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Abstract

In today’s highly competitive environment, an effective supplier selection process is very important to  
the success of any organization. It represents one of the most important functions to be performed by  
the purchasing department as a multi-criteria decision making (MCDM) problem, which is  
affected by quantitative and qualitative (conflicting) factors. Since there are major risks and a number  
of uncertainties in the decision, such as risks of not having sufficient raw materials to meet their  
fluctuating demand, incorporating the uncertainty of demand and supply capacity into the optimization  
model results in a robust selection of suppliers. In this study, the fuzzy set theory is employed due to the  
presence of vagueness and imprecision of information and an integrated fuzzy multi-objective linear  
model is introduced to deal with the problem. The proposed model integrates previous decision making  
approaches to compensate for any drawbacks that may exist in each approach and is capable of  
incorporating multiple products with multiple suppliers (sourcing). The model is then explained by an  
illustrative example, showing that the proposed approach, which combines total value of purchasing  
(TVP) to be one 1 of the objectives, as compared to the other three 3 previous approaches, can handle  
realistic situations better through the a sensitivity analysis. This gives insights into the robustness of the  
solution with respects to information vagueness related to the decision makers (DMs)’ decisions.

Keywords:  Supplier selection, fuzzy MCDM, multi-sourcing, multi-products, total value of purchasing  
   (TVP) 

Introduction
Supply chain management (SCM) and  
strategic sourcing have been one ofamong the  
fastest growing areas of management, particularly  
over the last ten 10 years. Under the expanded  
heading of logistics, these are now an integral  

part of company activity covering areas such  
as purchasing management, transportation  
management, warehouse management, and  
inventory management. Supplier selection  
decisions are complicated by the fact that 
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various criteria must be considered in a decision  
making process. The supplier selection problem  
in a supply chain system is a group decision,  
according to multiple criteria from which a  
number of criteria have been considered for  
supplier selection in previous and present  
decision models (Chen-Tung et al., 2006).  
It is a multiple criteria decision making  
(MCDM) problem, which is affected by several  
conflicting factors. Consequently, purchasing  
managers must analyze the trade-off between  
these conflicting criteria. As the supplier selection  
problem has become one of the most important  
issues for establishing an effective supply chain  
system, they must know suitable methods and  
be able to select the best method based on the  
limitations of the buyer and suppliers as well as  
their purchasing strategies.
 In this paper, for the first time to our  
knowledge, a fuzzy-linear programming multi- 
objective model with multi-sourcing and multi- 
product scenarios has been developed, in which  
different weights can be considered for various  
objectives including the total value of purchasing  
in relation to the remaining objectives. Two  
indicators, which are the weighted average of  
satisfaction level and minimum satisfaction  
level, are used to judge the superiority of the  
proposed model as compared to the previous  
ones. The paper is organized as follows: Section 2  
presents the background of the problem.  
Section 3 addresses the fuzzy multi-objective  
supplier selection model and their algorithms  
for multi-sourcing and multi-products. Section 4  
gives an illustrative example and Section 5  
shows the model formulation with the results.  
Then, Section 6 performs the a sensitivity analysis 
on the imposed deterministic constraints and  
weight assignments. Finally, the conclusion  
concluding remarks are presented in Section 7.

Background of the Problem 

Uncertainty of Decision Making in Manu-
facturing 

 The main disadvantage of deterministic  
models is their incapability of handling the  
randomness embedded in a real system. Similar  

to the problems in supplier selection, these  
problems often take place in a fuzzy environment.  
For example, demand changes occur from one 1  
period to another with a probability distribution 
that isdifficult to estimate because of the lack 
of historical data. Therefore, demand must be  
characterized as a fuzzy variable.
 Fuzzy logic (Zadeh, 1965, 1996, 1997) is 
an analysis method purposefully developed to  
incorporate uncertainty into a decision model.  
Fuzzy logic allows for including imperfect  
information no matter the cause. These char-
acteristics have made fuzzy logic and tools  
associated with its use become quite popular  
in tackling manufacturing related challenges  
(Lee, 1996). 
 During the past two decades fuzzy linear  
programming has been applied to a multitude  
of manufacturing challenges from scheduling,  
aggregate planning, and material requirements  
planning (e.g., Chen, 2003; Mula et al., 2006)  
to supplier selection and outsourcing decisions  
(Bayrak et al., 2007; Chan et al., 2008; Kahraman  
et al., 2010). In practice, decision-making in  
supplier selection includes a high degree of  
fuzziness and uncertainties. Fuzzy set theory  
(FST) is one 1 of the effective tools to handle  
uncertainty and vagueness. Kumer Kumar  
et al. (2006) developed a “fuzzy multi-objective  
integer programing vendor selection problem”   
(f-MIP_VSP) model and, in the proposed  
model, various input parameters have been  
treated as vague with a linear membership  
function of the fuzzy type. Also, to overcome  
the vagueness of information, Ghodsypour and  
O’Brien (2001),  and Amid et al. (2006, 2009, 2011)  
developed fuzzy multi-objective linear models  
and applied an asymmetric fuzzy decision  
making technique to enable the decision makers  
to assign different weights to various criteria.

