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Abstract

The integration of geoinformatics technology with suitable geospatial models has been widely employed  
in many wildfire studies to develop and enhance wildfire management systems in different parts of the  
world. In Bhutan, wildfire is perceived as one of the most prominent causes of forest degradation and a  
serious threat to national conservation efforts. Thus, wildfire susceptibility analysis is seen as a necessary  
component of the wildfire management system for Bhutan. The main aim of the study is to apply the  
innovative approach of geoinformatics technology with the integration of GIS-based logistic regression  
(LR) and frequency ratio (FR) models to establish a wildfire susceptibility map. Herein, the study collected  
and prepared various influential wildfire factors, analyzed them, and established probability maps.  
The efficiency of each of the 2 models was then evaluated and compared with each other to determine  
an optimal model using the relative operating characteristics method.
	 The interpretations of the results revealed that the most significant predictor variables that played  
a major role in determining a wildfire occurrence in the study area are land surface temperature,  
proximity to roads, elevation, population density, enhanced vegetation index, distance to agricultural land,  
relative humidity, and aspect. The prediction and success rates of the LR model were 88.3% and 88.1%,  
while for the FR model they were 85.3% and 85.5%, respectively. The results indicated that both models  
are good predictors of wildfire with the LR model performing slightly better than the FR model. The  
predicted probability map from the optimum LR model was further classified into 5 categories of  
wildfire susceptibility zones: very low, low, moderate, high, and very high. The results from the study  
demonstrate that the integration of geoinformatics technology with GIS-based LR and FR models is  
an inevitable component of wildfire mapping that can effectively determine the most significant  
influential factors of a wildfire and its probability and eventually lead to the development of the wildfire  
susceptibility map.
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Introduction
Wildfires present a substantial threat to precious  
forest resources and numerous studies have 
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indicated an increasing trend in wildfire  
occurrences around the world. Besides, wildfires  
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play an important role in global warming and  
climate change which are expected to increase  
with variations of climatic parameters (Stocks  
et al., 1998). They also influence vegetation  
dynamics and land use change at a global scale  
and contribute to the Earth’s deforestation,  
desertification, and ecological damage.
	 Bhutan has about 80.9% of its total land as  
pristine forest areas, where 70.46% is covered by  
trees (Ministry of Agriculture and Forests, 2015).  
This has contributed to the country’s position of  
being the first carbon negative country in the world  
(Energy and Climate Intelligence Unit, 2015),  
consequently making a significant contribution  
to the world that is threatened by climate change.  
It also helps to maintain the geologically fragile  
mountain ecosystem and environmental balance.  
Today, Bhutan has its rich natural and pristine  
forest cover still intact, providing homes to  
diverse flora and fauna including critical and  
endangered faunal species. As a result, Bhutan is  
also recognized as one of the 10 most threatened  
global biodiversity hotspots (Royal Government  
of Bhutan, 1999). These rich forest resources  
also help to sustain the hydropower industry,  
rural livelihoods, and food subsistence, thus  
contributing to the overall development of  
Bhutan. Hence, the future economy of the  
people and the country depends on the protection,  
conservation, and scientific management of  
forest resources (Royal Government of Bhutan,  
1999).
	 However, wildfire is one of the most  
serious and consistent threats among many  
natural disasters such as earthquakes, glacial  
lake outburst floods, flash floods, and windstorms,  
and poses a potential hazard to the physical,  
biological, and ecological environments. It is  
perceived as one of the most prominent causes  
of forest degradation in the country and is a  
serious threat to the national conservation  
efforts (Tshering, 2006). It is estimated that  
more than 10000 acres of forest cover is lost  
every year because of wildfires (Gyelmo, 2016).  
During the period 2010 to 2015, the country  
recorded 216 wildfire incidences that burned  
about 950352 acres of forest cover (Department  
of Forest and Park Services, 2015). Though the  
majority of fires in Bhutan are related to human  

activities, the impact of various influential  
factors of fire still remain unknown, so there is a  
need for more advanced studies to examine and  
assess their correlation and degree of influence  
on wildfires. Thus, wildfire susceptibility analysis  
is seen as a necessary component of the wildfire  
management system for Bhutan. Moreover,  
geoinformatics technology on wildfire studies is  
rarely applied and is still at a developing stage.
	 Nowadays, geoinformatics technology  
provides comprehensive information and  
valuable tools to develop a wildfire susceptibility  
map that can be effectively used in wildfire  
management. Many studies have been conducted  
to establish wildfire susceptibility maps using  
geoinformatics technology (Chuvieco and  
Congalton, 1989; Jaiswal et al., 2002; Pradhan  
et al., 2007; Adab et al., 2013) and different fire  
models have been developed based on various  
influential factors of wildfire coupled with suitable  
geospatial models. To determine the impact of  
different factors, various statistical methods,  
models, and algorithms have been tested by  
different researchers (Syphard et al., 2008;  
Oliveira et al., 2012; Ghoadi et al., 2012;  
Mohammadi et al., 2013) and varying results  
have been obtained based on the study areas and  
models being tested. Generally, GIS-based LR  
and FR models have given promising results at  
different study sites with a high prediction  
accuracy (Pradhan et al., 2007; Zhang et al., 2013;  
Mohammadi et al., 2013; Pourtaghi et al., 2014;  
Guo et al., 2015) and they have been proved  
to be reliable tools for wildfire susceptibility  
assessment.
	 The primary objective of the study is to  
apply the innovative approach of remote sensing  
and GIS technology in wildfire susceptibility  
maps using the geospatial models (LR and FR).  
The specific objectives include:
	 (1)	To apply remote sensing and GIS  
technology with the integration of the geospatial  
models and determine the effect of 3 key 
influential factors (environmental, climatic,  
and anthropogenic) on wildfire occurrence;
	 (2)	To formulate wildfire probability  
models and generate probability maps based on  
identified significant influential factors;
	 (3)	To examine an optimum geospatial  
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model based on accuracy assessment and  
validation using the relative operating charac-
teristics (ROC) method and establish a reliable  
wildfire susceptibility zonation map.

Materials and Methods

Study Area

	 The study area covers Thimphu and Paro  
districts in western Bhutan (Figure 1). According  
to the Asian Disaster Reduction Center statistics  
of 2015, the 2 districts have recorded one of  
the highest fire incidences in the country. The  
study area is characterized by a fragile mountain  
ecosystem and rugged topographic terrain  
combined with high ground fuel loads and  
fluctuating wind conditions that attribute to the  
high number of fire incidences. The study area is  
bounded by the geographic coordinates of  
longitude 89° 07' 20'' to 89° 45' 56'' E and  
latitude 27° 8' 41'' to 28° 0' 3'' N, approximately.  

It covers a total area of 3084 sq. km with  
elevations ranging from 1906 to 7092 meters  
above the mean sea level. The climate varies  
substantially from one place to another due to  
variations in topography and its elevation. Most  
of the developments and settlements are located  
in the low valleys surrounded by mountains.

