =1, then the

classical Pell and Pell-Lucas sequence are obtained. It is well known that the Fibonacci, Lucas, Pell and Pell-Lucas
sequences are the famous recursive sequences that have been studied in the literatures by many authors for over
several years, because they are extensively used in various research areas such as Engineering, Architecture, Nature
and Art (for examples see: [2-7]).

In this paper, we will establish some identities for (s,t) -Pell and (s,t)-Pell-Lucas numbers by using matrix
methods. Moreover, we present the solution of some Diophantine equations by applying these identities. In the rest

of this paper, for convenience we will use the symbol P and Q_ instead of P (s,t) and Q_(s,t) respectively.

2. Main Results

In this section, we will establish some identities for (s,t)-Pell and (s,t)-Pell-Lucas numbers by using the square

matrix X which satisfy the property X2 = 2sX + t/. Now, we begin with the following three Lemmas.

2
Lemma 2.1. If X isa square matrix with X~ = 2sX + t/, then Xn = PnX + tPn_ll foral ne 7 .

Proof. Ifn =0, then the proof is obvious. It can be shown by induction that x" = P X + tP_,/ foral ne N .

Now, we will show that x = P X+tP I foral neN. Let Yy =25/ — X = —tX—1 . Then we have
2 2
Y =(2s1—X)" =2s(2sl — X)+tl =2sY + .
it implies thatY” =P Y +tP__J. Thatis(—tx )" =P (25— X)+tP__ /. Thus
n n—1 n n—1

(=)' x " =2sPI—PX+tP_|
n n n—1
=—P X+ 2P +tP_ )l
n n n—1
=—PX+P, I
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Therefore,

-n n n+l
X =— X+ I=P X+tP =P _X+tP I
n n n (n+1) n n—1
(=) (=t)
This complete the proof.
s 2As?+1) %Qn 2(s +1)P,
Lemma 2.2. Let W=/, , then W" = forall n € Z .
= S 1
2 pass 5

2
Proof. Since W = 2sW +tl/, the proof follows from Lemma 2.1 and using Q, =2sP, + 2tP .

Lemma 2.3. an — 4(52 + 1‘)Pn2 = 4(—#)n foralne Z.

1
Proof. Since det(Wn) = (det(W))n = (—t)n and detw") = —Qj — (s2 + t)Pnz, we get
4

Q" —a(s" + 0P’ =a(-n)".
Lemma 2.4. 20, =0 0 +4(s’ +t)P P foral mn € Z.

. m-+n m n
Proof. Since W =W W , we get the result.

Lemma 2.5. =P, and ﬂn = ﬂPn + tPn_1for all neZ.

+ ¢
(04 0 )
Proof. Take X = 0 ,B ,then X™ = 2sX + t/. By Lemma 2.1, we have x" = PX+tP_ I It follows that

n

a 0 oP +tP_ 0
n n—1

0 ﬂn 0 ﬂ'Dn +t’Dn—1

This implies that & =ap, +tP_ and " = Br +tP_,.

By using Lemma 2.1 and Lemma 2.5, we get the following Theorem.

n

a 0 (04 0

Theorem 2.6. Let A= , then A" = . | foraltn € 7
t B tp
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2s +t 0

2
Proof. Since A = = 2sA+t/, by Lemma 2.1 and Lemma 2.5, we get that
ta+ ) 2sf +t Y .

(04 0
Al = PA+P_ = . Thus, we get the result.
v B
n

By using Theorem 2.6, we get the following Theorem.

