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Abstract 

In this paper, the simple exponential smoothing (SES) and double exponential smoothing 
(DES) methods with designed input data are presented to forecast lime prices in Thailand 
during the period January 2016 to December 2016. The lime prices from January 2011 to 
December 2015 are the input data (i.e. seasonal data) which were gathered from the 
database of Simummuang market, Thailand. The major contribution of our paper is that, 
although, in general, the forecasting accuracy by the traditional SES and DES methods 
significantly decreases when those methods are used to forecast the data which show 
seasonality patterns, the proposed solution can properly handle such a problem. For this 
purpose, to forecast lime prices, 5 different input data are defined before being assigned to 
the SES and the DES methods: a) the monthly data of the recent year, b) the average 
monthly data of the past years, c) the median of the monthly data of the past years, d) the 
monthly data of the past years after applying the linear weighting factor, and e) the average 
monthly data of the past years after applying the exponential weighting factor. These 
designed input data are used as agents of the raw data. Our research results indicate that 
using the DES method with input b) and the optimal initial values to forecast lime prices 
during January 2016 to September 2016 significantly gives the smallest forecasting error 
measured by the mean absolute percentage error (MAPE). The forecast lime prices of 
October 2016 to December 2016 are also given. Additionally, we also demonstrate that, in 
our case, the SES and the DES methods with designed input data show a smaller MAPE 
than the methods using the multiplicative Holt-Winters and the additive Holt-Winters 
models which are designed for forecasting the seasonal data. 
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Introduction 

Currently, lime (Citrus aurantifolia Swingle) is 
one of the economically significant horticultural 
crops in Thailand (Pranamornkith, 2009; 
Kaewsuksang et al., 2015). Limes can be 
grown in many regions in Thailand (i.e. in the 
central, the southern, and the northern regions) 
and produce fruits throughout the year 
(Pranamornkith, 2009). Because limes have 
their own sour taste, they can be integrated as 
part of various Thai foods and beverages. Also, 
because lime prices are very high, especially 
during the summer season in Thailand, it is 
very attractive for Thai agriculturists to sell 
limes to gain higher profits. Therefore, 
knowing the selling price and the selling trend 
before selling is very useful for Thai 
agriculturists to plan their planting and 
harvesting schedules.  

In this work, the well-known simple 
exponential smoothing (SES) and double 
exponential smoothing (DES) methods 
(Brown, 1956; Hunter, 1986; Winters, 1960) 
are used as the time series-based methods to 
forecast lime prices for 2016, while the lime 
prices from January 2011 to December 2015 
gathered from the database of Simummuang 
market are used as the input data. Although 
forecasting time series data by the SES and the 
DES methods is not new, as reported in the 
research literature, many researchers have 
applied such methods to their works due to the 
simplicity, low computational complexity, and 
the efficiency of the SES and the DES 
algorithms (Kaleker, 2004; Montgomery et al., 
2008; Ramos et al., 2015; Tratar, 2016; Tratar 
et al., 2016). However, the forecasting accuracy 
produced by both methods significantly 
decreases when they are applied to data which 
show seasonality patterns (Holt, 2004; Kaleker, 
2004). To address this problem, the Holt-Winters 
(HW) method is introduced and used instead 
(Gardner, 1985; Holt, 2004; De Gooijer and 
Hyndman, 2006; Dhakre et al., 2016;). In this 
work, the SES and the DES methods with  

 
 
 
 
designed input data (Booranawong and 
Booranawong, 2017) are presented to forecast 
the seasonal time series. The major design 
concept of our proposed solution is that the raw 
input data are redesigned before being used as 
the actual inputs for the SES and the DES 
methods. The designed input data are:  a) the 
monthly data of the year 2015,  b) the average 
monthly data of the years 2011 to 2015,  c) the 
median of the monthly data of the years 2011 
to 2015,  d) the monthly data of the years 2011 
to 2015 after applying the linear weighting 
factor where the higher weight value is applied 
to the recent data, and  e) the average monthly 
data of the years 2011 to 2015 after applying 
the exponential weighting factor where the 
higher weight is also applied to the recent data. 
Our research results demonstrate that the DES 
method with the input b), the optimal initial 
values, and weighting factors provides the 
smallest MAPE on forecasting the lime prices. 
Additionally, it shows better results than the 
MHW and the AHW methods.  