Research Methodology

	 The framework of the research methodology  
on wildfire susceptibility analysis consists of  
3 major components: (1) data collection and  
preparation, (2) wildfire susceptibility analysis  
based on the LR and FR models, and (3) accuracy  
ssessment and validation of the results to determine 
the optimum model for the final wildfire  
susceptibility mapping (Figure 2).
	 Data Collection and Preparation
	 The basic information of the collected  
input data for analysis is provided in Table 1,  
while a description of the prepared input data  
including dependent and independent variables  

Figure 1. Study area
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and the sampling technique is summarized in  
the following sections.
	 Dependent Variable (Hotspot)
	 The wildfire inventory map depicts the  
spatial location of wildfire points and represents  
the dependent variable in the analysis. However,  
the spatial data for the wildfire incidences in  
the study area were not available and did not  
exist at all. The spatial locations of the wildfire  
hotspots were obtained from the MODIS active  
fire/hotspot data of the Terra and Aqua satellites  
from NASA Fire Information for Resource  
Management System (FIRMS) (https://firms. 
modaps.eosdis.nasa.gov) for 15 years (2002-2016)  
via E-mail. The hotspot represents the center  

of a 1 km pixel that is flagged by the MODIS  
fire detection algorithm as containing 1 or more  
fires within the pixel (Giglio et al., 2010). The  
acquired hotspot’s data are re-projected to  
a standard coordinate system. According to  
analysis of the MODIS statistics, the active fire  
season occurs during winter between October  
and May, and February was observed as the  
peak fire period. The obtained information  
was found to be consistent with the actual fire  
situation in the study area. This confirmed that  
the hotspot data can be reliable for the wildfire  
susceptibility analysis. The extracted hotspot  
points were further overlaid to high-resolution  
Google Earth images, analyzed, processed, and  

Figure 2. Schematic framework of research methodology 
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finally converted to the raster format with a 100 m  
cell size as the dependent variable. The entire  
study area comprises 2546 hotspot pixels to be  
used in the analysis.
	 Independent Variables
	 To accomplish a reliable wildfire  
susceptibility map, a comprehensive evaluation  
of associated influential wildfire factors is very  
essential and a prerequisite for wildfire analysis.  
In this study, 15 influential wildfire variables  
were extracted from the input databases  
comprising 3 major categories - the environmental,  
climatic, and anthropogenic variables. These  
variables were selected and established according  
to the basic characteristics of wildfires and  
extensive relevant literatures reviews.
	 (a)	 Environmental parameters include  
topographic features and fuel characteristics.  
Topography is one of the main factors applied in  
any fire hazard rating system because it  
characterizes the landscape features and it  
is strongly recommended in wildfire studies  
(Preisler et al., 2004; Brown and Davis, 1973;  
Chuvieco and Congalton, 1989). It also affects  

the vegetation distribution, composition, and  
flammability and has an influence on climatic  
variations (Syphard et al., 2008). Thus, topographic  
variables including elevation, slope, aspect, and  
curvature were derived from the 10 m resolution  
of the ALOS digital elevation model (DEM)  
using surface analysis tools in the ESRI ArcGIS  
software. Likewise, the topographic wetness  
index (TWI) that represents moisture content  
was deduced from the DEM using the  
hydrological tools in the ESRI ArcGIS software.  
The amount of fuel has a significant influence on  
the rate of combustion and fire behavior. Thus,  
a 16-day composite of the MODIS enhanced  
vegetation index (EVI) product with a 250 m  
resolution was downloaded, re-projected, and  
extracted prior to the active fire season to  
represent the fuel characteristic. Land cover,  
which represents the landscape features of the  
Earth’s surface, has been associated with fire  
occurrence (Syphard et al., 2008). It represents  
the type of vegetation available for burning  
and applies as a proxy for fuel types because  
it reflects the possible interactions with human  

Table 1.	 Basic remote sensing and GIS input data for wildfire susceptibility analysis

No Input Data Data 
Format

Scale/ 
Resolution Date Source

1 MODIS 
Wildfire hotspot

Vector 1 km 2002-2016 NASA FIRMS (LANCE)

2 ALOS DEM Raster 10 m 2010 National Land Commission (NLCS), 
Bhutan

3 ALOS image Raster 10 m 2010 National Land Commission (NLCS), 
Bhutan

4 Topographic map Vector 1:25,000 2002 National Land Commission (NLCS), 
Bhutan

5 LULC map Vector 10 m 2010 Ministry of Agriculture and Forest 
(MoAF)

6 NCRP map Vector 10-20 cm 2012 National Land Commission (NLCS), 
Bhutan

7 Meteorological
data

Excel NA 2005-2015 Department of Meteorology, Bhutan

8 Population data Excel NA 2010 National Statistical Bureau 
(PHCB-2010), Bhutan

9 EVI Raster 250 m 2016 NASA, MODIS vegetation indices

10 LST Raster 1 km 2016 NASA, MODIS LST product
11 Google satellite 

images
Raster 65 cm 2016 DigitalGlobe (QuickBird), 2016
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activities. Herein, land use data are extracted  
from the Bhutan Land Cover Assessment 2010  
(LCMP-2010) and were reclassified into 9 classes  
- coniferous forest, broadleaf forest, broadleaf  
and coniferous forest, shrubs and meadows,  
agricultural fields, built-up areas, snow cover,  
water bodies, and miscellaneous land. 
	 (b)	Climatic conditions are known to  
affect fuel accumulation and the moisture  
content (Syphard et al., 2008) and determine the  
type of vegetation in a region; thus, they play a  
dominant role in creating fire-prone areas. The  
drier the climate, the higher the probability of  
fire igniting and spreading. Considering the  
temporal scale of the data, climatic variables  
were derived from the available average weather  
conditions over a period of 11 years (2005-2015)  
from the Meteorological Department of Bhutan.  
Climatic factors which include rainfall and  
relative humidity were generated by the inverse  
distance weighted (IDW) interpolation technique 
using the coordinates of weather stations.  
Meanwhile, the MODIS land surface temperature  
(LST) at a 1 km resolution available for an  
8-day composite was downloaded from NASA’s  
website to represent temperature. Herein, the  
8-day interval data prior to the active fire season  
was extracted and converted to Celsius using the  
scale factor of 0.002 provided in the metadata  
file.
	 (c) 	Anthropogenic factors, which include  
proximity and socio-economic variables, are one  
of the most significant driving factors of wildfire  
occurrence, since most of the wildfire incidences  
are related to human activities. The proximity  
variables represent the human accessibility to  
areas where fires can occur. Forest located near  
roads, settlements, and agricultural land is more  
prone to fires because of the habitation/cultural  
practices. Hence, proximity variables includ-
ing distance to roads, rivers, settlements, and  
agricultural land are prepared using the Euclidean  
distance tools in the ERSI ArcGIS software.  
Roads, rivers, and settlements are extracted from  
the topographic map obtained from the National  
Land Commission at a 1:25000 scale. Those  
missing and new features were here updated  
according to the NCRP data. Missing rivers and  
streams are generated from the DEM using the  

