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Abstract 

Remanufacturing can bring used or end of life products back to like-new products. The 

production planning of inventory control policies in a hybrid manufacturing/ 

remanufacturing system with different prioritizations (manufacturing vs. 

remanufacturing) is investigated in this study. For this production planning problem, the 

imprecision of customer demand, related operating costs, number of returned used 

components and all lead time and production times are uncertain. This uncertainty 

complicates the planning of the production and inventory control. The fuzzy set theory is 

employed due to the presence of the imprecise information, and the Fuzzy Linear 

Programming (FLP) is applied to optimize the model under these uncertainties. The 

proposed approach maximizes the most likely value of the profit, minimizes the risk of 

obtaining a lower profit, and maximizes the possibility of obtaining a higher profit for each 

production planning policy. The results show that the Priority-To-Remanufacturing (PTR) 

policy shows a higher profit than the policy of Priority-To-Manufacturing (PTM) and FLP 

can help decision makers to be aware of the risks and effects of uncertainties in their plans. 

As a result, they can prepare in advance for such scenarios. 
 

Keywords:  Hybrid manufacturing/remanufacturing system, fuzzy linear programming, 

 fuzzy optimization, fuzzy lead time and production time

 

 

 

 

 

 

 

 

Sirindhorn International Institute of Technology, Thammasat University, Thailand. E-mail: navee@siit.tu.ac.th; 
 kittipunhome@hotmail.com 
* Corresponding author 

Suranaree J. Sci. Technol. 28(2):010035(1-19) 



 

010035-2 Using Fuzzy Linear Programming to Optimize Inventory Control Policy 

Introduction 

The process of remanufacturing consists of 

inspection, disassembly, sorting, cleaning, and 

inspection of used products before reassembling 

to like- new products or for use as the raw 

materials of new products.  Remanufacturing 

can be separated into two groups.  First, a 

completed remanufacturing system can be 

used only with used products that are used for 

all demands. Second, a hybrid manufacturing/ 

remanufacturing system can be used when the 

remanufacturing is required to work along with 

the existing manufacturing processes. As a result, 

new components may only be triggered when 

there is a shortage of raw materials from the 

returned used components. 

The uncertain timing, quantity, and 

quality of returned products increase the 

difficulty of production planning and 

inventory management in remanufacturing and 

hybrid manufacturing/remanufacturing processes. 

Decision Makers (DMs) need to make decisions 

on how many new components or how many 

used products are required and especially on 

when such orders should be placed. Moreover, 

customer demand and related operating costs 

are subject to uncertainty.  Customer demand 

normally varies with time due to a lack of 

information, errors in forecasting, and 

outdated information, while some operating 

costs are difficult to be fixed in advance.  To 

manage such issues, a specified approach can 

be used to optimize such problems under the 

uncertainty.  Instead of using traditional linear 

programming where the uncertainty is ignored, 

Fuzzy Linear Programming (FLP)  is an 

approach that can be used to incorporate fuzzy 

data and optimize fuzzy problems.  Our main 

contribution of this study is to introduce the 

Fuzzy Linear Programming (FLP)  model to 

optimize the profit of the production planning 

and inventory control in a hybrid 

manufacturing/remanufacturing system.  We 

can recommend a better policy with optimal 

operating parameters between the Priority-To-

Remanufacturing (PTR) and Priority-To-

Manufacturing (PTM) in an uncertain 

environment, especially under lead time and 

production time uncertainty. This time  

 

 
uncertainty can complicate the computations 

and generally has not been incorporated into 

the model solutions from past research. A 

sensitivity analysis is then performed with 

many scenarios to investigate the effects of 

each policy under the different levels of 

decision weight from the pessimistic, most 

likely or optimistic conditions. The results can 

provide a possible range of profit that occurs 

from implementing each policy in each 

scenario, which the indicates possible benefits 

and hidden risk from a policy. 

The remaining paper is presented as 

follows. Section 2 presents a literature review. 

Section 3 shows the methodology for solving 

the stochastic model, based on the Fuzzy 

Linear Programming model.  Section 4 presents  

a case study of inventory control and 

optimization in a hybrid manufacturing/ 

remanufacturing system, in an uncertain 

environment. Next, Section 5 shows the results 

and discussion.  Section 6 then presents the 

conclusion. 

Literature Review 

Remanufacturing is a direct form of reuse  

that merges returned products, to sell like- 

new products (again) to customers. The 

remanufacturing process can be separated into 

disassembling the returned products, cleaning 

disassembled parts, replacing or repairing any 

worn or damaged components, testing the 

quality of products, updating electro-electronic 

products, and reassembling the products. 

Products that pass remanufacturing testing can 

have the quality of “like-new” products (Abbey 

et al. , 2015) .  According to Li et al.  ( 2009) , 

remanufacturing is normally managed under 

two business strategy models:  dedicated and 

combined.  The dedicated model is mostly 

applied in North America.  It is considered 

standalone remanufacturing.  In contrast, the 

combined model is mostly applied in European 

countries where remanufacturing and 

manufacturing are combined in the same line 

as a hybrid process. 
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For production planning and inventory 

control problems, the focus is placed on 

different inventory policies such as continuous 

and periodic reviews. There are many 

complicated characteristics of remanufacturing 

such as the uncertain quality of returns, 

delivery timing, and the need to balance the 

returns and new components with customer 

demand.  Inderfurth (2004)  found that the 

optimal inventory control policy for a hybrid 

manufacturing/ remanufacturing system under 

strictly proportional costs and revenues is the 

order-up-to policy.  The system is constructed 

in a single- period with stochastic returns of 

used products and customer demand, to use the 

raw materials of remanufactured products for 

manufacturing products when a shortage 

occurs. Wang (2011) investigated the optimal 

production policy for short life cycle products 

with stochastic returned products and customer 

demand.  The objective was to minimize the 

total costs of this system.  The optimal total 

costs are obtained when a combination of 

manufacturing, remanufacturing, and disposal 

was applied. A significant reduction in the total 

cost of the system can be obtained by setting 

an optimal ratio of remanufacturing products 

to manufactured products. 

With complicated inventory control 

policies, the optimal settings for the 

parameters in a production planning and 

inventory control policy are required to obtain 

the maximum profitability of the system. 

Optimization can be performed by either 

analytical or heuristics models.  The analytical 

models give global optimal solutions but 

require a longer processing time. The 

heuristics models may provide only local 

optimal solutions, which can be good enough 

solutions, with a shorter processing time. 

Proper solving method selection is a trade-off 

between solution quality and computational 

time. To reduce a long processing time, 

analytical models require simplified 

assumptions and present static results. Without 

the addition of uncertainties, solutions are 

compromised in real-world problems.  Hence, 

the fuzzy logic is used for managing 

uncertainties and to produce results that, can 

reflect real-world problems. As a result, Fuzzy 

Linear Programming (FLP) can provide 

practical and optimal results under realistic 

circumstances (Amid et al., 2009). 

In practice, input data or related 

parameters for production planning and 

control problems are imprecise/fuzzy, such as 

costs of operations, customer demand, number 

of returned products, delivery lead time and 

production lead time.  These imprecise/fuzzy 

data occur because some information is 

incomplete or uncontrollable. These problems 

cannot be solved and optimized by a traditional 

mathematical analytical model such as linear 

programming because it only operates in 

deterministic circumstances. To incorporate 

uncertainty, Zimmerman (1976)  introduced 

the fuzzy set theory into traditional linear 

programming problems.  His study considered 

linear programming problems with fuzzy goals 

and constraints.  Zadeh (1977) presented the 

theory of possibility, which is related to the 

theory of fuzzy sets by applying a possibility 

distribution as a fuzzy restriction, acting as an 

elastic constraint. In addition, Buckley (1989) 

presented Possibilistic Linear Programming 

(PLP) in a standard form with no equality 

constraints.  Then, Ozgen and Gulsun (2014) 

applied a two- phase PLP combined with the 

fuzzy Analytical Hierarchical Process (AHP) to 

optimize multi objective linear programming. 

To our knowledge, there are very few research 

papers that have applied fuzzy lead time to 

their problems while solving the fuzzy 

mathematical model.  For example, Diaz-

Madroflero et al.  (2015)  applied fuzzy multi-

objective integer linear programming to a 

model of the Material Requirements Planning 

(MRP)  problem with the fuzzy lead time.  By 

incorporating the different possibilities of lead 

times into the crisp MRP, the results showed 

that by combining the possibility of the 

existence of the lead times with the MRP 

model, decision makers would know their risk 

with the uncertainty of lead times. However, in 

order to defuzzify the fuzzy timing, 

considering the different possibilities of each 

lead time is not compatible with the FLP 

approach, which is required to solve under 

three cases (pessimistic, most likely, and 

optimistic). Our approach decides to use the 
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fuzzy ranking to convert this uncertainty 

constraint into the crisp constraint. Hence, this 

research gap is further explored in our study. 

As for the main contribution, our study 

applies the FLP approach for solving the 

production planning and inventory control 

policy in a hybrid manufacturing/ 

remanufacturing system with imprecise 

forecast demand, related operating costs, 

machine capacity, number of returned 

components, ordering lead time of new 

components, delivery lead time of returned 

components, and the production lead times of 

manufacturing and remanufacturing processes. 

Adding fuzzy ordering and production times to 

the fuzzy mathematical model is a new 

research area, which has not been much 

investigated in the past. The proposed 

approach can help capture the consequence of 

time variations with variations from other 

uncertainties.  Our approach finds the most 

likely value of the imprecise total profits, 

minimizes the risk of obtaining a lower profit, 

and maximizes the possibility of 

simultaneously obtaining higher profits for 

each policy.  This approach can also provide 

realistic results, which are better than a typical 

deterministic approach, as it can handle fuzzy 

data and recommend a range of possible 

optimal objective values.  The result can help 

decision makers to be aware of possible 

outcomes in all scenarios from the most likely, 

optimistic, and pessimistic cases.  Therefore, 

decision makers can prepare themselves in 

advance for such scenarios. 