Theorem 2.7. Let m,n € Z.. Then

a(s* +0X=0"P° +a(s* +t)—t)"P. —Q°, =—a(s" +0)p PO . —a(=t)""
Proof. Let a matrix A as in Theorem 2.6. It can be seen that
_ - -
2Ns” +t
—Q 0
1 n+1 +An—1 — t
t s+t
o, ——8
L t .
. 1 n+1 n—1 1 m+1 m—1 1 m+n+2 2 m+n m+n—2
Since |-A 1+ A —A + A =—2A +—A + A ,we get that
t t t t
2
oNs“+tp, =a"o —fo .
Thus,
2 2 |2 [ 2
a(s +z‘)Pern =(2Vs +th+n)(2 s +th+n)
m n n m
=@ o, —pB oo, —B o)
Since 4(52 + 1‘)Pnirn = QiJm — 4(—t)m+n,we obtain
m 2 n 2 2 m-+n
(=t) o, +(=t) o +0Q_, =0 00O +4-t) . (4)
) 2 2 2 m 2
Since Q= 4(s + 1‘)Pn + 4(—t) and Q.0 =20 . — 4(s + lL)PmPn , we get that
2 m 2 2 n 2 2 2 m+n
4(s" +)—t) P +a(s” +t)—t) P —Q . =—4(s +tP PQ . —4(—t) (5)
and so the proof is completed.
Example 2.8. Let m=1and n=2.Then
as" + =0 B, +a(s" +X—D B —Q, =—4(s" +DPRQ, —4(—t) .
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Proof. Consider,

as" (=)' B +a(sT + =0 R —QF =a(s” +1X—0)29) +as” +0t° W — (@85 +650)°

= —16st—16st +ast  +at —64s’ —96s t —36s t

6 4 22 3
=—64s —112s t—48s t + 4t ,

and

—a(s” +1)BRQ, —a(—1)" =—a(s” + tX1N2s)8s~ + 6st) + at’

6 4 22 3
=—64s —112s t—48s t -+ 4t.

Thus, a(s” + X—1) B, +a(s" + X~ B —Q, =—a(s" +RRQ, —a(—t) .

Theorem 2.9. Let m,n € Z.. Then

m 2 2 n 2 2 2 m+n

(0707 —als" + (=0 —as" +0)P2, =—as" +00 PP +a(—D)

n'm m+n

Proof. By using a similar argument as in Theorem 2.7 and the property

[ —1 L om —1 L mtntt +n—1
(—An + 4" )Am:Am(—An + AT =AY
t t t
we get that

0., =a"0 —2Ns +tf'P and o, =2Vs +w’p + B0 .
It follows that
ol =w@"a, —2Ns +tf"r xoNs' +ta’e + B"Q)

+(=0"Q. —a(s” + -’

) 2 2 2
Since Q_, = = 4(s + t)Pme + 4(—t) , we have

This completed the proof.

Example 2.10. Let m=2 and n=0. Then
()"0 —a(s" + (=0 F, —a(s" + 1), =—4(s" +DO,RF, + (1)
Proof. Consider,

(') —ats" +0—0'p —as" +0B =t"(2)" —a(s” +02s)” —a(s” +1)2s)
= 325" —325°t +4t”,
and

—a(s" + )0 PP +a(—t)" =—a(s" + t)X2)N2s)25) + 4t

022
4 2 2
=—32s —32s t+4t .
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Thus, (—0)°Q; —a(s” +tX—1)' B —a(s” +10p =—a(s" +1)Q,PL, +8(—1)".
3. Applications

In this section, by applying Theorem 2.7 and Theorem 2.9, we give the solutions of some Diophantine equations.

We will investigate in two cases:

Case 1:If s € Z+and t =1, then we get the following Theorems

Theorem 3.1. If m and n are even integers, then the integer solutions of the equation

2

z —4(52 + 1)x2 —4(52 + 1)y2 = 4(52 +Uxyz +4 are given by (x,y,2) =(P (5,1, (s,1),Q, , (s,1). If m

m+n
and n are odd integers, then the integer solutions of the equation 2+ 4(52 + 1)x2 + 4(52 + 1)y2 = 4(52 +Dxyz+4

are given by (x,y,z) = (Pm(5,1),Pn(s,1),Qm+n(s,1))and if mis an odd integer and nis an even integer, then the

integer solutions of the equation 2 —4(52 + 1)x2 + 4(52 + 1)y2 = 4(52 +UDxyz—4 are given by
(x,y,z2)=(P_(s,1),P (s,1),Q_, (s,1)).

