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Abstract 
In this paper, some new identities for (s,t)  - Pell and (s,t)  - Pell- Lucas numbers are obtained by using matrix 

methods. Moreover, the solutions of some Diophantine equations are presented by applying these identities. 
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1. Introduction  

Let ,s t  be any real number with
2

0,s t  0s  and 0.t   Then the ( , )s t -Pell sequences  ( , )n n
P s t

  [1] 

is defined by 

                                         1 2( , ) 2 ( , ) ( , ),n n nP s t sP s t tP s t     for all 2,n                           (1) 

with initial conditions 0 ( , ) 0P s t   and 1 ( , ) 1P s t   .  The first few terms of   ( , )n n
P s t

   are 

2 3
0, 1, 2 , 4 , 8 4s s t s st    and so on. The terms of this sequence are called ( , )s t -Pell numbers and we denoted 

the 
th

n ( , )s t  - Pell numbers by ( , )nP s t  .  The ( , )s t  - Pell numbers for negative subscripts can be defined as  

( , )
( , ) ,

( )

n
n n

P s t
P s t

t






 for all 1n   .  Then it follows that 1 2( , ) 2 ( , ) t ( , ),n n nP s t sP s t P s t   for all n   .  Also, 

( , )s t -Pell-Lucas sequences  ( , )n n
Q s t

  [1] is defined by 0 ( , ) 2Q s t  , 1 ( , ) 2Q s t s  and 

                    1 2( , ) 2 ( , ) ( , )n n nQ s t sQ s t tQ s t   ,    for all 2,n                                               (2) 

The first few terms of   ( , )n n
Q s t

  are 
2 3

2, 2 , 4 2 , 8 6s s t s st   and so on.  The terms of this sequence are 

called ( , )s t -Pell-Lucas numbers and we denoted the 
th

n ( , )s t -Pell-Lucas numbers by ( , )nQ s t . The ( , )s t -Pell-Lucas 
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numbers for negative subscripts are defined as  
( , )

( , ) ,
( )

n
n n

Q s t
Q s t

t
 


 for all 1n   .  It can be seen that 

1( , ) 2 ( , ) 2 ( , )n n nQ s t sP s t tP s t  and 1 1( , ) ( , ) ( , )n n nQ s t P s t tP s t     for all n   For more detailed 

information about ( , )s t -Pell and ( , )s t -Pell-Lucas numbers can be found in [1].  

From the definitions of ( , )s t -Pell and ( , )s t -Pell- Lucas numbers, we have that the characteristic equation of ( 1) 

and (2) are in the form 

                                                              
2

2x sx t                                                                     (3) 

and the root of equation ( 3)  are 
2

s s t   and
2

s s t    .  We note that ,2s  
2

2 s t     and t  .  Also, from the definitions of ( , )s t -Pell and ( , )s t -Pell-Lucas numbers, we 

have that if 1s = , t =1
2

, then the classical Fibonacci and Lucas sequence are obtained, and if 1, 1s t  , then the 

classical Pell and Pell-Lucas sequence are obtained.  It is well known that the Fibonacci, Lucas, Pell and Pell- Lucas 

sequences are the famous recursive sequences that have been studied in the literatures by many authors for over 

several years, because they are extensively used in various research areas such as Engineering, Architecture, Nature 

and Art (for examples see: [2-7]).  

In this paper, we will establish some identities for ( , )s t  -Pell and ( , )s t  - Pell- Lucas numbers by using matrix 

methods. Moreover, we present the solution of some Diophantine equations by applying these identities.  In the rest 

of this paper, for convenience we will use the symbol nP  and nQ  instead of ( , )nP s t  and ( , )nQ s t respectively. 

 

2. Main Results 
In this section, we will establish some identities for ( , )s t -Pell and ( , )s t -Pell-Lucas numbers by using the square 

matrix X  which satisfy the property
2

2X sX tI  .  Now, we begin with the following three Lemmas. 

 

Lemma 2.1.  If X  is a square matrix with
2

2X sX tI  , then 1
n

n nX P X tP I   for all n  . 

Proof.  If 0n  , then the proof is obvious.  It can be shown by induction that 1
n

n nX P X tP I   for all n .  

Now, we will show that 1
n

n nX P X tP I


      for all n .  Let 
1

2Y sI X tX
    . Then we have 

2 2
(2 ) 2 (2 ) 2Y sI X s sI X tI sY tI       . 

It implies that 1
n

n nY P Y tP I  . That is
1

1( ) (2 )
n

n ntX P sI X tP I


    . Thus 

1

1

1

( ) 2

(2 )

.

n n
n n n

n n n

n n

t X sP I P X tP I

P X sP tP I

P X P I
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Therefore, 

1
( 1) 1 .

( ) ( )

n n n
n n n nn n

P P
X X I P X tP I P X tP I

t t

 
           

   

This complete the proof.   

Lemma 2.2.  Let 

2s 2(s + t)
W = ,1 s

2

 
 
 
 
 

 then 

2
n n

n

n n

1 Q 2(s + t)P
2

W =
1 1P Q
2 2

 
 
 
 
 
 

 for all n  . 