Methodology 

Two optimization-solving methods are 

selected to evaluate their performances in a 

hybrid manufacturing/remanufacturing system 

in an uncertain environment.  The system is 

modeled with both deterministic and stochastic 

conditions, using Mixed-Integer Linear 

Programming (MILP) and Fuzzy Linear 

Programming (FLP), respectively.  Figure 1 

shows the approach for each solving method. 

 

 

Deterministic, Using MILP 

The system is modeled, and the profit of 

the model is optimized using MILP.  There is 

no uncertainty in this situation. As a result, the 

ideal solution from this method can be used as 

a benchmark for a comparison. 

 

Stochastic, Using FLP 

The FLP method can handle a problem 

with uncertainty.  An uncertain environment 

contains uncertain customer demand in each 

week, related operating costs, number of 

arriving returned components in each week, 

and all related timing.  FLP converts these 

uncertain/fuzzy data into crisp data. There are 

four main steps to solve FLP: 

 

Model the Uncertainty Data With 

Triangular (Possibility) Distribution 

Figure 2 presents the triangular 

distribution of an uncertain coefficient  

 
 

Figure 1. Method of approach 

 

 
 

Figure 2. Triangular possibility distribution of 𝒙̃ 
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𝑥̃ = (𝑥𝑃, 𝑥𝑀 , 𝑥𝑂).  In general, the triangular 

distribution is based on three important data 

values as follows. 

1. The most pessimistic value (𝑥𝑃)  that 

has the lowest possibilistic degree for the set of 

available values (possibilistic degree = 0) 

2. The most likely value (𝑥𝑀)  that has 

the highest possibilistic degree for the set of 

available values (possibilistic degree = 1) 

3. The most optimistic value (𝑥𝑂)  that 

has the lowest possibilistic degree for the set of 

available values (possibilistic degree = 0) 

 

Develop Three New Crisp Objective 

Functions of Multi Objective Linear 

Programming (MOLP) 

The imprecise objective function in this 

model has a triangular distribution 𝑧̃ =
(𝑧𝑃, 𝑧𝑀 , 𝑧𝑂). This imprecise objective function 

is defined by three important points 

(𝑧𝑃, 0) ,  (𝑧𝑀 , 1) , and  (𝑧𝑂 , 0).  The imprecise 

objective can be maximized by pushing three 

important points to the right.  Because the 

vertical coordinate of the important points is 

fixed at either 1 or 0, only the three horizontal 

coordinates are considered. Solving the 

imprecise objective requires simultaneously 

maximizing 𝑧𝑃 , 𝑧𝑀 , 𝑎𝑛𝑑 𝑧𝑂.  Instead of 

simultaneously maximizing 𝑧𝑃 , 𝑧𝑀 , 𝑎𝑛𝑑 𝑧𝑂 , 

the proposed approach maximizes the profit 

𝑧𝑀, minimizes the range of the profit of (𝑧𝑀-

 𝑧𝑃)  and, maximizes the range of the profit of 

( 𝑧𝑂- 𝑧𝑀) .  This proposed approach involves 

maximizing the most likely value of the 

imprecise total profit (𝑧𝑀), minimizing the risk 

of obtaining a lower profit ( 𝑧𝑀-  𝑧𝑃) , and 

maximizing the possibility of obtaining a 

higher profit (𝑧𝑂-𝑧𝑀) .  Figure 3 presents the 

strategy for maximizing the imprecise 

objective functions. 

As presented in Figure 3, the possibility 

distribution 𝐴̃ is preferred to the possibility 

distribution 𝐵̃.  The results for the three new 

crisp objective functions are presented as 

follows: 

 
Max 𝑧1 = 𝑧𝑀  (1) 

Min 𝑧2 = (𝑧𝑀- 𝑧𝑃) (2) 

Max 𝑧3 = (𝑧𝑂- 𝑧𝑀) (3) 

Equation (1) to Equation (3) are 

equivalent to simultaneously maximizing the 

most likely value of the total profit, 

minimizing the risk of obtaining a lower profit 

(area A of the possibility distribution in Figure 

3), and maximizing the possibility of obtaining 

a higher profit (area B of the possibility 

distribution in Figure 3). 

 

Defuzzification Method 

Convert uncertain constraints into 

crisp constraints using the weighted 

average method 

We consider the situation where the 

number of returned products and customer 

demand are uncertain and have the triangular 

distribution with the most likely and least 

possible values. The problem is to obtain crisp 

numbers for the uncertainty of the number of 

returned products, and customer demand by 

applying the weighted average method to 

convert them into crisp values, where 𝑤1 , 𝑤2 , 

and 𝑤3  denote the weight of the pessimistic, 

most likely, and optimistic cases respectively. 

The weights 𝑤1 , 𝑤2 , and 𝑤3 can be determined 

by the experience of decision makers and  

𝑤1 +𝑤2 + 𝑤3  = 1. 

Convert uncertain constraints into 

crisp constraints using fuzzy ranking  

We consider the situation where the lead 

times of delivery of the returned products, 

ordering new components, and production 

processes are uncertain under the triangular 

distribution. This step obtains crisp constraints 

from the lead times’ variability. Fuzzy ranking 

is applied to convert them into crisp constraints. 

 
 

Figure 3.  Strategy for maximizing the imprecise 

 objective function 
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Specify the Linear Membership Functions 

for the Three New Objective Functions, and 

Then Convert the Auxiliary MOLP 

Problem Into an Equivalent Linear 

Programming Model Using the Fuzzy 

Decision Method 

Find the lower bound and the upper 

bound of each objective. 

To convert the auxiliary MOLP problem 

into an equivalent single-goal linear 

programming problem, the fuzzy decision 

method from Bellman and Zadeh (1970), and 

the Zimmermann (1978)  fuzzy programming 

method are employed.  The Negative Ideal 

Solution ( NIS)  and Positive Ideal Solution 

( PIS)  of the three objective functions from 

Step two (above)  are required.  The three new 

crisp objective functions of the multi objective 

linear programming are: 
 

𝑧1
𝑃𝐼𝑆 = max 𝑧𝑀, 𝑧1

𝑁𝐼𝑆 = min 𝑧𝑀 (4) 

𝑧2
𝑃𝐼𝑆 = min (𝑧𝑀- 𝑧𝑃), 𝑧2

𝑁𝐼𝑆 = max (𝑧𝑀- 𝑧𝑃) 

 (5) 

𝑧3
𝑃𝐼𝑆 = max (𝑧𝑂- 𝑧𝑀), 𝑧3

𝑁𝐼𝑆 = min (𝑧𝑂- 𝑧𝑀) 

 (6) 

 

Find the corresponding linear 

membership function of each objective 

function 

The corresponding linear membership 

function for each objective function is defined 

by: 

𝑓1(𝑧1) = {

1              ,  𝑧1 < 𝑧1
𝑃𝐼𝑆,

𝑧1−𝑧1
𝑁𝐼𝑆

𝑧1
𝑃𝐼𝑆−𝑧1

𝑁𝐼𝑆 , 𝑧1
𝑁𝐼𝑆 ≤ 𝑧1 ≤ 𝑧1

𝑃𝐼𝑆 ,

0              , 𝑧1 > 𝑧1
𝑁𝐼𝑆 ,

 

 (7) 

 

𝑓2(z2) = {

1              ,   𝑧2 < 𝑧2
𝑃𝐼𝑆 ,

𝑧2
𝑁𝐼𝑆−𝑧2

𝑧1
𝑁𝐼𝑆−𝑧2

𝑃𝐼𝑆 ,   𝑧2
𝑃𝐼𝑆 ≤ 𝑧2 ≤ 𝑧2

𝑁𝐼𝑆,

0              , 𝑧2 > 𝑧2
𝑁𝐼𝑆

 

 (8) 

 

𝑓3(𝑧3) = {

1              ,  𝑧3 < 𝑧3
𝑃𝐼𝑆 ,

𝑧3−𝑧3
𝑁𝐼𝑆

𝑧3
𝑃𝐼𝑆−𝑧3

𝑁𝐼𝑆 , 𝑧3
𝑁𝐼𝑆 ≤ 𝑧3 ≤ 𝑧3

𝑃𝐼𝑆,

0              , 𝑧3 > 𝑧3
𝑁𝐼𝑆.

 

 (9) 

Each linear membership function is 

obtained by using a case study to specify an 

imprecise objective value in an interval (0-1) . 

Figure 4 shows a graph of the linear 

membership functions for Equation (7)  and 

Equation (9). Figure 5 shows a graph of the 

linear membership functions for Equation (8). 

Find the maximum overall satisfaction 

The fuzzy decision method from Bellman 

and Zadeh (1970), and Zimmermann (1978) is 

used to formulate a single goal linear 

programming model, which is the maximin of  

the satisfaction values from the three above 

mentioned objective functions. 

Max λ 

Subject to 

λ ≤ 𝑓𝑖(𝑧𝑖) , i = 1,2,3 

0 ≤ λ ≤ 1 

i = number of linear membership functions of 

each objective. 

Case Study 

For the case study of the production planning 

and inventory control optimization in a hybrid 

manufacturing/remanufacturing in an uncertain 

 
 

Figure 4.  Linear membership function of 𝒛𝟏 and 

 𝒛𝟑 

 

 

 
 

Figure 5. Linear membership function of 𝒛𝟐 
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environment, Figure 6 shows a general flow 

diagram of the system.  This system requires 

two types of components for production:  

new components and returned components. 

Returned components indicate the used parts 

that are returned from customers.  Returned 

components use the periodic review reorder 

cycle policy to control their inventory, as 

returned components arrive in a batch at the 

beginning of each week with a varying lead 

time from zero to one week (following the 

triangular distribution). A specified percentage 

of the returned components need to be 

disposed of to prevent surplus inventory. 

Accepted returned components are then stored 

in the Returned Component Inventory (RCI), 

waiting for the remanufacturing processes.  

The remanufacturing time of the returned 

components varies from zero to one week 

(following the triangular distribution). The 

remanufacturing cost per unit can be more 

expensive than the manufacturing cost per unit 

depending on the quality of the returned 

components. As a result, poor-quality 

components could incur more production 

expenses. 