hydrological tools in the ERSI ArcGIS software.  
New road networks were digitized and extracted  
using Google Earth images. The agricultural  
field class was updated according to the National  
Cadastral Resurvey Program data. In addition,  
population density is a socio-economic factor that  
represents the distribution of potential human  
influence on fire. This was generated at the  
sub-district level from the Population and  
Housing Census of Bhutan (PHCB) 2010 data of  
the National Statistics Bureau. It was interpolated  
using the IDW method, considering the major  
towns and cities as the center points of highly  
populated areas.
	 In summary, the selected variables in  
the analysis are the following 15 independent  
factors explained in Table 2: ELV, SLP, ASP,  
CRV, TWI, EVI, LU, RF, LST, RH, Dist_Road,  
Dist_River, Dist_Sett, Dist_AgriL, and Pop_ 
Density. All variables were standardized to a  
uniform scale and resampled to a uniform cell  
size of 100 m using the spatial analyst tools in  
the ERSI ArcGIS software. The MODIS hotspot  
map as a dependent variable and the factor  
maps as independent variables are presented  
in Figure 3.
	 Sampling Technique
	 Selecting an appropriate sample for the  
LR model involves consideration of the sample  
size and the proportion of hotspot and non- 
hotspot pixels (Schicker and Moon, 2012). Thus,  
an appropriate number of samples should be  
considered to create a dependent variable. Earlier  
studies have recommended using an equal  
proportion for the presence (1) and absence (0)  
of a hotspot (Ayalew and Yamagishi, 2005),  
because it can eliminate the bias associated with  
the unequal proportion of samples (Zhu and  
Huang, 2006) and reduces the volume of data in  
the analysis. Since the number of hotspot pixels  
(2546 pixels) was comparatively less than the  
non-hotspot pixels in the study area, all hotspot  
pixels are taken into account for the analysis.  
Then, an equal number of non-hotspot pixels  
(2546 pixels) was randomly selected from the  
non-hotspot pixels and then combined with the  
hotspot pixels. Therefore, the total number of  
hotspot and non-hotspot pixels is 5092 pixels  
for the entire study area. These samples are then  
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partitioned into a training and validation dataset  
by applying the random sampling technique to  
the proportions of 70% and 30%, respectively,  
using the geostatistical analysis tools in the  
ERSI ArcGIS software. In practice, the training  

and validation dataset was applied for both  
the LR and FR models. For the LR model, the  
dependent variable includes randomly sampled  
hotspot and non-hotspot pixels while the FR  
model requires only hotspot pixels as the  

Figure 3. MODIS hotspot and predictor maps used in the analysis
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dependent variable.

Wildfire Susceptibility Analysis Based on the  
LR and FR Models

	 The LR and FR models are here used to  
develop a wildfire probability map because the  
comparison of results from 2 models can both  
provide more insights on the complicated 
relationship between fire events and the  
influential factors in the study area and  
eventually enable the preparation of a reliable  
wildfire susceptibility map based on the  
optimum model through validation. 
	 Logistic Regression (LR) Model
	 The LR model, which is sometimes known  
as a logistic or logit model, is a special case of  
multiple regression analysis for predicting the  
binary outcome variable (presence or absence)  
based on the set of predictor variables. It is suitable  
for modelling where the dependent variable is  
dichotomous or binary in nature. It gives the  
freedom to use both categorical and continuous  
variables in a regression analysis, whereby  
independent variables can be non-linear (Schicker  
and Moon, 2012). The main purpose of the LR  
model is to find the best fitting model to describe  
the relationship between a dependent and the  
independent variables (Ayalew and Yamagishi  
2005). In this study, the LR model was applied  
to examine the relative strength and significance  
of each factor in wildfire prediction. Herein, the  
MODIS hotspot is considered as the dependent  
variable while environmental, climatic, and  
anthropogenic variables are the independent  
variables. 
	 In the analysis, the presence of a wildfire  
hotspot is coded as “1” (y = 1), while the  
absence of a wildfire hotspot is coded as “0”  
(y = 0) (Atkinson and Massari 1998). Further,  
the presence of wildfire (y =1) is denoted as P  
and the absence (y = 0) as (1 - P). This allows  
logistic regression to model the probability of  
the occurrence of wildfire in association with  
each variable (Yesilnacar and Topao, 2005).  
Since the result of the LR model is binary, the  
probability value cannot be expressed as the  
linear function of the explanatory variables.  
Thus, the predicted probability of predictors is  
transformed to a linear function applying the  

logit transformation by executing the logarithm  
of P/ (1-P), known as odds. Therefore, the LR  
model is expressed in equation form as:

(1)

where P represents the probability of the  
presence of wildfire, while 1-P represents the  
absence of wildfire, and P/(1-P) is the odds ratio.  
Quantitatively, the relationship between the  
probability of wildfire and its influential variable  
is expressed as (Preisler et al., 2004):

 	 (2)

	 (3)

where P is the probability that wildfire occurs  
(Y=1) at a given location and varies from 0 to 1, 
β0 is the intercept/constant of the model and  
βi are the coefficients associated with the  
independent (Xi) variables, Z is the linear  
combination of the independent variables (Xi) in  
use weighted by their regression coefficients, and  
e is the base of the natural log. The coefficients  
of variables with positive values indicate a  
positive correlation while those with negative  
coefficients indicate a negative correlation with  
wildfire occurrence (Yalcin et al., 2011).
	 To apply the LR analysis, 1,782 pixels of  
hotspot (70%) were selected for training and  
another 764 pixels of hotspot (30%) have been  
retained for accuracy assessment and validation.  
An equal number of non-hotspot pixels (1782  
pixels) was also randomly selected from the  
non-hotspot pixels and then combined with the  
hotspot pixels. Therefore, the total number of  
hotspot and non-hotspot pixels comprises 3564  
pixels for the entire study area as a training  
dataset. Meanwhile, the corresponding values  
of independent variables for 3564 pixels were  
extracted and combined in an MS-Excel  
spreadsheet as the input data for the LR analysis.  
Before performing the LR analysis, the relative  
percentage of hotspot density was firstly used to  
transform nominal variables to numeric variables  
because this technique avoids the creation of  
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an excessive number of dummy variables and  
considers the existing hotspot distribution  
(Yesilnacar and Topal, 2005). After that, all  
independent variables were normalized in the  
manner LR requires, because the independent  
variables are measured at different scales and  
they do not contribute equally to the analysis,  
making it difficult to assess relative importance  
and creating problems during interpretation of  
the final result (Ayalew and Yamagishi, 2005).  
Therefore, all variables were normalized using  
a linear transformation scale method under the  
spatial analyst tools in the ERSI ArcGIS software.  
The LR analysis is performed using the SPSS  
statistical software. Herein, the backward LR  
with stepwise analysis using the maximum  
likelihood method was applied to identify  
significant influential factors and the probability  
of wildfire occurrence.
	 Multicollinearity Analysis
	 Prior to the LR analysis, consideration of  
the multicollinearity issue is one of the most  
important steps to detect the correlation among  
the predictor variables because this will distort the  
model estimation and may provide an erroneous  
result (Rogerson, 2006). According to O’Brien  
(2007), a tolerance (TOL) of less than 0.20 or  
0.10 and/or a variance inflation factor (VIF) of  
5 or 10 and above presented a multicollinearity  
problem. In this study, if the TOL value is less  
than 0.1 and the VIF value is greater than 10,  
the variables were considered to have high  
correlation and were excluded in the analysis.  
The TOL and VIF values can be calculated using  
the following equation (Rogerson, 2006):

  	 	 (4)