The structure of this paper is as follows. 
The next section introduces materials and 
methods including the detail of the input data, 
the designed input data, the SES and the DES 
methods with the designed input data, the 
MHW and the AHW methods, and the 
performance metric. The subsequent section 
describes the results and contains the 
discussion. The final section presents the 
limitations of the proposed solution. 

Materials and Method 

Input Data 
The monthly lime prices as the raw data 

from January 2011 to September 2016 were 
gathered from the website of Simummuang 
market which is one of the big markets located 
in Pathum Thani, Thailand. They are given in 
Table 1. 
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Designed Input Data 
To forecast the monthly lime prices for 

2016, the monthly data of the years 2011 to 
2015 are used as the input data and they are 
redefined before being assigned to the SES and 
DES methods, as presented here. 

The 5 designed input data are: a) Input1; 
the monthly data of 2015 (i.e. the recent yearly 
data) as shown in Equation (1), b) Input2; the 
average monthly data of the years 2011 to 2015 
as shown in Equation (2), c) Input3; the median 
of the monthly data of the years 2011 to 2015 
as shown in Equation (3), d) Input4; the 
monthly data of the years 2011 to 2015 after 
applying the linear weighting factor as shown 
in Equation (4), and e) Input5; the average 
monthly data of the years 2011 to 2015 after 
applying the exponential weighting factor as  

 
also shown in Equation (4). The notation of the 
monthly lime prices from January 2011 to 
September 2016 is illustrated in Table 2. 
 
Input1  =  [E1, E2, …E12] (1) 
 
Input2  = [Mean(A, B1, C1, D1, E1),  
  Mean(A2, B2, C2, D2, E2),…,  
  Mean(A12, B12, C12, D12, E12)] 
 (2) 
 
Input3  = [Median(A, B1, C1, D1, E1),  
  Median (A2, B2, C2, D2, E2),…,  
  Median (A12, B12, C12, D12, E12)] 
 (2) 
 

Table 1. The monthly lime prices in Thai Baht units 
 

Monthly lime prices 
Months 2011 2012 2013 2014 2015 2016 

1 71.77 265.16 235.67 236.13 261.94 210.00 
2 110.00 369.66 320.00 337.14 314.29 200.00 
3 269.35 502.90 558.06 505.00 398.21 320.00 
4 184.83 561.33 676.67 745.00 544.83 421.67 
5 169.68 336.45 542.19 622.41 581.10 500.00 
6 149.33 173.00 281.67 373.33 298.33 473.33 
7 113.55 163.23 251.61 187.10 200.00 264.52 
8 92.90 267.74 309.35 211.29 182.26 183.87 
9 84.67 295.00 300.00 289.33 200.00 270.59 
10 140.00 209.03 235.45 370.97 232.26 - 
11 140.00 200.00 196.00 326.33 218.33 - 
12 187.00 204.84 169.03 222.58 200.00 - 

 
Table 2. Notation of the monthly lime prices 
 

Notation of the monthly lime prices  
Months 2011 2012 2013 2014 2015 2016 

 ଵܨ ଵܧ ଵܦ ଵܥ ଵܤ ଵܣ 1
 ଶܨ ଶܧ ଶܦ ଶܥ ଶܤ ଶܣ 2
 ଷܨ ଷܧ ଷܦ ଷܥ ଷܤ ଷܣ 3
 ସܨ ସܧ ସܦ ସܥ ସܤ ସܣ 4
 ହܨ ହܧ ହܦ ହܥ ହܤ ହܣ 5
 ܨ ܧ ܦ ܥ ܤ ܣ 6
 ܨ ܧ ܦ ܥ ܤ ܣ 7
ܨ଼ ଼ܧ ଼ܦ ଼ܥ ଼ܤ ଼ܣ 8  
 ଽܨ ଽܧ ଽܦ ଽܥ ଽܤ ଽܣ 9
 - ଵܧ ଵܦ ଵܥ ଵܤ ଵܣ 10
 - ଵଵܧ ଵଵܦ ଵଵܥ ଵଵܤ ଵଵܣ 11
 - ଵଶܧ ଵଶܦ ଵଶܥ ଵଶܤ ଵଶܣ 12
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Input4 and 5 = [((A1 W1)+(B1 W2)+(C1 W3) 
  +(D1 W4)+(E1 W5)),((A2 W1) 
  +(B2 W2)+(C2 W3)+(D2 W4) 
  +(E2 W5)),…,((A12 W1) 
  +(B12 W2)+(C12 W3) 
  +(D12 W4)+(E12 W5))] 
 (3) 
 