Proof. The result follows immediately from Theorem 2.7.

m+n

Theorem 3.2. If m and n are even integers, then the integer solutions of the equation

22 + x2 + y2 = xyz + 4 are given by (x,y,z) =(Q_(s,1),Q,(s,1),0Q_, (s,1)) f m and nare odd integers, then the

m+n

integer solutions of the equation 22 - x2 - y2 = xyz + 4 are given by (x,y,z) = (Qm(s,l),Qn(S,l),O (s,1))and

m+n
if m is an odd integer and n is an even integer, then the integer solutions of the equation 22 + x2 — y2 = xyz — 4 are
given by (x,y,z) =(Q, (s,1),0 (5,1),Q_, (s,1).

Proof. The result follows directly from (4).

m+n

Theorem 3.3. If m and n are even integers, then the integer solutions of the equation
X' —a(s" +1y" —a(s" + 12" =—a(s" +1)xyz +4 are given by (x,y,2) =(Q, (s,1,P(s,),P_, (s,1). Ifm

and nare odd integers, then the integer solutions of the equation Xt — 4(52 + 1)y2 + 4(52 + 1)22 = 4(52 +Dxyz —4

are given by (x,y,z) = (Qn(s,l), Pm(s,l),Pm+n(s,1))and if mis an odd integer and nis an even integer, then the

integer solutions of the equation X+ 4(52 + 1)y2 +4(s2 +1)z2 = 4(52 +UDxyz+4 are given by
(x,y,z)=(Q,(s,1),P (s,1),P . (s,1).

Proof. The result follows immediately from Theorem 2.9.
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Case 2: If s eZ*andt =-1, then we get the following Theorems

Theorem 3.4.  The integer solutions of the equation 2 - 4(52 - 1)x2 — 4(52 — 1)y2 = 4(52 +Dxyz+4 are
given by (x,y,z) = (P_(s,—1),P (s,—1),Q,, (s,—1)).

’~m+n

Proof. The result follows immediately from Theorem 2.7.

Theorem 3.5. The integer solutions of the equation 22 + x2 + y2 = xyz + 4 are given by
(x,y,2)=(Q, (s,—1),Q (s,—1),0Q_, (s,—1).
Proof. The result follows directly from (4).

Theorem 3.6. The integer solutions of the equation 4(52 — 1)22 —x 4 4(52 - 1)y2 = 4(52 —Dxyz —4 are

given by (x,y,z) =(Q (s,=1),P (s,—1),~ . (s,—1)).

m m+n

Proof. The result follows immediately from Theorem 2.8.

4. Conclusion

Nowadays, many mathematicians are interested in solving Diophantine equations. We think it is a little

hard and interesting to give all integer (positive integer) solutions of the Diophantine equations.
2 2 2 2 2 2
z —4(s +Dx —4d(s +1y =4(s +xyz+4

2+ 4(52 + 1)x2 + 4(52 + 1)y2 = 4(52 +Dxyz+4

2 2 2 2 2 2
z —4(s +x +4(s +Dy =4(s +xyz+4

22+X2+y2=Xyz+4

2 2 2

z —x —y =xyz+4
22+x2—y2=Xyz—4

X —4(52 + 1)y2 —4(52 + 1)22 = —4(52 +Dxyz+4

2 2 2 2 2 2
x —4(s +Dy +4(s +1)z =4(s +Dxyz—4

X+ 4(52 + 1)y2 + 4(52 + 1)22 = 4(52 +Dxyz+4

2 2 2 2 2 2
z —4(s —x —4(s —1ly =4(s +Dxyz+4a

and

4(52 —1)22 —x 4 4(52 —1)y2 = 4(52 —Dxyz—4.

Although they have infinite many integer solutions by the above Theorems.
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