There is also a New Component 

Inventory (NCI), which is also reviewed every 

week. The ordering lead time of the new 

components varies from one to two weeks 

(following the triangular distribution). After 

arrival, these new components are kept in the 

NCI before they are used in the manufacturing 

processes.  Because of the uncertainty of the 

production lead time, it can vary from 1 to 2 

weeks (following the triangular distribution) . 

Finished products are then stored in a Finished 

Product Inventory (FPI), waiting for the 

customer demand. 

Customer demand arrives every week. 

Lost sales occur when there are not enough 

finished products.  Otherwise, customers pick 

up the finished products from the FPI.  

For finished products, the quality in 

remanufacturing and manufacturing is 

considered to be the same. When the inventory 

level of the FPI is reduced, the system triggers 

the production of products.  The purpose is to 

restore the inventory level of the FPI.  The 

initial inventory quantity is equal to the FPI 

target inventory level, which is one of the 

decision variables.  Two inventory control 

policies (Priority-To-Remanufacturing vs 

Priority-To-Manufacturing) are imposed here 

to decide which process (remanufacturing vs 

manufacturing) has a higher priority. As shown 

in Figure 7, the operational details of each 

policy are presented as follows: 

 

Priority-To-Remanufacturing (PTR) 

With priority-to-remanufacturing, returned 

components are given a higher priority than 

new components unless they are not available. 

Manufacturing production is started only when 

there are not enough returned components in 

the RCI.  The controlled decision variables in 

this policy include Disposal Rate ( 𝑑𝑖𝑠𝑅) , 

Target Inventory Level of NCI (𝑇𝑖𝑛𝑣𝑁) , and 

Target Inventory Level of FPI (𝑇𝑖𝑛𝑣𝐹). Some 

returned components are disposed of 

depending on 𝑑𝑖𝑠𝑅.  New components are 

ordered up to 𝑇𝑖𝑛𝑣𝑁  in every review cycle  

( a week). The initial inventory level of NCI is 

equal to  𝑇𝑖𝑛𝑣𝑁.  When finished products are 

sold to customers, upstream components are 

pulled to replenish the taken products by filling 

 
 
Figure 6. General flowchart of a hybrid 

 manufacturing/remanufacturing system 

 

 

 
 
Figure 7.  Flow diagram of the PTR and the 

 PTM policies 
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the FPI up to 𝑇𝑖𝑛𝑣𝐹 where the initial inventory 

level of FPI is also equal to 𝑇𝑖𝑛𝑣𝐹. 

 

Priority-To-Manufacturing (PTM) 

In contrast to PTR, new components have 

a higher priority over returned components. 

Returned components are used for production 

only when there is a shortage of new 

components.  Inventories are controlled by the 

decision variables, similar to PTR. 

The system is investigated for one year 

( or 50 weeks) .  With 5 days a week and 8 h a 

day, there are 120,000 min a year.  Table 1 

presents the cost structure.  Other relevant 

information is described below. 

Other Relevant Information 

1. The maximum levels of the target 

inventory for the new component inventory 

and finished product inventory depend on the 

maximum of the production capacity, which 

fluctuates under the normal distribution in an 

uncertain environment. The mean and standard 

deviation of the production capacity is 150 and 

20 units per week, respectively. 

2. The overall customer service level in 

this case study is set to at least 85%. 

3. The profits of all policies in all 

scenarios must be higher than or at least equal 

to $0. 

4. The returned component ratio is set to 

0.6. This is the ratio of arriving returned 

components per total customer demand.  Both 

arriving returned components and total 

customer demand fluctuate under the normal 

distribution in an uncertain environment.  The 

mean and standard deviation for total customer 

demand is 100 and 20 units per week, and 60 

and 10 units per week for the returned 

components, respectively. 

5. A supplier has the ability to supply 

new components, but not more than 70 units 

per week. 

6. The holding cost is 40% per year for 

a unit (i. e., new component cost, returned 

component preparation cost, finished product 

cost) .  It is assumed that the finished product 

holding costs per unit of both manufacturing 

(𝐹𝐻𝑚𝑦
̃ ) and remanufacturing (𝐹𝐻𝑟𝑦̃) products 

are the same based on the average unit cost 

value from both types of products. 

7. The symbol “⁓” refers to ambiguous 

data that are determined to be fuzzy in this 

study. 

 

LP Formulation (Deterministic case) 

The mathematical model presented in this 

case study is formulated as a linear 

programming model.  Notations and the 

analytical model formulation are presented 

below where t refers to the time in weeks, 

ranging from 1 to 50. 

Parameters 

Production Planning Parameters (units) 

𝑅𝑒𝐴𝑡  = Arriving returned components  

  in week 𝑡̃ 
𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡 = Returned components (disposed 

  of) in week t 

𝑅0𝑡 =  Returned components accepted 

  to inventory in week t 

Table 1. Cost structure 
 

Parameter Notation Cost ( $ per 

unit) 

Returned component 

disposal cost 
𝑅𝐷𝑢 0 

New component cost 𝑁𝐶𝑢̃ (26,30,35) 

Returned component 
preparation cost 

𝑅𝑃𝑢̃ (4,5,7) 

Manufacturing cost 𝑀𝑀𝑢̃ (9,10,13) 

Remanufacturing 

cost 
𝑅𝑀𝑢̃ ( ( 9* ( 2-  y) , 

(10*(2- y)), 
 (13*(2-y))  

Returned component 

holding cost 
𝑅𝐻𝑦̃ (1.6,2,2.4) 

per year 

New component 
holding cost 

𝑁𝐻𝑦̃ (10,12,15) 
per year 

Finished product 

holding cost ( from 
returned components) 

𝐹𝐻𝑟𝑦̃ (9.5,11,14) 

per year 

Finished product 

holding cost ( from 

new components) 

𝐹𝐻𝑚𝑦
̃  (9.5,11,14) 

per year 

Lost sales cost 𝐿𝑆𝑢̃ (45,50,58) 

Sales price 𝑃𝑟𝑖𝑐𝑒𝑢̃  (45,50,58) 

Remark:  y is the yield of returned components, which is 

set equal to (0.3,0.65,1).  For example, the remanufacturing 
cost of the most likely case is calculated as (10*(2-0.65)) 
= $ 13.5 per unit 
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𝑅𝐶𝐼𝑡  =  Ending inventory level in the   

  Returned Component Inventory 

  (RCI) in week t 

𝑅1𝑡 = Returned components sent to  

  remanufacturing in week 𝑡̃ 
𝑅2𝑡 = Finished products from  

  remanufacturing in week t 

𝐹𝑃𝐼𝑟𝑡  = Ending inventory level in  

  Finished Product Inventory  

  ( FPI)  from remanufacturing in  

  week t 

𝑅3𝑡 = Finished products from  

  remanufacturing sent to customer 

  in week t 

𝑜𝑟𝑑𝑒𝑟𝑡 =  New components ordered in  

  week 𝑡̃ 
𝑁𝐶𝐼𝑡  =  Ending inventory level in the  

  New Component Inventory  

  (NCI) in week t 

𝑀1𝑡 = New components sent to  

  manufacturing in week 𝑡̃ 
𝑀2𝑡 = Finished products from  

  manufacturing in week t 

𝐹𝑃𝐼𝑚𝑡  = Ending inventory level in the  

  Finished Product Inventory  

  (FPI)  from manufacturing in  

  week t 

𝑀3𝑡 = Finished products from  

  manufacturing sent to customer  

  in week t 

𝐹𝑃𝐼𝑡 = Ending inventory level in the  

  Finished Product Inventory  

  (FPI) in week t 

𝐷𝑡   =  Customer demand in week t 

𝐿𝑆𝑡   =  Lost sales in week t  

𝑃𝐶𝑡 =  Production capacity to produce  

  products in week t 

 

Cost Parameters ($) 

𝑅𝐷 = Total returned component  

  disposal cost 

𝐿𝑆 =  Total lost sales cost 

𝑅𝑀𝑀 = Total remanufacturing and  

  manufacturing cost 

𝑁𝐶 =  Total new component cost 

𝑅𝑃 =  Total returned component cost 

𝐶𝐻 =  Total component holding cost 

𝐹𝐻 =  Total finished product holding  

  cost 

𝑇𝐶 =  Total costs 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒  = Total income from selling  

  finished products 

𝑃𝑟𝑜𝑓𝑖𝑡 =  Total income after deducting  

  total costs 

 

Decision Variables 

𝑇𝑖𝑛𝑣𝑁 = Target inventory level in NCI  

  (units) 

𝑇𝑖𝑛𝑣𝐹 = Target inventory level in FPI  

  (units) 

𝑑𝑖𝑠𝑅𝑡  =  Disposal rate in week t (%) 

 

Objective Function: 

Maximize 

𝑃𝑟𝑜𝑓𝑖𝑡̃  = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒̃  - 𝑇𝐶̃ (10) 

 

subject to 

inventory balance constraints: 

𝑅𝑒𝐴𝑡̃̃ = 𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡  +  𝑅0𝑡     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (11) 

𝑅2𝑡 = 𝑅1𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡      (12) 

𝑀2𝑡 =  {
0                    𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                   
𝑀1𝑡̃−1          𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50

 

 (13) 

𝑅3𝑡 + 𝑀3𝑡 + 𝐿𝑆𝑡 = 𝐷𝑡̃     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (14) 

𝐹𝑃𝐼𝑡  = 𝐹𝑃𝐼𝑟𝑡  +  𝐹𝑃𝐼𝑚𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (15) 

𝑃𝐶𝑡̃ ≥  𝑅1𝑡 + 𝑀1𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (16) 

𝑅𝐶𝐼𝑡  = 

{
𝑅0𝑡 − 𝑅1𝑡                              𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                          
𝑅𝐶𝐼𝑡−1  + 𝑅0𝑡 − 𝑅1𝑡̃          𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50       

 (17) 
𝑁𝐶𝐼𝑡  = 

{
𝑇𝑖𝑛𝑣𝑁 − 𝑀1𝑡̃                                      𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                    
𝑁𝐶𝐼𝑡−1  +  𝑜𝑟𝑑𝑒𝑟𝑡̃−1  −  𝑀1𝑡̃         𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50 

 (18) 
𝐹𝑃𝐼𝑟𝑡  = 

{
𝑅2𝑡 − 𝑅3𝑡                              𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                   
𝐹𝑃𝐼𝑟𝑡−1 + 𝑅2𝑡 − 𝑅3𝑡          𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50

 

 (19) 
𝐹𝑃𝐼𝑚𝑡 = 

{
𝑇𝑖𝑛𝑣𝐹 − 𝑀3𝑡                           𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                   
𝐹𝑃𝐼𝑚𝑡−1 +𝑀2𝑡 − 𝑀3𝑡          𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50

 

 (20) 

 

where 𝑅𝑒𝐴𝑡̃ , 𝐷𝑡̃ , and 𝑡̃ are uncertain 

coefficients with the triangular distribution. 