 	 	 (5)

where r2 is associated with the regression of the  
independent variable on all other independent  
variables. The test was carried out in the SPSS  
statistical software.
	 Frequency Ratio (FR) Model
	 The FR model is another approach applied  
to assess the wildfire susceptibility. It is a simple  
geospatial assessment tool for computing the  
probabilistic relationship between dependent  

and independent variables, including multi- 
classified maps (Oh et al., 2011), and it is  
defined as the ratio of occurrence probability to  
nonoccurrence probability for specific attributes.  
The FR model is based on the observed  
relationships between the distribution of hotspots  
and each hotspot-related factor to reveal the  
level of correlation between hotspot locations and  
the influential factors (Pradhan et al., 2007). The  
FR model has several advantages of simplicity.  
More importantly, inputs, outputs, and the  
calculation process are easy to understand. In  
addition, a large amount of data can be processed  
quickly and easily in the GIS environment,  
whereas the LR model requires the specific  
statistical package and has difficulty in processing  
a large amount of data. 
	 For the FR analysis, the thematic maps of  
all 15 wildfire influential factors were classified  
according to the objective, accuracy and scale  
of the data, and literature reviews. The first step  
of the FR analysis is to calculate the frequency  
ratio (FR) of each factor using the equation  
below (Lee and Pradhan, 2007 ):

 	 	 (6)

where A is the number of hotspot pixels in each  
class of factor, B is the total number of hotspot  
pixels in the entire study area, P represents the  
percentage of hotspot pixels of the whole study  
area, C is the number of pixels (hotspot and  
non-hotspot) in each class of the factor, D is the  
total number of pixels (hotspot and non-hotspot)  
for the entire study area, and K represents the  
percentage of pixels (hotspot and non-hotspot)  
in each class of the factor. An FR value of 1  
illustrates an average correlation, while a value  
greater than 1 illustrates a high correlation  
(indicates a higher chance of having fire in that  
specific class), and a value less than 1 indicates  
a lower correlation (Oh et al., 2011; Ozdemir and  
Altural, 2013). 
	 The next step of the FR analysis is to  
assign those computed FR values of each class  
of factors using the reclassify function of the  
spatial analyst tool in the ESRI ArcGIS software.  
Finally, all the factor maps, with assigned  
FR values, are added to produce a wildfire  
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susceptibility index (WSI) map using the equation 
below:

	 (7)

where WSI represents the wildfire susceptibility  
index; it indicates the relative susceptibility to  
wildfire occurrence, where higher values are  
associated with high susceptibility and lower  
values represent low susceptibility. FRi represents  
the weighted factor maps of wildfire influential  
factors.
	 For the FR analysis, the hotspot pixels of  
the entire training dataset were overlaid with the  
classified wildfire factor maps and the number  
of hotspot pixels in each class was cross-tabulated  
and examined using the spatial analyst tool in  
the ESRI ArcGIS software. It was then imported  
to the MS Excel spreadsheet to calculate the  
FR values. Herein, the FR of each factor’s class is  
calculated in 3 steps. First, the area ratio of each  
class of factor is computed followed by the  
calculation of the hotspot ratio. Finally, the FR  
is obtained by dividing the hotspot ratio by the  
area ratio for each factor’s class (Equation 6).  
Next, the wildfire susceptibility index (WSI) was  
computed based on the FR values of each variable  
applying Equation 7 and using the spatial analyst  
tools in the ESRI ArcGIS software.

Accuracy Assessment and Validation

	 The accuracy assessment and validation of  
the predicted wildfire probability map is the most  
important component, otherwise the prediction  
model has no scientific significance (Chung and  
Fabbri, 2003). The accuracy assessment of the  
wildfire probability maps obtained from the LR  
and FR models was evaluated using the ROC  
technique based on the independent validation  
dataset (30%). The model that provides the better  
ROC value is selected for the final wildfire  
susceptibility zonation mapping.
	 Basically, the ROC determines whether  
the model is fit or not by checking the prediction  
performance of the model. It determines the  
accuracy of the prediction model at a user defined  
threshold value using area under curve (AUC). The  
AUC is also known as the index of accuracy  
or concordant index which represents the  

performance of the ROC curve. The higher the  
ROC value, the better is the model. The value of  
the ROC varies from 0.5 to 1. If the ROC value  
is 1, it indicates a perfect fit and an ROC value  
of 0.5 indicates a random fit.
	 Practically, the derived probability maps of  
the LR and FR models from the GIS environment  
are firstly exported to ERDAS IMAGINE software  
in the IMG format. Then, it is imported to the  
IDRISI software and converted to the RST format.  
Likewise, the dependent training and validation  
dataset is also imported to the IDRISI environment.  
Herein, the probability maps represent the input  
image while the training and validation map is  
used as a reference image for the calculation  
of the ROC. The probability map is compared  
with the training and the validation dataset to  
obtain the success rate and prediction rate curves,  
respectively, and then the AUC of the ROC is  
obtained. Generally, the ROC graph is plotted with a  
true positive rate (sensitivity) on the Y-axis  
against a false positive rate (1-specificity) on the  
X-axis for possible classification thresholds. The  
true positive rate (sensitivity) is the proportion  
of hotspots that are correctly classified, while the  
true negative rate (specificity) is the proportion  
of non-hotspots correctly classified. Here, the false  
positive rate (1-specificity) and false negative rate  
(1-sensitivity) are the proportions of non-hotspot  
and hotspot pixels that are erroneously classified.  
Both the true positive rate (sensitivity) and false  
positive rate (1-specificity) range from 0 to 1.

Results and Discussion

Multicollinearity Analysis

	 The multicollinearity analysis is reported  
in Table 2. The test results confirmed that there  
is no multicollinearity among the independent  
variables. In fact, the lowest TOL value was 0.161  
and the highest VIF index was 6.218 for elevation  
which is greater than the TOL threshold (0.1)  
and less than the VIF threshold (10). Meanwhile,  
all other variables have TOL and VIF values  
within the threshold value which indicates there  
is no multicollinearity problem. Hence, all  
independent variables are applied for the LR  
and FR analyses.



223Suranaree J. Sci. Technol. Vol. 24 No. 2; April - June 2017

LR Analysis on Wildfire Probability

	 In the LR analysis, the process firstly starts  
by entering all 15 predictor variables into the  
model and then sequentially eliminates the  
predictor variables based on the probability of  
the likelihood-ratio statistic, based on conditional  
parameter estimates. The elimination process of  
variable removal terminated after the 4th step. In  
the process, 3 insignificant predictor variables,  
namely CRV, SLP, and Dist_River were removed  
while 12 significant predictor variables were  
retained by the model. All twelve variables have  
the estimated coefficients (β) statistically  
different from 0 with the given null hypothesis  
H0: β = 0. They have a significance value (Sig.)  
less than 0.05 and are considered as significant  
influential factors of wildfire occurrence. The  
statistical test used a Wald chi-square value at 95%  
confidence level for the corresponding degree  
of freedom (df) indicating all 12 variables are  
significant, because the Wald values are greater than  
4 which gives the level of significance value  
(p-value) less than 0.05 (Table 3). According to the  

classification summary in Table 3, the model  
correctly predicted for 2488 pixels out of 3564  
pixels for an overall success rate of 70%. The  
LR goodness of fit measured by the Nagelkerke  
R2 statistic of 0.267 is the pseudo-R2 which  
indicates that the estimated LR model can  
approximately explain 27% of the variance in  
wildfire occurrence. The value of the pseudo  
R2 (> 0.2) indicates that the performance of the  
model is good (Clark and Hosking, 1986) and  
the model can efficiently explain and interpret  
the relationship between the independent  
variables and the occurrence of wildfire.
	 The coefficient (β) of the LR model  
indicates the contribution of each factor to  
wildfire occurrence and its statistical significance.  
The relative importance of predictor variables is  
assessed using the corresponding coefficients and  
it is used in predicting the probability of wildfire  
occurrence. In principle, the coefficient (β)  
explains a change in the probability of wildfire  
occurrence for a unit increase in the corresponding  
independent variables. The variables with positive  
coefficients indicate a positive correlation and  