For Input4 and Input5, the monthly data of 
the years 2011, 2012, 2013, 2014, and 2015 are 
multiplied by the weighting factors. W1, W2, 
W3, W4 and W5 are the weighting factors, where 
0 ≤ weighting factor ≤ 1 W1 ≤ W2 ≤ W3 ≤ W4 ≤ 
W5 and W1 + W2 + W3 + W4 + W5. For  
Input4, W1, W2, W3, W4 and W5 are set to 
0.06667 (e.g. W1 = 1/(1+2+3+4+5)), 0.13333, 
0.20000, 0.26667, and 0.33333 (e.g. W5 = 
1/(1+2+3+4+5)), respectively (i.e. the linear 
weighting values). For Input5, W1, W2, W3, W4 
and W5 are set to 0.03750 (e.g. W1 = (1/2)5  
+ 0.00625), 0.06875, 0.13125, 0.25625,  

and 0.50625 (e.g. W1 = (1/2)1 + 0.00625), 
respectively (i.e. the exponential weighting 
values). By our setting, the weighting factor 
with a high value is applied to the input data of 
the recent year. This will give high priority to 
recent input data. The 5 designed input data in 
Equations (1) to (4) are also shown in Table 3. 

The SES and the DES Methods with 
the Designed Input Data 

The SES Method 
The forecast result by the SES method is 

shown in Equation (5), where Yi is the forecast 
value at the sample number ݅ (i.e. the month), 
Xi is the input value as introduced in Table 3,

 Yi-1 is the forecast value at the sample number 
i-1 (i.e. the latest month), and  is the 
weighting factor. By Equation (5), the forecast 
result directly depends on the previous forecast 

Table 3. Designed input data 
 

Designed input data 
Months Input1 Input1 Input1 Input1 Input1 

1 261.94 214.13 236.13 237.55 244.97 
2 314.29 290.22 320.00 315.29 317.04 
3 398.21 446.70 502.90 464.03 448.92 
4 544.83 542.53 561.33 602.77 601.06 
5 581.10 450.37 542.19 524.29 554.33 
6 298.33 255.13 281.67 288.35 301.16 
7 200.00 183.09 187.10 196.22 197.69 
8 182.26 212.71 211.29 220.86 208.91 
9 200.00 233.80 289.33 248.79 238.22 
10 232.26 237.54 232.26 260.64 263.17 
11 218.33 216.13 200.00 234.99 238.88 
12 200.00 196.69 200.00 199.61 201.57 

 

Table 4. Forecasting by the SES method 
 

Forecasting by the SES method 
Month Input Forecast results (ࢅ) 

 

1 
 

ଵܺ 
 

ଵܻ = ଵܺ 
 

2 ܺଶ ଶܻ = ߙ ଶܺ + (1 − (ߙ ଵܻ 
. . . 
. . . 
. . . 

12 ଵܺଶ ଵܻଶ = ߙ ଵܺଶ + (1 − (ߙ ଵܻଵ 
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value and the recent input value multiplied by 
the weighting factor, where 0 <  < 1. Here,  
 close to 1 gives high priority to recent 
changes in the input value, while  close to 0 
indicates that the previous forecast value plays 
a role in the calculation. In this work, the 
optimal value of  is determined by 
minimizing the forecasting error (i.e. the 
MAPE) (Trater and Srmcnik, 2016). The 
minimizing problem is automatically solved 
by using the Solver function in Microsoft 
Office Excel, version 2013. More details on 
this can be found in Trater and Srmcnik 
(2016). An example of the forecasting by the 
SES method is also illustrated in Table 4.   
 
Yi = Xi + (1-α) Yi-1 (5) 
 

We note that by substituting Yi-1, Yi-2,… Y1, 
into Equation (5), the general form of the SES 
method can be written by Equation (6), where 
the weighting for each older datum decreases 
exponentially. According to Equation (6), an 
illustration of the forecast result of month 12 is 
shown in Equation (7). 
 