The objective function (Constraint (10)) 

maximizes the profit.  Constraint (11) and 

Constraint (12) are inventory balance 

constraints.  For Constraint (11), some of the 

returned components are disposed of, and the 

rest is sent to the Returned Component 

Inventory (RCI).  Constraint (12) ensures that 
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the quantity of returned components sent to 

remanufacturing processes is the same quality 

as the finished products coming out of the 

remanufacturing processes within the same 

week and the remanufacturing time is 

negligible.  Constraint (13) states that the 

manufacturing lead time is one week.  For 

Constraint (14), customer demand is satisfied 

by the finished products, otherwise, lost sales 

occur.  For Constraint (15), total units of 

finished products in remanufacturing and 

manufacturing are combined in the FPI. 

Constraint (16)  describes the constraint of 

production capacity for remanufacturing and 

manufacturing, in which the number of 

components sent to the manufacturing process 

must be less than or equal to the production 

capacity.  Constraints ( 17)  to ( 20)  describe  

the constraints for returned components,  

new components, finished products for 

remanufacturing, and finished products for 

manufacturing, respectively.  The ending 

inventory is equal to the previous ending 

inventory (week), plus the incoming inventory, 

minus the outgoing inventory.  In the first 

week, the ending inventory is equal to the 

incoming inventory, minus the outgoing 

inventory. 

 

The PTR constraints: 

 
𝑅𝐶𝐼𝑡=

{

0                                        𝑖𝑓 𝐷𝑡̃  ≥  𝑅0𝑡                         𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                   

0                                        𝑖𝑓 𝐷𝑡̃  ≥  𝑅0𝑡 + 𝑅𝐶𝐼𝑡−1     𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50
𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                           

 

 (21) 

𝑅0𝑡 = 

{
𝐷𝑡̃               𝑖𝑓 𝐷𝑡̃ <  𝑅𝑒𝐴𝑡̃                                               𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡

𝑅𝑒𝐴𝑡̃          𝑖𝑓 𝑅𝑒𝐴𝑡̃  <  𝐷𝑡̃                                              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡

 (22) 

𝑅1𝑡 = 

{
𝐷𝑡̃              𝑖𝑓 𝐷𝑡̃ <  𝑅0𝑡 + 𝑅𝐶𝐼𝑡−1                                     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡
𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡

 (23) 

 

where 𝑅𝑒𝐴𝑡̃, and 𝐷𝑡̃  are uncertain coefficients 

with the triangular distribution.  Constraints 

(21) and (23) describe the policies of priority-

to- remanufacturing.  All returned components 

in the RCI are sent to remanufacturing when 

the customer demand is greater than the 

incoming returned components plus the 

number of the previous week’s ending 

inventory.  Otherwise the number of returned 

components sent to remanufacturing is equal to 

the customer demand. 

The PTM constraints: 

 

𝑁𝐶𝐼𝑡 = 

{

0                      𝑖𝑓 𝐷𝑡̃  ≥ 𝑇𝑖𝑛𝑣𝑁             𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                   

𝑜𝑟𝑑𝑒𝑟𝑡̃−1               𝑖𝑓 𝐷𝑡̃ ≥  𝑁𝐶𝐼𝑡−1    𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50
𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                           

 (24) 

𝑀1𝑡 = 

{
𝐷𝑡̃                𝑖𝑓 𝐷𝑡̃ < 𝑁𝐶𝐼𝑡−1                    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                       
𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                       

 (25) 

 

where 𝐷𝑡̃  are uncertain coefficients with the 

triangular distribution. Constraints (24) and (25) 

describe the policies of the priority- to-

manufacturing, where the number of new 

components in the NCI that is sent to 

manufacturing is equal to the customer 

demand when it is less than the number of new 

components.  Otherwise, all of the returned 

components are sent to manufacturing.  The 

ending inventory in the NCI is equal to the 

incoming orders from the previous week when 

the customer demand is greater than the 

previous period’s ending inventory.  

 

Economic constraints: 

 
𝑅𝐷 = ∑ 𝑅𝐷_𝑢 ∗ 𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  

 (26) 

𝐿𝑆̃ = ∑ 𝐿𝑆_𝑢 ∗ 𝐿𝑆𝑡̃𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  (27) 

𝑅𝑀𝑀̃ =  ∑ 𝑅𝑀_𝑢̃ ∗ 𝑅1𝑡𝑡 + ∑ 𝑀𝑀_𝑢̃ ∗ 𝑀1𝑡𝑡 +
 𝑀𝑀𝑢̃ ∗ 𝑇𝑖𝑛𝑣𝐹     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  (28) 

𝑁𝐶̃ =  ∑ 𝑁𝐶𝑢̃ ∗ (𝑜𝑟𝑑𝑒𝑟𝑡  +  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑁𝐶𝐼 +𝑡

𝑇𝑖𝑛𝑣𝐹)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡           (29) 

𝑅𝑃̃  =  ∑ 𝑅𝑃_𝑢̃ ∗ 𝑅0𝑡       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑡  (30) 

𝐶𝐻̃ =  (
𝑅𝐻_𝑦

50

̃
∗ (𝑅01 + 𝑅𝐶𝐼1)) /2 +

 ∑ (
𝑅𝐻_𝑦

50

̃
∗ (𝑅0𝑡 + 𝑅𝐶𝐼𝑡−1 + 𝑅𝐶𝐼𝑡))

50
𝑡=2 /2 +

 (
𝑁𝐻_𝑦

50

̃
∗ (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑁𝐶𝐼 + 𝑁𝐶𝐼1)) /2 +

∑ (
𝑁𝐻_𝑦

50

̃
∗ (𝑜𝑟𝑑𝑒𝑟𝑡−1 +𝑁𝐶𝐼𝑡−1 + 𝑁𝐶𝐼𝑡)) /2

50
𝑡=2

 (31) 
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𝐹𝐻̃ =  (
𝐹𝐻𝑟_𝑦

50

̃
∗(𝑅21 + 𝐹𝑃𝐼𝑟1)) /2 +

∑ (
𝐹𝐻𝑟_𝑦

50

̃
∗(𝑅2𝑡 + 𝐹𝑃𝐼𝑟𝑡−1 + 𝐹𝑃𝐼𝑟𝑡)) /2 +

50
𝑡=2

(
𝐹𝐻𝑚_𝑦

50

̃
∗(𝑀21 + 𝑇𝑖𝑛𝑣𝐹 + 𝐹𝑃𝐼𝑚1)) /2 +

∑ (
𝐹𝐻𝑚_𝑦

50

̃
∗(𝑀2𝑡 + 𝐹𝑃𝐼𝑚𝑡−1 + 𝐹𝑃𝐼𝑚𝑡)) /2

50
𝑡=2  

 (32) 

𝑇𝐶̃ =  𝑅𝐷̃ + 𝐿𝑆̃ + 𝑅𝑀𝑀̃ + 𝑁𝐶̃ + 𝑅𝑃̃ + 𝐶𝐻̃ +
𝐹𝐻̃  (33) 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒̃   = ∑ 𝑃𝑟𝑖𝑐𝑒_𝑢̃ ∗ (𝑅3𝑡 +𝑡

𝑀3𝑡)      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  (34) 

𝑃𝑟𝑜𝑓𝑖𝑡̃  = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒̃ −𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠̃   (35) 

 

where 𝐿𝑆𝑡̃, 𝑅𝑀_𝑢̃, 𝑀𝑀_𝑢̃, 𝑁𝐶𝑢̃, 𝑅𝑃_𝑢̃, 𝑁𝐻_𝑦̃, 

𝑅𝐻_𝑦̃ , 𝐹𝐻𝑟_𝑦̃ , 𝐹𝐻𝑚_𝑦̃ , and 𝑃𝑟𝑖𝑐𝑒_𝑢̃  are 

uncertain coefficients with the triangular 

distribution. Constraints (26) to (32) describe 

the cost parameters to calculate the total cost 

(TC). The TC consists of the Returned 

Component Disposal Cost (𝑅𝐷), Lost Sales Cost 

( 𝐿𝑆 ), Remanufacturing and Manufacturing 

Cost (𝑅𝑀𝑀 ), New Component Cost (𝑁𝐶) , 

Returned Component Preparation Cost (𝑅𝑃) , 

Component Holding Cost (𝐶𝐻) , and Finished 

Product Holding Cost (𝐹𝐻). All holding costs 

are calculated based on the average inventory 

level.  Constraint ( 35)  states that the profit is 

calculated by the revenue (Constraint (34)) 

minus the total costs (Constraint (33)). 

 

Decision Variables: 
𝑜𝑟𝑑𝑒𝑟𝑡̃ = 𝑇𝑖𝑛𝑣𝑁 –  𝑁𝐶𝐼𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (36) 

𝑅1𝑡  +  𝑀1𝑡 = 𝑇𝑖𝑛𝑣𝐹 −  𝐹𝑃𝐼𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 
 (37) 

𝑑𝑖𝑠𝑅𝑡  =  100 ∗ (𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡 𝑅𝑒𝐴𝑡⁄ )     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡
 (38) 

 

For Equation (36), the order of new 

components depends on 𝑇𝑖𝑛𝑣𝑁. Equation (37) 

shows that the total number of new and 

returned components sent to production is 

equal to the number of finished products. 