Table 2. 	 Multicollinearity diagnostic test of independent variables 

No. Independent variables (Abbreviation)
Collinearity statistics value

TOL VIF
1 Elevation (ELV) 0.161 6.218
2 Slope (SLP) 0.840 1.190

3 Aspect (ASP) 0.855 1.170

4 Curvature (CRV) 0.506 1.974

5 Topographic wetness index (TWI) 0.496 2.016

6 Enhanced vegetation index (EVI) 0.624 1.602

7 Land use (LU) 0.875 1.143

8 Rain fall (RF) 0.684 1.461

9 Land surface temperature (LST) 0.543 1.842

10 Relative humidity (RH) 0.184 5.443

11 Distance to road (Dist_Road) 0.546 1.830

12 Distance to river (Dist_River) 0.515 1.943

13 Distance to settlement (Dist_Sett) 0.282 3.541

14 Distance to agricultural land (Dist_AgriL) 0.270 3.697
15 Population density (Pop_Density) 0.174 5.753
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those with negative coefficients indicate a  
negative correlation to wildfire occurrence. 
	 The probability of wildfire occurrence  
shows a positive correlation with the LST,  
ASP, Dist_AgriL, Dist_Sett, and LU variables,  
whereas Dist_Road, ELV, Pop_Density, EVI,  
RH, RF, and TWI show a negative correlation.  
Basically, the variables with positive coefficients  
have more of an explanatory capability in terms  
of causing wildfire while the variables with negative  
coefficients will tend to suppress the probability  
of wildfire occurrence. The results indicate that  
the most significant influential factors of wildfire  
are LST and Dist_Road followed by ELV,  
Pop_Density, EVI, Dist_AgriL, ASP, and RH.  
The remaining factors have a relatively low  
influence.
	 In this study, the influence of explanatory  
factors including LST, ASP, LU, Dist_Road,  
ELV, Pop_Density, EVI, RH, RF, and TWI  
principally agree with wildfire behavior and  
they are consistent with the previous works of  
Zhang et al. (2009); Mohammadi et al. (2014);  

Pourtaghi et al. (2014); Guo et al. (2015);  
Zhang et al., (2013); and Abdi et al. (2016).  
However, a positive linear relationship of the  
proximity variables including Dist_AgriL, and  
Dist_Sett indicates that as the Euclidean distance  
increases the occurrence of wildfire increases.  
This is an unexpected result because generally  
areas closer to agricultural land and settlement  
areas are more likely to initiate wildfire due  
to human activities like the burning of debris  
(agriculture/orchards/waste). To verify the result,  
the wildfire hotspots were overlaid with the raster  
maps of the agricultural land and settlements.  
It was observed that for certain areas closer to the  
agricultural lands and settlements, the density  
of hotspots was high while more fires seem  
scattered farther away from the agricultural and  
settlement areas in the northern part of Paro and  
southeastern part of Thimphu. As a result, the  
overall impact seems to show a positive correlation  
to the Euclidean distance of agricultural land  
and settlements. Moreover, all variables do not  
necessarily have a consistent linear relationship  

Table 3. 	 Coefficients of LR model and statistics 

Factors β S.E. Wald df Sig. Exp(β)
Land surface temperature (LST) 5.099 0.480 112.995 1.000 0.000 163.778
Distance to agricultural land (Dist_AgriL) 1.769 0.320 30.562 1.000 0.000 5.862

Aspect (ASP) 1.540 0.137 125.692 1.000 0.000 4.663

Distance to settlement (Dist_Sett) 0.997 0.354 7.921 1.000 0.005 2.709

Land use (LU) 0.805 0.225 12.851 1.000 0.000 2.237

Topographic wetness index (TWI) -0.680 0.231 8.671 1.000 0.003 0.507

Rain fall (RF) -0.790 0.328 5.792 1.000 0.016 0.454

Relative humidity (RH) -1.388 0.446 9.668 1.000 0.002 0.250

Enhanced vegetation index (EVI) -1.798 0.565 10.135 1.000 0.001 0.166

Population density (P_Density) -1.841 0.436 17.786 1.000 0.000 0.159

Elevation (ELV) -2.937 0.563 27.238 1.000 0.000 0.053

Distance to road (Dist_Road) -3.261 0.366 79.312 1.000 0.000 0.038

Constant -1.785 0.601 8.833 1.000 0.003 0.168

Note: β = logistic coefficient; S.E. = standard error of estimate; Wald = Wald chi-square values; 
df = degree of freedom; Sig. = Significance; Exp(β) = exponentiated coefficient.
Classification summary and model statistics
	 Overall Percentage	 70%
	 Nagelkerke R Square	 0.267
	 Cox & Snell R Square	 0.200
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with wildfire occurrence (Wu et al., 2015).  
Therefore, it is important to focus on the possible  
reasons for such types of unexpected outcomes.
	 Using the coefficients of the LR analysis,  
the equation of the LR model for the probability  
of wildfire occurrence was formulated. This was  
achieved using the multiple linear regression  
equation of the LR model separately for 3  
categories of variables: environmental, climatic,  
and anthropogenic and later combined with the  
estimated constant of the model. The combined  
Z values are then applied to calculate the  
probability of wildfire occurrence as:

	 (8)

	 (9)

	(10)

	 (11)

	(12)

where ZE, ZC, and ZA are the parameters that  
represent the linear combination of the environ-
mental, climatic, and anthropogenic variables  
in use weighted by their individual regression  
coefficients, respectively, and P is the probability  
of the occurrence of a wildfire hotspot. This  
whole operation was done in the ESRI ArcGIS  
environment using the model builder tools and  
raster calculator of the spatial analyst tools  
(Figure 4). The result is a raster layer with the cell  

Figure 4. Model structure for probability of wildfire occurrence under LR analysis
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values representing the estimated probability of  
wildfire occurrence, which varies from 0 to  
0.945 (Figure 5). 
	 The probability map of the LR model  
indicates that all the influential factors have a  
different degree of influence to the occurrence  
of wildfire. As indicated by the regression  
coefficients (β), the probability map of wildfire  
shows a higher probability at lower elevations that  
corresponds to high land surface temperature  
with low rainfall and humidity. The probability is  
very high closer to the roads and in places where the  
vegetation is predominant with dry grasslands,  
shrubs, and meadows and are, therefore, more  
susceptible to wildfire occurrence. In contrast, the  
probability is rather low at high altitude where  
humidity and rainfall are quite high and those  
areas covered by snow, glaciers, and lakes.
	 In summary, the LR model demonstrates  
that most of the fires are induced by human  

activities along the roads while they are also  
controlled by climatic and environmental  
conditions, particularly temperature and fuel.  
However, their degree of influence varies from  
one place to another due to the variation of  
topography.