Yi  =  αXi + (1-α) [αXi-1 + (1-α) Yi-2] 
 = αXi + α(1-α) Xi-1+(1-α)2Yi-2 
 = αXi + α(1-α) Xi-1+(1-α)2[αXi-2 
  +(1-α)Yi-3] 
 = αXi + α(1-α) Xi-1+ α(1-α)2 Xi-2 
  +(1-α)3 Yi-3  
 
Yi  = αXi + α(1-α) Xi-1+ α(1-α)2 Xi-2 + ⋯  
  + α(1-α)i-1 Y1 , where Y1 = X1 (6) 
 

Y12  = αX12 + α(1-α)X11 + α(1-α)2 X10 + ⋯  
  + α(1-α)11X1 (7) 
 
The DES Method  

The DES method, also known as Holt’s 
linear exponential method, is appropriately 
used to forecast the data which show the trend 
(Holt, 2004; Kaleker, 2004; Montgomery  
et al., 2008). The DES method adds a trend 
factor to the equation as a way of adjusting for 
the trend. Three equations are incorporated in 
this method as written in Equations (8) to (10), 
where Li is an estimate of the level of the data  
series at the sample number i, Xi is the input 
value as introduced in Table 3, bi is an estimate 
of the trend of the data series at the sample 
number i,  and  are the weighting factors 
with values between 0 and 1, and Yi+m is the 
forecast value for the period   (where m > 0). 
 
Li = αXi + (1 - α)(Li-1 + bi-1) (8) 
 
bi = β(Li - Li-1) + (1 - β) bi-1 (9) 
 
Yi+m = Li + mbi (10) 
 

As suggested by Kaleker (2004), 
Montgomery et al. (2008), Dhakre et al. (2016) 
and Trater and Srmcnik (2016), to set the 
initial values for ܮ  and ܾ, we use Equations 
(11), (12), (13), and (14). For bi, the one that 
gives the minimum forecasting error is 
selected. In addition, optimal values of α and β 
are also automatically determined. They are 
selected when the forecasting error (i.e. the 
MAPE) is minimized (Trater and Srmcnik, 

Table 5. Forecasting by the DES method with Li Equation (11) and bi in Equation (14) 
 

Forecasting by the DES method 
Month Input ࢅ ࢈ ࡸ 

1 ଵܺ ܮଵ = ଵܺ ଵܾ = ( ଵܺଶ − ଵܺ)/(12 − 1) - 
2 ܺଶ ܮଶ = ଶܺߙ + (1 −  (ߙ

ଵܮ) + ଵܾ) 
ܾଶ = ଶܮ)ߚ − (ଵܮ + (1 − (ߚ ଵܾ ଶܻ = ଵܮ + ଵܾ 

. . . . . 

. . . . . 

. . . . . 
12 ଵܺଶ ܮଵଶ = ߙ ଵܺଶ + (1 −  (ߙ

ଵଵܮ) + ଵܾଵ) 
ଵܾଶ = ଵଶܮ)ߚ − (ଵଵܮ + 

(1 − (ߚ ଵܾଵ 
 

ଵܻଶ = ଵଵܮ + ଵܾଵ 
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2016), where the minimizing problem is 
solved by using the Solver function in 
Microsoft Office Excel (Trater and Srmcnik, 
2016). An illustration of the forecasting by the 
DES method with L1 in Equation (11) and b1 in 
Equation (14) is shown in Table 5.   
 
L1 = X1 (11) 
 
b1 = 0 (12) 
 
b1 = X2 – X1 (13) 
 
b1 = (Xn – X1) / (n – 1) (14) 
 
The MHW and the AHW Methods  

To investigate and evaluate the 
performance of our methods presented above, 
we compared them with the Holt-Winters 
method’s models (Holt, 2004; Kaleker, 2004; 
Montgomery et al., 2008) which are directly 
used when both trend and seasonality patterns 
are present in the data series. The Holt-Winters 
models incorporate 3 equations: first for the 
level, second for the trend, and third for the 
seasonality. Generally, there are two Holt-
Winters models: the MHW method and the 
AHW method, depending on whether the 
seasonality is modelled in multiplicative or 
additive forms. They are described in detail 
below. 
 
The MHW Method 

The MHW method is shown in Equations 
(15) to (18); note that Equation (16) is the same 
as Equation (9), where Si is the multiplicative 
seasonal component,  is the weighting factor 
with its value between 0 and 1, and n is the 
seasonality length (i.e. the number of months 
in a year). We note that the input Xi inserted to 
the MHW and the AHW methods is the raw 
data (i.e. the lime prices from January 2011 to 
September 2016), as presented in Table 1. 
 