Equation (38)  describes the disposal rate, which 

is the percentage of disposed of components 

over the returned components. 

 

Fuzzy Linear Programming (FLP) 

We develop the fuzzy linear 

programming method to solve this problem 

under uncertainty by developing three new 

crisp objective functions of the multi-objective 

linear programming (MOLP)  to replace 

Equations (1)-(3) 
 

Max 𝑧1  =  𝑃𝑟𝑜𝑓𝑖𝑡𝑀 

 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑀 − 𝑇𝐶𝑀 

 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑀- 𝑅𝐷𝑀  +  𝐿𝑆𝑀  +  

  𝑅𝑀𝑀𝑀  +  𝑁𝐶𝑀  +  𝑅𝑃𝑀  +  𝐶𝐻𝑀  +  

  𝐹𝐻𝑀 (39) 

Min 𝑧2  =  𝑃𝑟𝑜𝑓𝑖𝑡𝑃−𝑀 

 =  𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑃−𝑀 − 𝑇𝐶𝑃−𝑀 

 =  𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑃−𝑀 − 𝑅𝐷𝑃−𝑀 +   

  𝐿𝑆𝑃−𝑀 + 𝑅𝑀𝑀𝑃−𝑀 + 𝑁𝐶𝑃−𝑀 +  

  𝑅𝑃𝑃−𝑀 + 𝐶𝐻𝑃−𝑀 + 𝐹𝐻𝑃−𝑀  

   (40) 

Max 𝑧3 = 𝑃𝑟𝑜𝑓𝑖𝑡𝑀−𝑂 

 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑀−𝑂 − 𝑇𝐶𝑀−𝑂 

 =  𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑀−𝑂 − 𝑅𝐷𝑀−𝑂 +   

  𝐿𝑆𝑀−𝑂 + 𝑅𝑀𝑀𝑀−𝑂 + 𝑁𝐶𝑀−𝑂 +  

 𝑅𝑃𝑀−𝑂 + 𝐶𝐻𝑀−𝑂 + 𝐹𝐻𝑀−𝑂  

   (41) 
 

As the demand of customers, quantity of 

returned components, and production capacity 

are fuzzy, a defuzzification method using the 

weighted average method is applied to solve 

the imprecise data. Constraints (11), (14), (16), 

(21), (22), (23), (24), and (25) need to be 

transformed into crisp constraints as follows: 
 

𝑤1𝑅𝑒𝐴𝑡̃
𝑃+  𝑤2𝑅𝑒𝐴𝑡

𝑀+  𝑤3𝑅𝑒𝐴𝑡
𝑂=  𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡  +

 𝑅0𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (42) 

𝑅3𝑡 + 𝑀3𝑡 + 𝐿𝑆𝑡 =  𝑤1𝑑𝑡
𝑃+  𝑤2𝑑𝑡

𝑀+ 

𝑤3𝑑𝑡
𝑂     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  (43) 

𝑤1𝑃𝐶𝑡
𝑃 + 𝑤2𝑃𝐶𝑡

𝑀 + 𝑤3𝑃𝐶𝑡
𝑂 ≥   𝑅1𝑡 + 

𝑀1𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (44) 

𝑅𝐶𝐼𝑡= 

{

0         𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂  ≥  𝑅0𝑡                         𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                   

0        𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂  ≥  𝑅0𝑡 + 𝑅𝐶𝐼𝑡−1     𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50

𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                           

 

 (45) 

𝑅0𝑡= 

{
  
 

  
 
𝑤1𝐷𝑡

𝑃 + 𝑤2𝐷𝑡
𝑀 + 𝑤3𝐷𝑡

𝑂                                                                                              

              𝑖𝑓  𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂 < 𝑤1𝑅𝑒𝐴𝑡

𝑃 + 𝑤2𝑅𝑒𝐴𝑡
𝑀 + 𝑤3𝑅𝑒𝐴𝑡

𝑂    
                                                                                       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡

𝑤1𝑅𝑒𝐴𝑡
𝑃 + 𝑤2𝑅𝑒𝐴𝑡

𝑀 + 𝑤3𝑅𝑒𝐴𝑡
𝑂                                                                               

           𝑖𝑓 𝑤1𝑅𝑒𝐴𝑡
𝑃 + 𝑤2𝑅𝑒𝐴𝑡

𝑀 + 𝑤3𝑅𝑒𝐴𝑡
𝑂  <   𝑤1𝐷𝑡

𝑃 + 𝑤2𝐷𝑡
𝑀 + 𝑤3𝐷𝑡

𝑂 
                                                                                      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡

 (46) 
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𝑅1𝑡= 

{

𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂                                                                      

           𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂 <  𝑅0𝑡 + 𝑅𝐶𝐼𝑡−1    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡

𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡

 (47) 

𝑁𝐶𝐼𝑡= 

{

0                       𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂  ≥ 𝑇𝑖𝑛𝑣𝑁        𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                   

𝑜𝑟𝑑𝑒𝑟𝑡−1       𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂  ≥  𝑁𝐶𝐼𝑡−1       𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50

𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                           

 (48) 

𝑀1𝑡=
{
𝑤1𝐷𝑡

𝑃 + 𝑤2𝐷𝑡
𝑀 + 𝑤3𝐷𝑡

𝑂           𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂 < 𝑁𝐶𝐼𝑡−1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  

𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                       

 (49) 

 

where 𝑤1  + 𝑤2  + 𝑤3  = 1 and the weights of 𝑤1 , 

𝑤2 , and 𝑤3 are determined by the experience 

and knowledge of decision makers. 

As the production lead time, ordering 

lead time, and returned component delivery 

time are fuzzy, a defuzzification method using 

fuzzy ranking is applied to solve these 

imprecise data.  Constraints ( 12) , ( 13) , ( 18) , 

and ( 42)  need to be transformed into crisp 

constraints as follows: 

For constraint (12): 

When the remanufacturing lead time is 1 week 

 
𝑅21 ≤ 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  (50) 

𝑅2𝑡 ≤ 𝑅1𝑡−1     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  (51) 

 

When the remanufacturing lead time is 

negligible 

 
𝑅2𝑡 ≤ 𝑅1𝑡     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (52) 

 

Constraints (50)  and (51)  show the case 

when the remanufacturing processing time is 1 

week.  As a result, in the first week, there are 

no finished product from the remanufacturing 

processes.  Constraint (52)  shows the case when 

the remanufacturing processing time is zero. 

For constraint (13): 

 

When the manufacturing processing time is 2 

weeks 

𝑀2𝑡 ≤  {
0          
0          
𝑀1𝑡−2

𝑤ℎ𝑒𝑟𝑒 𝑡 = 1          
𝑤ℎ𝑒𝑟𝑒 𝑡 = 2          

         𝑤ℎ𝑒𝑟𝑒 𝑡 = 3 𝑡𝑜 𝑡 = 50
 

 (53) 

 

When the manufacturing processing time is 1 

week. 

𝑀2𝑡 ≤  {
0                    𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                   
𝑀1𝑡−1          𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50

 

 (54) 

 

Constraint (53)  shows the case when the 

manufacturing processing time is 2 weeks. As 

a result, there are no finished products from the 

manufacturing processes in week 1 and week 

2 because the manufacturing process takes 2 

weeks to produce.  Constraint ( 54)  shows the 

case when the manufacturing lead time is 1 

week.  

 

For constraint (18) 

When the order lead time is 2 weeks 
𝑁𝐶𝐼𝑡     ≤ 

{

𝑇𝑖𝑛𝑣𝑁 − 𝑀11                           
𝑁𝐶𝐼1 − 𝑀12                              
𝑁𝐶𝐼𝑡−1  +  𝑜𝑟𝑑𝑒𝑟𝑡−2  −  𝑀1𝑡  

 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1            
 𝑤ℎ𝑒𝑟𝑒 𝑡 = 2            

         𝑤ℎ𝑒𝑟𝑒 𝑡 = 3 𝑡𝑜 𝑡 = 50 

 (55) 

When the order lead time is 1 week 
𝑁𝐶𝐼𝑡    ≤ 

{
𝑇𝑖𝑛𝑣𝑁 − 𝑀1𝑡                                      𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                    
𝑁𝐶𝐼𝑡−1  +  𝑜𝑟𝑑𝑒𝑟𝑡−1  −  𝑀1𝑡            𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50 

 (56) 
 

Constraint (55)  shows the case when the 

order lead time is 2 weeks.  There are no new 

components in week 1 and week 2 since the 

ordering process takes 2 weeks for delivery. 

Constraint (56) shows the case when the order 

lead time is 1 week. New components from the 

ordering process in week 1 will arrive in week 

2.  

For constraint (42): 

When the returned components lead time is 1 

week 

 
𝑅01 <= 0 (57) 

𝑤1𝑅𝑒𝐴𝑡−1
𝑃 +  𝑤2𝑅𝑒𝐴𝑡−1

𝑀 +  𝑤3𝑅𝑒𝐴𝑡−1
𝑂 ≥ 

 𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡  + 𝑅0𝑡   𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50 

 (58) 

 

When the returned components lead time is 

negligible (assuming 0 weeks). 
 

𝑤1𝑅𝑒𝐴𝑡
𝑃+  𝑤2𝑅𝑒𝐴𝑡

𝑀+  𝑤3𝑅𝑒𝐴𝑡
𝑂 ≥  𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡  +

 𝑅0𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (59) 
 

Constraints (57) and (58) show a “worst 

case” that the returned component lead time is 

1 week. As a result, in the first week, there are 
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no returned components since it takes one 

week for delivery. Constraint (59) shows that 

in the case when the returned component lead 

time is zero, some of the returned components 

are disposed of depending on the disposal rate 

in every week, and the rest is sent to the 

Returned Component Inventory (RCI). 

The linear membership functions for the 

three new objective functions are specified, 

and we convert the auxiliary MOLP problem 

into an equivalent linear programming model 

by the fuzzy decision method. 

To find the Negative Ideal Solution (NIS) 

and the Positive Ideal Solution (PIS)  of each 

objective, the fuzzy decision method as 

presented in Equations (4) to (6) is introduced 

to solve MOLP by finding the corresponding 

linear membership function of each objective 

function. 
 