FR Analysis on Wildfire Probability

	 The result of the FR analysis is presented  
in Table 4 and the WSI was produced using  
Equation 7 under the model builder and spatial  
analyst tools in the ESRI ArcGIS software  
(Figure 6). The output of the WSI that represents  
the probability of wildfire occurrence is  
displayed in Figure 7. 
	 The analysis of the FR model reveals that  
LST, SLP, ASP, CRV, EVI, LU, Dist_Road,  
Dist_River, Dist_Sett, Dist_AgriL, and Pop_ 
Density have a positive correlation to the  
frequency of wildfire occurrence in the study  

Figure 5. Wildfire probability map of LR model
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Table 4. 	 Frequency ratio value of wildfire factor classes computed from FR model

Factor Class (Unit) No. of pixels  
in each class

% of pixels  
in each class (B)

No of hotspot 
pixels

% of hotspot 
pixels (A) FR = A/B

Elevation <2500 m 22507 7% 272 15% 2.092

2500-3500 m 107241 35% 711 40% 1.148

3500-4500 m 112812 37% 734 41% 1.126

4500-5500 m 63253 21% 65 4% 0.178

>5500 m 2661 1% 0 0% 0

Slope 0-8o 13473 4% 45 3% 0.578

8–15 o 34880 11% 172 10% 0.854

15–25 o 104848 34% 592 33% 0.977

25-50 o 153493 50% 970 54% 1.094

>50 o 1780 1% 3 0% 0.292

Aspect Flat (-1) 59 0% 0 0% 0.000

North (0-22.5; 337.5-360) 36565 12% 103 6% 0.488

Northeast (22.5-67.5) 43033 14% 131 7% 0.527

East (67.5-112.5) 40158 13% 217 12% 0.935

Southeast (112.5-157.5) 39793 13% 421 24% 1.831

South (157.5-202.5) 39760 13% 376 21% 1.637

Southwest (202.5-247.5) 37175 12% 300 17% 1.397

West (247.5-292.5) 36587 12% 147 8% 0.696

Northwest 35344 11% 87 5% 0.426

Curvature Concave 158018 51% 862 48% 0.944

Flat 3001 1% 16 1% 0.923

Convex 147455 48% 904 51% 1.061

TWI <0 108949 35% 635 36% 1.009

0 - 2 101073 33% 667 37% 1.142

2-4 62128 20% 311 17% 0.867

4-6 20944 7% 108 6% 0.893

>6 15380 5% 61 3% 0.687

EVI <0.1 827 0% 0 0% 0.000

0.1-0.2 58858 19% 78 4% 0.229

0.2-0.3 54116 18% 364 20% 1.164

0.3-0.4 113695 37% 1009 57% 1.536

>0.4 80978 26% 331 19% 0.708

Land Use Coniferous Forest 149563 48% 798 45% 0.924

Shrubs and Meadows 95445 31% 735 41% 1.333

Broadleaf Forest 1388 0% 1 0% 0.125

Agriculture Fields 8638 3% 45 3% 0.902

Water Body 972 0% 0 0% 0.000

Snow Cover 34686 11% 185 10% 0.923

Miscellaneous 15397 5% 16 1% 0.180

Built-up Areas 1975 1% 1 0% 0.088

Broadleaf and Coniferous Forest 410 0% 1 0% 0.422

area, while ELV, RF, RH, and TWI show a  
negative correlation. Generally, as the value  
of positively correlated factors increases, the  
frequency of wildfire tends to increase, while  

for negatively correlated factors it will tend to  
decrease their influence on wildfire occurrence.  
However, the FR values may deviate slightly  
according to the classification of factors. 
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Table 4. 	 continued).

Factor Class (Unit) No. of pixels  
in each class

% of pixels  
in each class (B)

No of hotspot 
pixels

% of hotspot 
pixels (A) FR = A/B

Rainfall <1000 mm 154940 50% 1271 71% 1.420

1000-1500 mm 135384 44% 429 24% 0.549

1500-2000 mm 8150 3% 39 2% 0.828

2000-2500 mm 5546 2% 34 2% 1.061

>2500 mm 4454 1% 9 1% 0.350

LST < 0°C 3081 1% 0 0% 0.000

0 – 10°C 140505 46% 460 26% 0.567

10 – 20°C 160574 52% 1234 69% 1.330

20-25°C 4233 1% 88 5% 3.599

>25°C 81 0% 0 0% 0.000

Relative 
humidity

<68% 10226 3% 125 7% 2.116

68-70% 8719 3% 134 8% 2.660

70-72% 15076 5% 139 8% 1.596

72-74% 161191 52% 809 45% 0.869

>74% 113262 37% 575 32% 0.879

Distance 
to road

<500 m 41450 13% 351 20% 1.466

500-1000 m 22578 7% 363 20% 2.783

1000-1500 m 17514 6% 123 7% 1.216

1500-2000 m 15186 5% 74 4% 0.844

>2000 m 211746 69% 871 49% 0.712

Distance 
to river

<500 m 31233 10% 229 13% 1.269

500-1000 m 27100 9% 300 17% 1.916

1000-1500 m 26676 9% 218 12% 1.415

1500-2000 m 26368 9% 212 12% 1.392

>2000 m 197097 64% 823 46% 0.723

Distance to 
settlement

<500 m 50630 16% 487 27% 1.665

500-1000 m 41601 13% 372 21% 1.548

1000-1500 m 34438 11% 173 10% 0.870

1500-2000 m 28846 9% 97 5% 0.582

>2000 m 152959 50% 653 37% 0.739

Distance to 
agricultural 
land

<500 m 54186 18% 582 33% 1.859

500-1000 m 32447 11% 292 16% 1.558

1000-1500 m 26166 8% 74 4% 0.490

1500-2000 m 21770 7% 54 3% 0.429

>2000 m 173905 56% 780 44% 0.776

Population
density

<50 person/sq.km 215810 70% 1255 70% 1.007

50-100 persons/sq.km 56084 18% 167 9% 0.515

100-150 persons/sq.km 21856 7% 166 9% 1.315

150-200 persons/sq.km 9023 3% 105 6% 2.014

>200 persons/sq.km 5701 2% 89 5% 2.702
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	 According to the FR values, the frequency  
of wildfire is found to be highly correlated with  
LST, Dist_Road, ELV, RH, and Pop_Density  
while other variables have a comparatively lower  
correlation. Wildfire frequency is very high at  
elevations lower than 2500 m above mean sea  
level and low above 2500 m. At elevations above  
5500 m no fire incidences were observed.  
A progressive increase in FR values was noted as  
the slope angle increases. The FR value is high  
in the slope class between 25o–50o indicating  
a high correlation in this class. South-facing  
aspects experienced the highest number of  
wildfires compared to other faces as indicated  
by their high FR values. In the case of the land  
use factor, the wildfire frequency is very high in  
classes like shrubs and meadows, coniferous  
forest, and snow cover compared to other classes.  
However, due to the mismatch of the temporal  
scale of hotspot data and land use data, an  
unexpected high frequency value in snow cover  
was observed. In addition, snow cover is one  
of the dynamic variables that characterizes  
spatial-temporal phenomena. Convex curvature  

shows high wildfire frequency compared to  
concave and flat curvatures. The EVI class between  
0.2 and 0.4 has a high frequency of wildfires  
compared to other classes, indicating the presence  
of more wildfires in shrubs and meadows and  
grasslands. The classes with the TWI lower than  
0.2 have more wildfires, while with the classes  
with the TWI greater than 0.2 experience fewer  
fires. In the same way, places that have a mean  
annual rainfall less than 1000 mm and mean  
relative humidity less than 70% have a higher  
wildfire frequency while areas with a mean  
annual rainfall greater than 1000 mm and  
relative humidity greater than 70% have lower  
fire frequencies. The progressive increase in the  
FR values of the LST shows that the frequency  
of wildfire increases as the LST increases. The  
frequency of wildfire occurrences is relatively  
high in places where the LST is between 20°C  
and 25°C. The proximity factors indicate that  
within the Euclidean distance of 1500 m from  
roads and 100 m from rivers, there is the highest  
number of wildfire incidents. Likewise, within a  
proximity of 1000 meters from settlements and  