ܮ = ߙ ቀ 

ௌష
ቁ + (1 − ିଵܮ)(ߙ + ܾିଵ) (15) 

 
ܾ = ܮ)ߚ − (ିଵܮ + (1 − (ߚ ܾିଵ  (16) 

 
ܵ = ߛ ቀ


ቁ + (1 − (ߛ ܵି  (17) 

ܻା = ܮ) + ݉ ܾ) ܵିା  (18) 
 

As suggested by Montgomery et al. 
(2008), Kaleker (2004), Holt (2004), Dhakre  
et al. (2016), and Trater and Srmcnik (2016), 
to initialize the level, we use Equation (19) 
with n = 12. To initialize the trend, we use 
Equations (12) to (14) and the one that gives 
the minimum forecasting error is also selected. 
Finally, to initialize the seasonal components, 
we use Equation (20), where i = 1,2,3,…,12. 
 
ܮ = ( ଵܺ + ܺଶ + ⋯ + ܺ)/݊  (19) 
 

ܵ = ܺ/ܮ (20) 

 
The AHW Method 

The AHW method is expressed in 
Equations (21) to (24); note that Equations 
(22), (16), and (9) are the same. 
 
ܮ = )ߙ ܺ − ܵି) + (1 − ିଵܮ)(ߙ + ܾିଵ) (21) 
 

ܾ = ܮ)ߚ − (ିଵܮ + (1 − (ߚ ܾିଵ (22) 
 

ܵ = )ߛ ܺ − (ܮ + (1 − (ߛ ܵି (23) 
 

ܻା = ܮ + ݉ ܾ + ܵିା (24) 
 

The initial values for the level and the 
trend are the same as those for the MHW 
method. In addition, to initialize the seasonal 
components (Holt, 2004; Kaleker, 2004; 
Montgomery et al., 2008; Dhakre et al., 2016; 
Trater and Srmcnik, 2016), we use Equation 
(25), where i = 1,2,3,…,12. 
 
Si = Xi – Ln (25) 
 

In both the MHW and the AHW methods, 
optimal values of , , and  are automatically 
determined during the test. The parameters , 
, and  are determined by minimizing the 
MPAE, and the minimizing problem is also 
solved by using the Solver function in 
Microsoft Office Excel. 

 
 
 



 

 

307 Suranaree J. Sci. Technol. Vol. 24 No. 3; July – September 2017 

Performance Metric 
The forecasting error represented by the 

MAPE (Trater and Srmcnik, 2016; Chatfield, 
2001) is chosen as the performance metric. The 
MAPE is selected because it provides an 
accurate and fair comparison of the forecasting 
methods, and it is not prone to change in the 
magnitude of time series to be forecast (Gentry 
et al., 1995; Alon et al. 2001). Also, it is 
frequently used in practice (Ravindran and 
Warsing, 2013). The MAPE is expressed in 
Equation (26), where ܰ is the number of the 
data samples, ei is the forecasting error from 

పܻሖ − ܻ  as shown in Equation (27), ሖܻ  is the 
actual data, and ܻ is the forecast data 
determined by the forecasting methods. The 
95% confidence interval is also provided for 
the average results. We note that, in our 
proposed solutions, ܰ is 9 months and  refers 
to ܨଵ to ܨଽ as shown in Table 2. In the MHW 
and the AHW methods, ܰ is also 9 months and   
refers ሖܻ  to ܨଵ  to ܨଽ when compared with our 
proposed solutions. However, we also show  

their forecasting results during January 2012 to 
December 2016. 
 

ܧܲܣܯ =
∑ ฬ

ೊഢሖ
ฬಿ

సభ

ே
× 100 (26) 

 
݁ = పܻሖ − ܻ (27) 
 

Results and Discussion 

The MAPE results by applying the inputs 1 to 
5 to the SES and the DES methods are 
presented in Figure 1, and the results without 
applying any forecasting methods are also 
compared. Note that without applying the 
forecasting methods means that the input 
values are directly used as the forecast values. 
Figure 2 shows the MAPE results by the DES 
method with the initial values in Equations 
(12), (13), and (14), respectively. The results 
reveal that the DES method with the input 2  

Table 6.  The optimal weighting factors and the forecast prices of October 2016 to December 2016 
 in the cases of the SES method with input 2, the DES method with input 2 and the 
 initial value in Equation (14), the MHW method, and the AHW method 
 

Methods Optimal weighting factors Forecast prices (2016) 
 .Oct. Nov. Dec ࢽ ࢼ ࢻ

SES with input 2 0.42626 - - 241.779 230.847 216.287 
DES with input 2 and 

Equation (14) 
0.94467 ≈ 0 - 230.878 235.587 215.623 

MHW 0.04250 0 0.54920 259.750 236.156 203.187 
AHW 0.04522 ≈ 0 0.62632 252.417 229.754 192.843 

 