Proof.  Since 
2

2 ,W sW tI   the proof follows from Lemma 2.1 and using  12 2 .n n nQ sP tP      

 

Lemma 2.3. 
2 2 2

4( ) 4( )
n

n nQ s t P t     for all n . 

Proof.  Since det( ) (det( )) ( )
n n n

W W t    and 
2 2 21

det( ) ( ) ,
4

n
n nW Q s t P    we get 

2 2 2
4( ) 4( ) .

n
n nQ s t P t     

 

Lemma 2.4. 
2

2 4( )m n m n m nQ Q Q s t P P     for all , .m n  

Proof. Since ,
m n m n

W W W
   we get the result. 

 

Lemma 2.5. 1
n

n nP tP     and 1
n

n nP tP    for all n . 

Proof.  Take
0

0
X 

 
  


 , then

2
2X sX tI  . By Lemma 2.1, we have 1 .

n
n nX P X tP I   It follows that 

1

1

0 0
.

00

n
n n

n
n n

P tP

P tP






 

   
      

 


 

This implies that  1
n

n nP tP     and 1 .
n

n nP tP                       
By using Lemma 2.1 and Lemma 2.5, we get the following Theorem. 

 

Theorem 2.6. Let 

0
,A

t

 
  


  then 

0
n

n
n

n

A
tP


 
 
  




 for all n   
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Proof.  Since 
2

2 0
2 ,

( ) 2

s t
A sA tI

t s t


   
 
  


   by Lemma 2.1 and Lemma 2.5, we get that

1

0
.

n

n
n n n

n

A P A tP I
tP

  
 
 
  




Thus, we get the result. 

By using Theorem 2.6, we get the following Theorem. 

 

Theorem 2.7.  Let , .m n  Then  
2 2 2 2 2 2

4( )( ) 4( )( ) 4 ( ) 4( ) .
m n m n

n m m n m n m ns t t P s t t P Q s t P P Q t


             

Proof.  Let a matrix A as in Theorem 2.6. It can be seen that 

2

1 1

2

2
0

1
.

2

n

n n

n
n

s t

tA A
t s t

Q
t

 



 




 
 
 
 
  





 

Since   1 1 1 1 2 2

2

1 1 1 2
,

n n m m m n m n m n
A A A A A A A

t t t t

             we get that 

2 .
2 m n

m n n ms tP Q Q      

Thus, 

2 2 2 2
4( ) (2 )(2 )

( )( ).

m n m n m n

m n n m
n m m n

s t P s tP s tP

Q Q Q Q

     

     
 

Since 
2 2 2

4( ) 4( ) ,
m n

m n m ns t P Q t


     we obtain 

                 
2 2 2

( ) ( ) 4( ) .
m n m n

n m m n m n m nt Q t Q Q Q Q Q t


                                          (4) 

Since 
2 2 2

4( ) 4( )
m

n nQ s t P t    and
2

2 4( )m n m n m nQ Q Q s t P P   , we get that     

          
2 2 2 2 2 2

4( )( ) 4 ( )( ) 4 ( ) 4( ) ,
m n m n

n m m n m n m ns t t P s t t P Q s t P P Q t


                      (5) 

and so the proof is completed. 

 

Example 2.8.  Let 1m   and 2n  . Then   
2 1 2 2 2 2 2 2 3

2 1 3 1 2 34( )( ) 4 ( )( ) 4( ) 4 ( )s t t P s t t P Q s t P P Q t           . 
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Proof. Consider, 
2 1 2 2 2 2 2 2 2 2 2 2 3 2

2 1 34( )( ) 4( )( ) 4( )( )(2 ) 4( ) (1) (8 6 )s t t P s t t P Q s t t s s t t s st              

                                                                
4 2 2 2 2 3 6 4 2 2

16 16 4 4 64 96 36s t s t s t t s s t s t         

          
6 4 2 2 3

64 112 48 4s s t s t t     , 

and 

             

2 3 2 3 3
1 2 3

6 4 2 2 3

4( ) 4( ) 4( )(1)(2 )(8 6 ) 4

64 112 48 4 .

s t P P Q t s t s s st t

s s t s t t

        

    
 

Thus, 
2 1 2 2 2 2 2 2 3

2 1 3 1 2 34( )( ) 4 ( )( ) 4( ) 4 ( )s t t P s t t P Q s t P P Q t           . 

 

Theorem 2.9.  Let , .m n  Then  
2 2 2 2 2 2

( ) 4 ( )( ) 4 ( ) 4( ) 4( ) .
m n m n

n m m n n m m nt Q s t t P s t P s t Q P P t


             

Proof.  By using a similar argument as in Theorem 2.7 and the property   

   1 1 1 1 1 11 1 1
,

n n m m n n m n m n
A A A A A A A A

t t t

             

we get that  

2
2

m n
m n n mQ Q s t P      and 

2
2

n m
m n m nQ s t P Q     . 