𝑧1
𝑃𝐼𝑆 = max 𝑃𝑟𝑜𝑓𝑖𝑡𝑀, 𝑧1

𝑁𝐼𝑆 = min 𝑃𝑟𝑜𝑓𝑖𝑡𝑀 

 (60) 

𝑧2
𝑃𝐼𝑆 =  min 𝑃𝑟𝑜𝑓𝑖𝑡𝑃−𝑀, 𝑧2

𝑁𝐼𝑆 =  max 𝑃𝑟𝑜𝑓𝑖𝑡𝑃−𝑀

 (61) 

𝑧3
𝑃𝐼𝑆 = max 𝑃𝑟𝑜𝑓𝑖𝑡𝑀−𝑂, 𝑧3

𝑁𝐼𝑆 = min 𝑃𝑟𝑜𝑓𝑖𝑡𝑀−𝑂

 (62) 

 

Equations ( 7)  to ( 9)  are applied to the 

corresponding linear membership functions 

for each objective function in this case study as 

follows: 

 

𝑓1(𝑧1) =

{
 
 

 
 1                   ,  𝑧1 < 𝑧1

𝑃𝐼𝑆,

𝑧1 − 𝑧1
𝑁𝐼𝑆

𝑧1
𝑃𝐼𝑆 − 𝑧1

𝑁𝐼𝑆 ,  𝑧1
𝑁𝐼𝑆 ≤ 𝑧1 ≤ 𝑧1

𝑃𝐼𝑆 ,

0                   ,  𝑧1 > 𝑧1
𝑁𝐼𝑆,

 

𝑓2(z2) =

{
 
 

 
 1                   ,           𝑧2 < 𝑧2

𝑃𝐼𝑆,

𝑧2
𝑁𝐼𝑆 − 𝑧2

𝑧1
𝑁𝐼𝑆 − 𝑧2

𝑃𝐼𝑆 ,           𝑧2
𝑃𝐼𝑆 ≤ 𝑧2 ≤ 𝑧2

𝑁𝐼𝑆 ,

0                   ,           𝑧2 > 𝑧2
𝑁𝐼𝑆,   

 

𝑓3(𝑧3) =

{
 
 

 
 1                   ,  𝑧3 < 𝑧3

𝑃𝐼𝑆 ,

𝑧3 − 𝑧3
𝑁𝐼𝑆

𝑧3
𝑃𝐼𝑆 − 𝑧3

𝑁𝐼𝑆 ,  𝑧3
𝑁𝐼𝑆 ≤ 𝑧3 ≤ 𝑧3

𝑃𝐼𝑆 ,

0                   ,  𝑧3 > 𝑧3
𝑁𝐼𝑆 .

 

 

Find the maximum overall satisfaction: 

Max λ 

Subject to 

 

λ ≤ 𝑓𝑖(𝑧𝑖), where i = 1,2,3 

 

i =  number of linear membership function of 

each objective. 

 
0 ≤ λ ≤ 1 

𝑅01 <= 0, 

𝑤1𝑅𝑒𝐴𝑡−1
𝑃 +  𝑤2𝑅𝑒𝐴𝑡−1

𝑀 +  𝑤3𝑅𝑒𝐴𝑡−1
𝑂 ≥ 

 𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡  + 𝑅0𝑡   𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50, 
𝑤1𝑅𝑒𝐴𝑡

𝑃+  𝑤2𝑅𝑒𝐴𝑡
𝑀+  𝑤3𝑅𝑒𝐴𝑡

𝑂 ≥  𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡  +
 𝑅0𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,  
𝑅21 ≤ 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,  
𝑅2𝑡 ≤ 𝑅1𝑡−1     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,  
𝑅2𝑡 ≤ 𝑅1𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 

𝑀2𝑡 ≤  {
0          
0          
𝑀1𝑡−2

𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,          
𝑤ℎ𝑒𝑟𝑒 𝑡 = 2,          

         𝑤ℎ𝑒𝑟𝑒 𝑡 = 3 𝑡𝑜 𝑡 = 50,
  

𝑀2𝑡 ≤  {
0                    𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,                   
𝑀1𝑡−1          𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50,

 

𝑅3𝑡 + 𝑀3𝑡 + 𝐿𝑆𝑡 =  𝑤1𝑑𝑡
𝑃+  𝑤2𝑑𝑡

𝑀+ 

𝑤3𝑑𝑡
𝑂     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 , 

𝐹𝑃𝐼𝑡  = 𝐹𝑃𝐼𝑟𝑡  +  𝐹𝑃𝐼𝑚𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 
𝑤1𝑃𝐶𝑡

𝑃 + 𝑤2𝑃𝐶𝑡
𝑀 + 𝑤3𝑃𝐶𝑡

𝑂 ≥   𝑅1𝑡 + 

𝑀1𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 

𝑅𝐶𝐼𝑡 = {
𝑅0𝑡 − 𝑅1𝑡                              𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,                          
𝑅𝐶𝐼𝑡−1  +  𝑅0𝑡 − 𝑅1𝑡          𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50,       

 

𝑁 𝐶 𝐼 𝑡  ≤ 

{

𝑇𝑖𝑛𝑣𝑁 − 𝑀11                           
𝑁𝐶𝐼1 − 𝑀12                              
𝑁𝐶𝐼𝑡−1  +  𝑜𝑟𝑑𝑒𝑟𝑡−1  −  𝑀1𝑡  

 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,            
 𝑤ℎ𝑒𝑟𝑒 𝑡 = 2,            

         𝑤ℎ𝑒𝑟𝑒 𝑡 = 3 𝑡𝑜 𝑡 = 50,
 

𝑁𝐶𝐼𝑡  ≤ 

{
𝑇𝑖𝑛𝑣𝑁 − 𝑀1𝑡                                      𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,                    
𝑁𝐶𝐼𝑡−1  +  𝑜𝑟𝑑𝑒𝑟𝑡−1  −  𝑀1𝑡            𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50,

 

𝐹𝑃𝐼𝑟𝑡  = 

{
𝑅2𝑡 − 𝑅3𝑡                              𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,                   
𝐹𝑃𝐼𝑟𝑡−1 + 𝑅2𝑡 − 𝑅3𝑡          𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50,

 

𝐹𝑃𝐼𝑚𝑡 = 

{
𝑇𝑖𝑛𝑣𝐹 − 𝑀3𝑡                           𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,                   
𝐹𝑃𝐼𝑚𝑡−1 +𝑀2𝑡 − 𝑀3𝑡          𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50,

 

 

For PTR 

𝑅𝐶𝐼𝑡= 

{

0         𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂  ≥  𝑅0𝑡                         𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,                   

0        𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂  ≥  𝑅0𝑡 + 𝑅𝐶𝐼𝑡−1     𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50,

𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,                           

 

𝑅0𝑡= 

{
  
 

  
 
𝑤1𝐷𝑡

𝑃 + 𝑤2𝐷𝑡
𝑀 + 𝑤3𝐷𝑡

𝑂                                                                                              

              𝑖𝑓  𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂 < 𝑤1𝑅𝑒𝐴𝑡

𝑃 + 𝑤2𝑅𝑒𝐴𝑡
𝑀 + 𝑤3𝑅𝑒𝐴𝑡

𝑂     
                                                                                       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,

𝑤1𝑅𝑒𝐴𝑡
𝑃 + 𝑤2𝑅𝑒𝐴𝑡

𝑀 + 𝑤3𝑅𝑒𝐴𝑡
𝑂                                                                                

           𝑖𝑓 𝑤1𝑅𝑒𝐴𝑡
𝑃 + 𝑤2𝑅𝑒𝐴𝑡

𝑀 + 𝑤3𝑅𝑒𝐴𝑡
𝑂  <   𝑤1𝐷𝑡

𝑃 + 𝑤2𝐷𝑡
𝑀 + 𝑤3𝐷𝑡

𝑂 
                                                                                      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,

  

𝑅1𝑡= 

{

𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂                                                                      

           𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂 <  𝑅0𝑡 + 𝑅𝐶𝐼𝑡−1    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,

𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,
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For PTM 

𝑁𝐶𝐼𝑡= 

{

0                       𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂  ≥ 𝑇𝑖𝑛𝑣𝑁        𝑤ℎ𝑒𝑟𝑒 𝑡 = 1                   

𝑜𝑟𝑑𝑒𝑟𝑡−1       𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂  ≥  𝑁𝐶𝐼𝑡−1       𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 𝑡𝑜 𝑡 = 50

𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                           
 

 
𝑀1𝑡=
{
𝑤1𝐷𝑡

𝑃 + 𝑤2𝐷𝑡
𝑀 + 𝑤3𝐷𝑡

𝑂           𝑖𝑓 𝑤1𝐷𝑡
𝑃 + 𝑤2𝐷𝑡

𝑀 + 𝑤3𝐷𝑡
𝑂 < 𝑁𝐶𝐼𝑡−1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  

𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                       
 

𝑅𝐷= ∑ 𝑅𝐷_𝑢 ∗ 𝑑𝑖𝑠𝑝𝑜𝑠𝑒𝑡𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 

𝐿𝑆̃ = ∑ 𝐿𝑆_𝑢 ∗ 𝐿𝑆𝑡̃𝑡      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,  
𝑅𝑀𝑀̃ =  ∑ 𝑅𝑀_𝑢̃ ∗ 𝑅1𝑡𝑡 + ∑ 𝑀𝑀_𝑢̃ ∗ 𝑀1𝑡𝑡 +
 𝑀𝑀𝑢̃ ∗ 𝑇𝑖𝑛𝑣𝐹     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,  

𝑁𝐶̃ =  ∑ 𝑁𝐶𝑢̃ ∗ (𝑜𝑟𝑑𝑒𝑟𝑡  +  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑁𝐶𝐼 +𝑡

𝑇𝑖𝑛𝑣𝐹)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,           
𝑅𝑃̃  =  ∑ 𝑅𝑃_𝑢̃ ∗ 𝑅0𝑡       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑡  , 

𝐶𝐻̃ =  (
𝑅𝐻_𝑦

50

̃
∗ (𝑅01 + 𝑅𝐶𝐼1)) /2 +

 ∑ (
𝑅𝐻_𝑦

50

̃
∗ (𝑅0𝑡 + 𝑅𝐶𝐼𝑡−1 + 𝑅𝐶𝐼𝑡))

50
𝑡=2 /2 +

 (
𝑁𝐻_𝑦

50

̃
∗ (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑁𝐶𝐼 + 𝑁𝐶𝐼1)) /2 +

∑ (
𝑁𝐻_𝑦

50

̃
∗ (𝑜𝑟𝑑𝑒𝑟𝑡−1 +𝑁𝐶𝐼𝑡−1 + 𝑁𝐶𝐼𝑡)) /2

50
𝑡=2 , 

𝐹𝐻̃ =  (
𝐹𝐻𝑟_𝑦

50

̃
∗(𝑅21 + 𝐹𝑃𝐼𝑟1)) /2 +

∑ (
𝐹𝐻𝑟_𝑦

50

̃
∗(𝑅2𝑡 + 𝐹𝑃𝐼𝑟𝑡−1 + 𝐹𝑃𝐼𝑟𝑡)) /2 +

50
𝑡=2

(
𝐹𝐻𝑚_𝑦

50

̃
∗(𝑀21 + 𝑇𝑖𝑛𝑣𝐹 + 𝐹𝑃𝐼𝑚1)) /2 +

∑ (
𝐹𝐻𝑚_𝑦

50

̃
∗(𝑀2𝑡 + 𝐹𝑃𝐼𝑚𝑡−1 + 𝐹𝑃𝐼𝑚𝑡)) /2

50
𝑡=2 , 

𝑇𝐶̃ =  𝑅𝐷̃ + 𝐿𝑆̃ + 𝑅𝑀𝑀̃ + 𝑁𝐶̃ + 𝑅𝑃̃ + 𝐶𝐻̃ +
𝐹𝐻̃,  

𝑅𝑒𝑣𝑒𝑛𝑢𝑒̃  =  ∑ 𝑃𝑟𝑖𝑐𝑒_𝑢̃ ∗ (𝑅3𝑡 +𝑡

𝑀3𝑡)      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡,   

𝑃𝑟𝑜𝑓𝑖𝑡̃  = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒̃ −𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠̃  . 

Results and Discussion 

Deterministic Case with the Linear 

Programming Model  

An LP model is constructed and solved 

by IBM ILOG CPLEX Optimization Studio 

software. The deterministic results of the PTR 

and the PTM policies are shown in Table 2. 

Table 2 compares the solutions obtained 

from these two policies. The result shows that 

the PTR policy is better than the PTM policy 

in the deterministic case, because the PTR 

policy can generate a higher profit than the 

PTM policy.  From the result, the PTR policy 

and the PTM policy do not dispose of any 

returned components, but the PTM policy has 

a higher cost from ordering new components 

( NC) .  However, it should be noted that the 

difference of the profits from these two 

policies is close, with less than a 4% gap. 

 

Stochastic Case with the Fuzzy Linear 

Programming Model (FLP) 

With the lower bound and the upper 

bound of each objective (Constraints ( 60)  to 

( 62) ) , Tables 3-4 show the Negative Ideal 

Solution (NIS) and the Positive Ideal Solution 

( PIS)  of each objective of the PTR and the 

PTM policies, respectively. 

According to Constraints (42) to (49) of 

the Fuzzy Linear Programming model, the 

defuzzification of the imprecise customer 

demand, number of arriving returned 

components, and production capacity with the 

weighted average method is subject to the 

patterns of weight allocation.  Different 

Table 2. PTR and PTM results 
 

  Policy 

PTR PTM 

Decision 

Variables 

Target inventory 

of new 

components 

(TinvN) (units) 

47 40 

Target inventory 

of finished 

products (TinvF) 

(units) 

92 167 

Number of 

disposed returned 

components (units) 

0 0 

Cost 

Parameters 

Lost sales cost 

(LS) 
$0 $0 

New Component 

Cost (NC) 
$62,970.00 $66,210.00 

Returned 

Component Cost 

(RP) 

$15,380.00 $15,005.00 

Remanufacturing 

and Manufacturing 

Cost (RMM) 

$62,046.00 $62,184.00 

Total Component 

Holding Cost (CH) 
$390.52 $501.18 

Finished Product 

Holding Cost (FH) 
$751.52 $593.34 

Total costs (TC) $141,538.04 $144,493.52 

Revenue $256,400.00 $256,400.00 
 Profit $114,861.96 $111,906.48 
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patterns of weight allocation can have an 

impact on the obtained solution.  A sensitivity 

analysis of this weight allocation should be 

carried out among pessimistic, most likely, and 

optimistic cases to investigate the impact of 

such weight allocation on the overall 

satisfaction of the linear membership functions 

of each objective function.  For a 

demonstration, a sensitivity analysis is 

performed for 4 scenarios by varying the 

weights of pessimistic, most likely, and 

optimistic values.  Tables 5-6 show the results 

of the sensitivity analysis for both the PTR and 

the PTM policies. 

For example, in Table 5 of the PTR 

policy with Scenario I, equal weights ( 33%) 

are assigned to the pessimistic, most likely, 

and optimistic values.  It is found that the 

overall satisfaction is 53.69% The outcomes of 

the maximum most likely value of profit, 

minimum possibility of obtaining a lower 

profit, and maximum of the risk of obtaining a 

higher profit are $103,420, $35,409, and 

$170,695, respectively. 

The result of this sensitivity analysis also 

shows that Scenario I, which sets the weight of 

the most likely value to 33% and the weight of 

optimistic and pessimistic values to 33%, gives 

the highest overall satisfaction of 53. 69% . 

Table 3.  Upper and lower boundary of the PTR 

 policy 
 

PTR 

MOLP Profit ($) 

𝑧1
𝑃𝐼𝑆 = max 𝑃𝑟𝑜𝑓𝑖𝑡𝑀 128,923.50 

𝑧1
𝑁𝐼𝑆 = min 𝑃𝑟𝑜𝑓𝑖𝑡𝑀 45,359.18 

𝑧2
𝑃𝐼𝑆 = min 𝑃𝑟𝑜𝑓𝑖𝑡𝑃−𝑀 53,085.93 

𝑧2
𝑁𝐼𝑆 = max 𝑃𝑟𝑜𝑓𝑖𝑡𝑃−𝑀 85,315.70 

𝑧3
𝑃𝐼𝑆 = max 𝑃𝑟𝑜𝑓𝑖𝑡𝑀−𝑂 81,955.51 

𝑧3
𝑁𝐼𝑆 = min 𝑃𝑟𝑜𝑓𝑖𝑡𝑀−𝑂 50,251.90 

 

Table 4.  Upper and lower boundary of the PTM 

 policy 
 

PTM 

MOLP Profit ($) 

𝑧1
𝑃𝐼𝑆 = max 𝑃𝑟𝑜𝑓𝑖𝑡𝑀 125,540.90 

𝑧1
𝑁𝐼𝑆 = min 𝑃𝑟𝑜𝑓𝑖𝑡𝑀 0 

𝑧2
𝑃𝐼𝑆 = min 𝑃𝑟𝑜𝑓𝑖𝑡𝑃−𝑀 52,459.07 

𝑧2
𝑁𝐼𝑆 = max 𝑃𝑟𝑜𝑓𝑖𝑡𝑃−𝑀 85,008.50 

𝑧3
𝑃𝐼𝑆 = max 𝑃𝑟𝑜𝑓𝑖𝑡𝑀−𝑂 81,596.26 

𝑧3
𝑁𝐼𝑆 = min 𝑃𝑟𝑜𝑓𝑖𝑡𝑀−𝑂 49,675.30 

 

Table 5.  Sensitivity analysis of the PTR policy 
 

 
Scenario I Scenario II Scenario III Scenario IV 

P M O P M O P M O P M O 

33% 33% 33% 80% 10% 10% 10% 80% 10% 10% 10% 80% 

Decision Variables 

Target inventory of new 

components (TinvN) 

(units) 

43 171 41 39 

Target inventory of 

finished products (TinvF) 

(units) 

196 171 192 204 

Number of disposed 

returned component 

(units) 

4 8 3 0 

Overall satisfaction 53.69% 37.58% 53.21% 38.16% 

Z1 ($) 103,420 77,369 97,824 77,270 

Z2 ($) 68,011 64,014 68,165 73,017 

Z3 ($) 67,275 62,165 67,122 70,427 

Maximize the most likely 

value of profit ($) 103,420 77,369 97,824 77,270 

Minimize the risk of 

obtaining lower profit ($) 
35,409 13,355 29,659 4,253 

Maximize of the 

possibility of obtaining a 

higher profit ($) 

170,695 139,534 164,946 147,697 
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Scenario I also gives the highest possible value 

of the most likely profit, the profit from the risk 

of obtaining a lower profit, and the profit from 

maximizing the risk of obtaining a higher 

profit. 

In this Scenario I, the system adjusts 

itself to avoid the high cost of shortage by 

keeping the high target inventory level of 

finished products and disposing of only a few 

units of returned components. However, when 

the weight of the optimistic value is set to 80%, 

and 10% for both the pessimistic and the most 

likely values ( Scenario IV) , the optimistic 

value of the end customer demand could lead 

to too high demand for a limited production 

capacity, causing a high shortage cost.  This 

would eventually deteriorate the profit of the 

system. 

For example, in Table 6 of the PTM 

policy with Scenario I, equal weights ( 33%) 

are assigned to the pessimistic, most possible, 

and optimistic values.  It is found that the 

overall satisfaction is 53.12%.  The outcomes 

of the maximum most possible value of profit, 

minimum possibility of obtaining a lower 

profit, and maximum of the risk of obtaining a 

higher profit are $67,720, $0, and $134,350, 

respectively. 