Figure 6. Model structure for wildfire susceptibility index under FR analysis
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Figure 7. Wildfire susceptibility index map of FR model

agricultural land, a high frequency of wildfires  
was found. As the Euclidean distance from the  
proximity factors increases, the frequency of  
wildfires tends to decrease. However, there are  
few instances where wildfire incidences  
increase beyond 2000 m from settlements and  
agricultural land. The FR results also reveal  
that a population density with more than 100  
persons/km2 has a high correlation with wildfire  
occurrence. 
	 In addition, the prediction rates computed  
from the FR value of each factor confirm that  
the LST factor followed by the ELV, EVI,  
Dist_Road, and Pop_Density factors have a  
highly significant influence on wildfire 
occurrence (Table 5). Factors like Dist_AgriL,  
RF, ASP, RH, SLP, and Dist_Sett show a moderate  
influence while CRV, TWI, and Dist_River show  
a very low influence. CRV and Dist_River were  
also eliminated by the LR analysis since their  
contributions to the model were insignificant.

	 Moreover, the comparative analysis of the  
wildfire probability map from the LR model and  
the wildfire susceptibility index map from the  
FR model, which both represent the probability  
of wildfire occurrences, show a similar pattern  
along the low valleys, and present a slightly  
dissimilar pattern in hilly and mountain areas,  
because the representation of input data for  
the LR model as a continuous format and the  
FR model as a discrete format are different. In  
addition, the classification system of influential  
factors plays an important role for the FR  
analysis. Despite this, no significant difference  
was observed between the 2 probability maps  
which signifies that both the LR and FR models  
are reliably good in predicting the wildfires in  
the study area.
	 Furthermore, the comparison of predictive  
power from the LR model and prediction rate  
from the FR model demonstrates that LST, ELV,  
and Dist_Road followed by EVI and Pop_ 
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Table 5. 	 Prediction rates of wildfire influential factors

No Factor Prediction Rate
1 Elevation (ELV) 0.703
2 Slope (SLP) 0.323

3 Aspect (ASP) 0.352

4 Curvature (CRV) 0.070

5 Topographic wetness index (TWI) 0.151

6 Enhanced vegetation index (EVI) 0.645

7 Land use (LU) 0.416

8 Rainfall (RF) 0.388

9 Land surface temperature (LST) 1.000

10 Relative humidity (RH) 0.337

11 Distance to road (Dist_Road) 0.451

12 Distance to river (Dist_River) 0.271

13 Distance to settlement (Dist_Sett) 0.306

14 Distance to agricultural land (Dist_Agril) 0.427
15 Population density (Pop_Density) 0.442

Figure 8. Graphical representation of predictive power of LR model and prediction rate of FR model

Density are the most influential factors of  
wildfire while ASP, RH, Dist_Sett, RF, LU, and  
SLP have a moderate influence. The factors like  
TWI, CRV, and Dist_River have a very minimum  
role. The degree and pattern of the influence  
of each factor on wildfire probability show a  
similar pattern for both models (Figure 8). 

	 In summary, the results from the LR and  
FR models show similar influences with an  
acceptable degree of correlation to wildfire 
occurrence in this study. This further confirms  
the reliability of both models in predicting  
wildfire. Overall, the spatial pattern of the areas  
predicted as having the highest probability of  
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Figure 9. Success rate curves and prediction rate curves of LR and FR models

wildfire occurrences from both models reflects  
the significant influence of the land surface  
temperature, distance to roads, elevation, EVI,  
and population density in the study area.

Accuracy Assessment and Validation of LR  
and FR Models 

	 The study prepared wildfire probability  
maps using the LR and FR models and the  
performance of each model was evaluated using  
the ROC method based on a 30% (764 pixels)  
independent validation set retained during data  
sampling.
	 The results showed success rates with AUC  
values of 0.881 and 0.855 for the LR and FR  
models, respectively (Figure 9). Based on Chung  
and Fabbri (2003) the results indicate that both  
models have a very good capability of classifying  
the area, and the models have a high goodness  
of fit with the training dataset and wildfire  
variables. Subsequently, the prediction rate  

curves with AUC values of 0.883 and 0.853 are  
obtained for the LR and FR models, respectively  
(Figure 9). The results indicate that both models  
have a relatively high predictive capability to  
discriminate the presence and absence of wildfire  
in the study area. Moreover, compared to other  
previous studies which employed both models,  
the results obtained in the present study provide  
better accuracy in predicting wildfire occurrences  
(Intarawichian and Dasananda (2010); Zhang  
et al. (2013); Pourtaghi et al., 2014; Guo et al.  
(2015).
	 Although, the LR model performed  
slightly better than the FR model, as indicated  
by the higher AUC value, the FR model can also  
be considered as an equally acceptable model  
that can be applied for susceptibility mapping  
in the area. The close similarities of the success  
and prediction rate curves of the 2 models 
indicate that both models are reliable and can  
be used in predicting future wildfires. However,  
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the LR model is here considered as the optimum  
model for the final wildfire susceptibility mapping  
based on the comparative assessment and  
validation. The LR model shows a slightly  
higher performance for both training and  
validation datasets compared to the FR model  
with a high AUC value for success and  
prediction rates of 0.881 and 0.883, respectively.  
Some studies have also found that the LR model  
has performed better than the FR model (Lee and  
Evangelista, 2008; Meten et al., 2015), while  
others have found the FR model better than the  
LR model (Lee and Pradhan, 2007). 