 
 

Figure 1. The MAPE by applying inputs 1 to 5 

 
 
Figure 2. The MAPE by applying inputs 1 to 5 to 
 the DES method with the initial values 
 in Equations (12), (13), and (14) 
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 (i.e. the average monthly data of the years 
2011 to 2015) and the initial value in Equation 
(14) significantly gives a smaller MAPE (i.e. 
MAPE = 6.97) than the other methods. Also, 
the results here indicate that using the optimal 
designed input data and initial values can help 
to increase the forecasting accuracy. The 
optimal weighting factors, which give the 
minimum MAPE in the case of the SES 
method with input 2 and in the case of the DES 
method with input 2 and the initial value in 
Equation (14), are shown in Table 6. 

The comparisons of the monthly lime 
prices in Thai Baht units between the raw data 
(as given in Table 1) and the forecast data 
determined by the proposed solutions, the 
MHW method and the AHW method with their 
optimal initial values and weighting factors, 
are demonstrated in Figures 3, 4, 5, and 6, 
respectively. The optimal weighting factors 
and the forecast prices of October 2016 to 
December 2016 are shown in Table 6. Here, 
the results confirm that the methods presented 
in the previous sections, especially the DES 

method with input 2 and the initial value in 
Equation (14), can be properly applied to 
forecast the monthly lime prices of 2016, 
although the raw input data to be forecast 
shows the seasonality pattern. We note that the 
results also illustrated that the monthly lime 
prices are very high during the summer season, 
March to May, in every year. 

Figure 7 shows the comparison of the 
MAPE results determined by the SES method 
with the input 2 (i.e. method 1), the DES 
method with the input 2 and the initial value in 
Equation (14) (i.e. method 2), the MHW 
method (i.e. method 3), and the AHW method 
(i.e. method 4), where the MAPE is calculated 
from the forecast data of the months 62 to 69 
(i.e. February 2016 to September 2016). The 
results confirm that the SES and the DES 
methods with designed input data provide 
better performances than the MHW and the 
AHW methods which are designed by taking 
the seasonality behavior of the data into 
considerations. 

 
 
Figure 3. The comparison of the lime prices 
 between the raw data and the forecast 
 data determined by the SES method 
 with input 2 

 
 
Figure 4. The comparison of the lime prices 
 between the raw data and the forecast 
 data determined by the DES method 
 with input 2 

 
 
Figure 5. The comparison of the lime prices 
 between the raw data and the forecast 
 data determined by the MHW method 

 
 
Figure 6. The comparison of the lime prices 
 between the raw data and the forecast 
 data determined by the AHW method 
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 Finally, Figure 8 demonstrates the yearly 
average prices of the lime during 2011 to 2016. 
We note that for 2016 we use the raw data (i.e. 
January 2016 to September 2016) in the last 
column of Table 1 and the forecast data (i.e. 
October 2016 to December 2016) determined 
by the DES method with the input 2 and the 
initial value in Equation (14). The three-order 
polynomial trend line is fitted to the average 
results, and the R-squared value is also 
provided. Here, the results reveal that the 
yearly average lime prices’ increase during 
2011 to 2014 and then the decrease during 
2014 to 2016. By the trend line, there is more 
possibility that average lime prices of 2017 
may not be different from 2016. 

Conclusions  

In this paper, the SES and the DES methods 
with the designed input data are used to 
forecast monthly lime prices in Thailand. We 
show that our proposed solution can be 
suitably used to forecast the time series data 
which show the seasonality pattern. Our results 
demonstrate that the DES method with the 
optimal designed input data, initial values, and 
weighting factors shows a better forecasting 
performance than the MHW and the AHW 
methods which are directly designed to 
forecast the seasonal data. We believe that our 
research methodology proposed in this work 

can be applied to forecast monthly lime prices 
for the next year and that it can also be applied 
for other high-value agricultural products. 
Also, our results are useful for Thai 
agriculturists to plan their work schedules and 
sales. 

To apply our proposed solution with 
other time series data, we have some 
recommendations. First, since the designed 
input data (i.e. the inputs 1 to 5) are determined 
from the past years’ data (i.e. dataset), the 
forecasting accuracy strongly depends on the 
numbers of the dataset. Using small numbers 
for the dataset to determine the designed input 
data may lead to low forecasting accuracy. 
Second, among 5 different inputs, the input 
which gives the better performance should be 
determined. This is because the different 
datasets have different characteristics. 
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