The best result of the PTM policy is from 

setting the weight of the optimistic value to 

80%, and 10% for both the pessimistic and the 

most likely value (Scenario IV). In contrast to 

the PTR policy, the profit generated from 

Scenario IV (the optimistic case) is higher than 

the profit from Scenario I (equal weight). This 

is because Scenario IV uses a smaller number 

of new components and use more returned 

components than the case of setting an equal 

weight to all three values (Scenario I). This is 

because the PTM policy is required to use the 

new components first but the new components 

take a longer time to arrive ( with the fuzzy 

delivery time)  than the returned components. 

As a result, to prevent a shortage, the arriving 

returned components would be selected for 

production. 

In a comparison between the two 

policies, it is found that the PTR policy can 

outperform the PTM policy in terms of profit 

for all objective functions and in all scenarios. 

In addition, the profits of the PTM policy 

during the pessimistic case in all scenarios are 

found to be as low as 0, whereas the lowest 

profit of the PTR policy is $4,253, and the 

lowest profit of its best scenario could be up to 

$35,409.  This demonstrates the superiority of 

the PTR policy, even during the pessimistic 

case. Focusing on the effects of fuzzy lead time 

and production time, the actual inventory 

needs to be calculated at all points based on the 

worst scenario in each period, using the 

defuzzification method with fuzzy ranking. 

Table 6.  Sensitivity analysis of the PTM policy 
 

 Scenario I Scenario II Scenario III Scenario IV 

P M O P M O P M O P M O 

33% 33% 33% 80% 10% 10% 10% 80% 10% 10% 10% 80% 

Decision Variables 

Target inventory of new 

components (TinvN) (units) 
64 52 58 34 

Target inventory of finished 

products (TinvF) (units) 
197 171 199 208 

Number of disposed 

returned components (units) 
1,315 0 1,088 95 

Overall satisfaction 53.12% 43.42% 52.71% 38.34% 

Z1 ($) 67,720 63,961 67,852 72,528 

Z2 ($) 67,720 63,961 67,852 72,528 

Z3 ($) 66,630 61,744 66,500 69,900 

Maximize the most likely 

value of profit ($) 
67,720 63,961 67,852 72,528 

Minimize the risk of 

obtaining lower profit ($) 
0 0 0 0 

Maximize of the possibility 

of obtaining a higher profit 

($) 
134,350 125,705 134,352 142,428 
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For a demonstration, the current values of 

related values in week 3 are assumed and 

shown in Table 7. 

For Case 1, according to Constraints (55) 

and (56) , when the pessimistic lead time is 2 

weeks, the new component inventory in week 

3 is calculated as follows: 

 

𝑁𝐶𝐼𝑡  ≤  𝑁𝐶𝐼𝑡−1 + 𝑂𝑟𝑑𝑒𝑟𝑡−2 − 𝑀1𝑡  

𝑁𝐶𝐼3  ≤  𝑁𝐶𝐼2 + 𝑂𝑟𝑑𝑒𝑟1 − 𝑀13  

Therefore, 𝑁𝐶𝐼3  ≤  10 units 

 

However, when the optimistic and the 

most likely lead time is 1 week, the new 

component inventory in week 3 is calculated 

as follows: 

 

𝑁𝐶𝐼𝑡  ≤  𝑁𝐶𝐼𝑡−1 + 𝑂𝑟𝑑𝑒𝑟𝑡−1 − 𝑀1𝑡  

𝑁𝐶𝐼3  ≤  𝑁𝐶𝐼2 + 𝑂𝑟𝑑𝑒𝑟2 − 𝑀13  

Therefore, 𝑁𝐶𝐼3  ≤  12 units 

 

As a result, the actual number of new 

components would be 10 units for the 

pessimistic lead time period, as it is the worst 

case. 

For Case 2, according to Constraints (55) 

and (56)  where the pessimistic lead time is 2 

weeks, the new component inventory in week 

3 is calculated as follows: 

 

𝑁𝐶𝐼𝑡  ≤  𝑁𝐶𝐼𝑡−1 + 𝑂𝑟𝑑𝑒𝑟𝑡−2 − 𝑀1𝑡  

𝑁𝐶𝐼3  ≤  𝑁𝐶𝐼2 + 𝑂𝑟𝑑𝑒𝑟1 − 𝑀13  

Therefore, 𝑁𝐶𝐼3  ≤  17 units 

 

When the optimistic and most likely lead time 

is 1 week, the new component inventory in 

week 3 is calculated as follows: 

 

𝑁𝐶𝐼𝑡  ≤  𝑁𝐶𝐼𝑡−1 + 𝑂𝑟𝑑𝑒𝑟𝑡−1 − 𝑀1𝑡  

𝑁𝐶𝐼3  ≤  𝑁𝐶𝐼2 + 𝑂𝑟𝑑𝑒𝑟2 − 𝑀13  

So, 𝑁𝐶𝐼3  ≤  12 units 

 

As a result, the actual number of new 

components would be 12 units from the 

optimistic lead time period as it is the worst 

case.  In addition, it was also found that the 

possibility to obtain the lower profit of the 

PTM policy can be as low as zero or even a 

loss as its costs are high due to a longer lead 

time than the PTR policy, especially in the 

pessimistic case.  This indicates the possible 

hidden risk from the policy.  

 

Comparison Between the Deterministic and 

the Best Stochastic Results 

Table 8 compares the results between the 

optimal LP and the best FLP results for 

Table 7.  Assumed data for calculating values 

 with varying lead times 
 

Parameter (units) Case 1 Case 2 
Ending inventory level in 

the New Component 
Inventory (NCI) in week 2 

(NCI2) 

10 10 

New components ordered 

in week 1 (Order1) 
3 10 

New components ordered 

in week 2 (Order2) 
5 5 

New components sent to 
manufacturing in week 3 

(M13) 

3 3 

 

Table 8.  Comparison of results 
 

PTR Policy 

Priority-To-Remanufacturing policy 

(PTR) 

Linear Programming (LP) 

model 

Fuzzy Linear Programming (FLP) 

model from Scenario I 

Objective function λ Max z Max λ 

(overall degree of satisfaction) 100% 53.69% 

z (Profit) $ 114,861.96 ($35,409, $103,420, $170,695) 

PTM Policy 

Priority-To-Manufacturing policy 

(PTR) 

Linear Programming (LP) 

model 

Fuzzy Linear Programming (FLP) 

model from Scenario IV 

Objective function λ Max z Max λ 

(overall degree of satisfaction) 100% 38.34% 

z (Profit) $ 111,906.48 ($0, $72,528, $142,428) 
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deterministic and realistic stochastic 

conditions. As seen in Table 8, the most likely 

profit that is generated from the uncertain 

circumstance is lower as compared to the profit 

under no uncertainty because the overall 

degree of satisfaction is lower.  The results 

from the scenario that yields the lowest degree 

of satisfaction among the three objectives are 

recommended, which are maximizing the most 

likely value of profit, minimizing the risk 

obtaining a lower profit, and maximizing the 

possibility of obtaining a higher profit.  The 

PTR policy under Scenario I and the PTM 

policy under Scenario IV show the best results 

among the experimental scenarios.  However, 

the PTR policy generates a higher profit than 

the PTM policy in all cases. With the range of 

profit from each scenario obtained from FLP, 

decision makers are prepared for any expected 

outcome.  This is an important feature for 

decision makers, to build production planning 

and inventory control systems that are subject 

to an uncertain environment. 

Conclusions 

Production planning and inventory control is 

intermediate planning for finding suitable 

levels of disposal units, production units,  

lost sales, inventory, and stock outs. This 

intermediate planning compensates for 

uncertainty in the forecast demand and 

fluctuations of production lead time, order lead 

time, returned component delivery time, 

related operating costs, number of returned 

components, and production capacity.  This 

study finds the optimal inventory control 

policy of a hybrid manufacturing/ 

remanufacturing system under two priority 

policies, Priority-To-Remanufacturing ( PTR) 

and Priority-To-Manufacturing (PTM). Fuzzy 

linear programming is introduced to optimize 

and find the optimal result in this uncertain 

environment.  It maximizes the most possible 

value of the imprecise profit, minimizes the 

risk of obtaining a lower profit, and maximizes 

the possibility of obtaining a higher profit by 

pushing the three prominent points with the 

triangular distribution towards the right (as 

profit maximization). Results from this 

deterministic case show that the PTR policy is 

slightly better than the PTM policy. The results 

from the stochastic case also confirm that the 

PTR policy is better than the PTM policy in 

every scenario. When the returned component 

ratio is further reduced to be lower than 60% 

(0.6), the profit of the PTM is nearly equal to 

the profit of the PTR policy. 

The possibility to obtain the lower profits 

of the PTM policy can be as low as zero or 

there may even be a loss as its costs may 

dramatically increase in the pessimistic 

scenario, especially when the timing is 

uncertain. This indicates a possible hidden risk 

from the policy.  As shown in the case study, 

the proposed method can be used to solve most 

real- world planning problems involving 

imprecise parameters through an interactive 

decision- making process.  The proposed 

method constitutes a systematic framework 

that facilitates the decision- making process, 

enabling a decision maker to interactively 

modify the solution for imprecise data until a 

satisfactory solution is found.  Notably, the 

optimal goal values using the LP approach  

are imprecise since the forecasted demand, 

related operating costs, number of returned 

components, ordering lead time, production 

lead time, and returned component delivery 

time are always imprecise.  This situation  

is closer to real-world problems.  Decision 

makers should have some knowledge in 

advance to prepare and take necessary action 

for future uncertainty.  This study focuses on 

multi- periods with a single product from a 

hybrid manufacturing/remanufacturing problem. 

It also provides information on different 

policies in response to any designed variations. 

Additionally, the approach also considers the 

actual tradeoffs between the PTM and the PTR 

policies in each circumstance.  This lets us 

know how each policy would be beneficial or 

vulnerable depending on the uncertain 

conditions. 

The main limitation of our case study is 

the assumption of the triangular distribution 

that represents imprecise data.  Decision 

makers should generate and obtain appropriate 

distributions based on true judgment and 
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historical resources.  Future researchers can 

also explore different levels of the relative 

importance of individual goals and different 

types of distributions, to make their models 

better fit their practical applications. 
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