Wildfire Susceptibility Mapping

	 To generate the final wildfire susceptibility  
map of different zones using the optimum LR  
model, the method adopted in many previous  
studies is to divide the histogram of the  
probability map into different categories based  
on expert opinions (Dai and Lee, 2002;  
Ohlmacher and Davis, 2003) and many studies  
have chosen and applied different classification  
methods depending on their interest and the type  
of data. For instance, Ayalew and Yamagishi  
(2005) applied 4 classification methods, namely  
quantiles, natural breaks, equal intervals, and  
standard deviation and selected one that provides  
the best information according to the scale of  
investigation. They also found that the standard  
deviation method was suitable and provided  
good information. In other studies, Meinhardt  
et al. (2015) and Intarawichian and Dasananda  
(2010) applied the manual and natural breaks,  
respectively, for better classification. 
	 The present study examined all the available  
inbuilt classification methods in the ESRI  
ArcGIS software and deduced that the standard  

deviation method provides the best information  
that is more suitable to the study area compared  
to other methods. The standard deviation method  
has a certain advantage of applying the mean to  
generate the class breaks (Ayalew and Yamagishi,  
2005). Moreover, probability values of the final  
output map are normally distributed according  
to a histogram report where the standard deviation  
method is suitable when the samples are  
normally distributed (Environmental Systems  
Research Institute, Inc., 2016). Herein, the  
wildfire susceptibility map comprises 5 zones:  
very low, low, moderate, high, and very high  
(Figure 10). 
	 The percentage of hotspots and the area  
coverage computed for each zone are presented  
in Table 6. According to the classified zones,  
39% of the total hotspots are found in very high  
susceptibility zones covering about 9% of the  
total study area, while the high susceptibility  
zones have 33% of the total hotspots covering  
21% of the total area. This indicates that the  
majority of the total hotspots (72%) are found  
in high and very high susceptibility zones  
covering 30% of the total study area. The zones  
corresponding to moderate, low, and very low  
susceptibility constitute 17%, 11%, and 0% of  
the total hotspots, with the corresponding area  
coverage of 1146.420, 860.260, and 161.530 km2,  
respectively.
	 Upon the visual interpretation, the deduced  
wildfire susceptibility map conveys useful  
information and it appears to be highly satisfying  
and rational. According to the classification zones,  
most parts of the very high and high zones are  
located in the sloping valleys at lower elevations  
where vegetation is mostly dominant with shrubs  
and meadows/grasslands, and in areas that have  

Table 6. 	 Percentage of hotspots and the area and its percentage coverage in each susceptibility zones

Probability Range Susceptibility class Hotspot (%) Area (Sq. Km) Percent (%)
0.000 - 0.110 Very low 0 161.530 5
0.110 - 0.300 Low 11 860.260 28

0.300 - 0.500 Moderate 17 1146.420 37

0.500 - 0.700 High 33 639.150 21
0.700 - 0.945 Very high 39 277.380 9
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a high land surface temperature with low rainfall  
and humidity. They are also found closer to the  
roads where most of the daily human activities are  
involved. In addition, most of the agricultural  
land also seems to fall into the high susceptibility  
zone including a few patches in remote areas,  
especially nearby settlements. The susceptibility  
to wildfires appears to decrease as the distance  
from the road increases where there is less  
human interference. Most of the areas that are  
covered by coniferous forest in the mid-altitude  
areas seem to fall into the moderate susceptibility  
zone and those areas in the high altitudes  
covered by snow and bare soils fall into either  
the low or very low susceptibility zones. A few  
areas of the low susceptibility zone are located  
in the southwest and center of the study area  
that lie in higher altitudes while most of the  
very low susceptibility zone is situated in the  
northern part. Although, the proportion of the  
very high and high susceptibility zones are  
smaller compared to other zones, the resulting  
map is agreeable with the actual fire situation  
in the study area. Particularly during the winter,  
when there is no rainfall, the surrounding air  
becomes very dry with fluctuating winds and  
the humidity remains very low. The trees shed  
their leaves adding more fuel to the ground,  
and the grasses, shrubs, and meadows become  
dry. As a result, they become more susceptible  
to wildfires. 

Conclusions
According to the results of the LR analysis, it  
can be concluded that the probability of wildfire  
occurrences has a positive correlation with the  
land surface temperature, aspect, distance to  
agricultural land, distance to settlement, and land  
use factors, whereas distance to road, elevation,  
population density, enhanced vegetation index,  
relative humidity, rainfall, and topographic  
wetness index have a negative correlation to the  
occurrence of wildfire. On the other hand, the  
factors including curvature, slope, and distance  
to river were eliminated during the process of  
the stepwise LR analysis. This suggests that  
they have a very weak correlation to wildfire  
occurrences. The variables with positive  
coefficients have a more explanatory capability  
than variables with negative coefficients in terms  
of causing wildfires in the study area. The factors  
with negative coefficients will tend to suppress  
the probability of wildfire occurrences, which  
means that, with a unit increase in the variables  
with negative coefficients, the probability of  
wildfire occurrences will decrease. Thus, the  
findings from the LR model concluded that the  
probability of wildfire occurrences is higher at  
lower elevations with a high land surface 
temperature and closer to the roads that are  
associated with a high frequency of human  
activities. The wildfires are more likely to occur  

Figure 10. Final wildfire susceptibility map with hotspot from an optimum model
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in the sloping valleys where most of the 
vegetation comprises shrubs and meadows/ 
grasslands with low humidity and less rainfall.
	 The analysis of the FR model revealed  
that the land surface temperature, slope, aspect,  
curvature, enhanced vegetation index, land use,  
Euclidean distance to roads, rivers, settlements  
and agricultural land, and population density  
have a positive correlation to the occurrence  
of wildfire in the study area, while elevation,  
rainfall, relative humidity, and topographic  
wetness index showed a negative correlation.  
As the value of positively correlated factors  
increases, the frequency of wildfires tends to  
increase, while for negatively correlated variables  
the frequency of wildfires tends to decrease their  
influence of wildfire occurrences. In addition,  
the prediction rates of each factor confirmed  
that the land surface temperature, followed by  
elevation, enhanced vegetation index, and  
distance to road are the highest contributing  
factors of wildfire occurrences. Factors like  
population density, distance to agriculture,  
rainfall, aspect, relative humidity, slope, and  
distance to settlements showed a moderate  
influence while other factors including curvature,  
topographic wetness index, and distance  
to rivers showed very little influence on the  
occurrences of wildfire.
	 The accuracy assessment and validation  
results showed the success rate with AUC values  
of 0.881 and 0.855 for the LR and FR models,  
respectively. This indicates that both models  
have a very good capability of classifying the  
wildfire susceptibility areas. Meanwhile, the  
prediction rate of the LR and FR models were  
0.883 and 0.853, respectively. The results  
indicated that both models had a relatively high  
predictive capability to discriminate the presence  
and absence of wildfire in the study area.  
Nonetheless, the LR model is chosen as the  
optimum model for the final wildfire  
susceptibility mapping based on the comparative  
analysis.
	 The final wildfire susceptibility map  
revealed that the high and very high susceptibility  
zones covered 30% of the total study area and  
contained the majority (70%) of the total hotspots.  
These zones fall in sloping valleys in lower  

elevations associated with a high land surface  
temperature where the vegetation was dominant  
with shrubs and meadows, dry grasslands mixed  
with scattered conifers and blue pines. These zones  
also correspond to the area closer to the roads  
within a proximity of 1,500 m where active  
human activities were involved. This implies  
that areas closer to the roads were more  
susceptible to wildfires due to human activities  
that contribute to starting fires either accidentally  
or intentionally. In addition, the low rainfall and  
humidity in the area also contributed to high  
susceptibility to wildfires.
	 In a nutshell, it can be concluded that the  
integration of geoinformatics technology with  
GIS-based LR and FR models can effectively  
determine the most significant influential factors  
of wildfire occurrences and probability, and  
eventually develop the wildfire susceptibility  
map. The findings may provide valuable  
information that can guide and help in the  
effective wildfire management system of Bhutan.  
In addition, the methodology adopted in the  
current study may also have the potential to be  
implemented in the other areas of Bhutan that  
have similar environmental, climatic, and  
anthropogenic influence.
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