It follows that  

2 2 2

2 2 2 2

( 2 )(2 )

4( ) ( ) 4( )( ) .

m n n m
m n n m m n

m n
n m m n n m

Q Q s t P s t P Q

s t Q P P t Q s t t P





    

      

   
 

Since 
2 2 2

4( ) 4( ) ,
m n

m n m nQ s t P t


      we have 

      
2 2 2 2 2 2

( ) 4 ( )( ) 4 ( ) 4( ) 4( ) .
m n m n

n m m n n m m nt Q s t t P s t P s t Q P P t


                           (6) 

This completed the proof.  

 

Example 2.10.  Let 2m   and 0n  . Then 
2 2 2 0 2 2 2 2 2

0 2 2 0 2 2( ) 4 ( )( ) 4 ( ) 4( ) 4( ) .t Q s t t P s t P s t Q P P t            

Proof. Consider, 
2 2 2 0 2 2 2 2 2 2 2 2 2

0 2 2

4 2 2

( ) 4( )( ) 4( ) (2) 4( )(1)(2 ) 4( )(2 )

32 32 4 ,

t Q s t t P s t P t s t s s t s

s s t t

          

   
 

and 

               

2 2 2 2
0 2 2

4 2 2

4( ) 4( ) 4( )(2)(2 )(2 ) 4

32 32 4 .

s t Q P P t s t s s t

s s t t
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Thus, 
2 2 2 0 2 2 2 2 2

0 2 2 0 2 2( ) 4 ( )( ) 4 ( ) 4( ) 4( ) .t Q s t t P s t P s t Q P P t            

 

3. Applications 
In this section, by applying Theorem 2.7 and Theorem 2. 9, we give the solutions of some Diophantine equations. 

We will investigate in two cases: 

 

Case 1: If s
 and 1t  , then we get the following Theorems 

 

Theorem 3.1.   If m and n  are even integers, then the integer solutions of the equation  
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        are given by ( , , ) ( ( ,1), ( ,1), ( ,1)).m n m nx y z P s P s Q s  If m 

and n are odd integers, then the integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz      
are given by ( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z P s P s Q s and if m is an odd integer and n is an even integer, then the 

integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        are given by

( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z P s P s Q s . 

Proof. The result follows immediately from Theorem 2.7. 

 

Theorem 3.2.   If m and n  are even integers, then the integer solutions of the equation  
2 2 2

4z x y xyz     are given by ( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z Q s Q s Q s  If m and n are odd integers, then the 

integer solutions of the equation  
2 2 2

4z x y xyz     are given by ( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z Q s Q s Q s and 

if m is an odd integer and n is an even integer, then the integer solutions of the equation 
2 2 2

4z x y xyz     are 

given by ( , , ) ( ( ,1), ( ,1), ( ,1))m n m nx y z Q s Q s Q s . 

Proof. The result follows directly from (4). 

 

Theorem 3.3.   If m and n  are even integers, then the integer solutions of the equation  
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz         are given by ( , , ) ( ( ,1), ( ,1), ( ,1))n m m nx y z Q s P s P s  .   If m 

and n are odd integers, then the integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz        

are given by ( , , ) ( ( ,1), ( ,1), ( ,1))n m m nx y z Q s P s P s and if m is an odd integer and n is an even integer, then the 

integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz        are given by

( , , ) ( ( ,1), ( ,1), ( ,1))n m m nx y z Q s P s P s . 

Proof. The result follows immediately from Theorem 2.9.  
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Case 2: If s and 1 t , then we get the following Theorems 

 

Theorem 3. 4.    The integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        are 

given by ( , , ) ( ( , 1), ( , 1), ( , 1))m n m nx y z P s P s Q s    . 

Proof. The result follows immediately from Theorem 2.7.   

 

Theorem 3.5.   The integer solutions of the equation 
2 2 2

4z x y xyz     are given by

( , , ) ( ( , 1), ( , 1), ( , 1))m n m nx y z Q s Q s Q s    . 

Proof. The result follows directly from (4). 

 

Theorem 3.6.   The integer solutions of the equation 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4s z x s y s xyz        are 

given by ( , , ) ( ( , 1), ( , 1), ( , 1))n m m nx y z Q s P s P s    . 

Proof. The result follows immediately from Theorem 2.8.  

 

4. Conclusion 
Nowadays, many mathematicians are interested in solving Diophantine equations. We think it is a little 

hard and interesting to give all integer (positive integer) solutions of the Diophantine equations. 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        

             
2 2 2

4z x y xyz     

              
2 2 2

4z x y xyz     

              
2 2 2

4z x y xyz     

    
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz         

 
2 2 2 2 2 2

4( 1) y 4( 1) z 4( 1) 4x s s s xyz        

 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4x s y s z s xyz        

 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4z s x s y s xyz        

and 

 
2 2 2 2 2 2

4( 1) 4( 1) 4( 1) 4s z x s y s xyz       . 

Although they have infinite many integer solutions by the above Theorems. 
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