Single vs Multiple Sourcing Supplier Selection  
Under Fuzzy Environment

 Most supplier selection papers deal with  
single sourcing in which one 1 supplier can satisfy  
all the buyers’ needs while more recent ones  
discussed multiple sourcing. With multiple  
sourcing, a buyer may purchase the same  
product(s) from more than one 1 supplier. If the  
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volume is large enough, demand requirements  
are split among several suppliers. Having  
additional suppliers may alleviate the situation  
when the supplier’s production capacity is  
insufficient to meet a peak demand. Multiple  
sourcing also motivates suppliers to be price and  
quality competitive. 
 Ghodsypour and O’Brien (2001) have  
stated that only a few mathematical programming  
models have had been published to this date that  
analyze supplier selection problems involving  
multiple sourcing with multiple criteria and with  
a supplier’s capacity constraints. Kumar et al.  
(2004) proposed fuzzy goal programming for  
the supplier selection problem with multiple  
sourcing that included three 3 primary goals:  
minimizing the net cost, minimizing the net  
rejections, and minimizing the net late deliveries,  
subject to realistic constraints regarding buyer  
demand and vendor capacity. In their proposed  
model, a weightless technique is used in which  
there is no difference between objective functions.  
However, in a real situation for supplier  
selection, the weights of the criteria could be  
different and depend on purchasing strategies in  
a supply chain (Wang et al., 2004). Amid et al.  
(2006, 2009) then developed a weighted additive  
fuzzy model for supplier selection problems  
to deal with imprecise inputs and the basic problem  
of determining the weights of quantitative/ 
qualitative criteria under conditions of multiple  
sourcing and capacity constraints. In the weighted  
additive model, there is no guarantee that the  
achievement levels of fuzzy goals are consistent  
with desirable relative weights or the DM’s  
expectation (Chen and TasiTsai, 2001 and Amid  
et al., 2006). In their later paper, a weighted  
max-min fuzzy multi-objective model has  
beenwas developed for the supplier selection  
problem to overcome the above problem. This  
fuzzy model enables the purchasing managers to  
not only consider the imprecise imprecision of  
information, but also to take the limitations of  
the buyer and supplier into account in calculating  
the order quantities from each supplier as well  
as matching the relative importance of the  
objective functions (Amid et al., 2011). 

Single vs Multiple Materials/Products Model 

 Even with multiple sourcing, all the above  
mentioned papers usually deal with a single  
material (product). However, only a few papers  
to our knowledge have been extended to cover  
multiple materials under some uncertainties.  
In this instance, the firm could work with a  
number of suppliers for its raw materials. Some  
of the raw materials have been supplied from  
multiple sources while some of the others have  
been supplied from a single source. There have  
also been alternative suppliers for each raw 
material. Çebi and Bayraktar (2003) addressed  
the supplier selection problem with multiple  
sourcing and multiple raw materials. In their  
case study, within the conflicting objectives of  
the firm (a Turkish food manufacturing firm),  
which are quality maximization, late order  
percentage minimization, purchasing cost  
minimization, and also utilization maximization,  
9 suppliers from 13 suppliers have beenwere  
proposed to get the orders. The results have  
been found to be consistent and reliable by the  
management. Jadidi et al. (2008) integrated  
the technique for order performance by  
similarity to ideal solution (TOPSIS) and multi- 
product multi-objective mixed integer linear  
programming to consider both tangible and  
intangible factors in choosing the best suppliers  
and defined the optimum quantities among  
selected suppliers under the price break.  
Jayaraman et al. (1999) proposed a mixed  
integer program to optimally solve the supplier  
selection problem by considering the number  
of suppliers and the possibility of combining  
several parts from a single supplier. Their model  
assumed that the organization has a certain and  
known demand for multiple products; these  
products may be raw materials or finished  
components. The buyers select from a potential  
set of suppliers to satisfy the demand and the  
model simultaneously determines the set of  
suppliers and allocates the demand among them.
 Even though certain types of raw materials/ 
products purchased from different suppliers  
have been involved in these above mentioned  
studies, a certain degree of fuzziness and  
uncertainties uncertainty has not yet been  
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introduced into the consideration. As a result,  
this study focuses on a fuzzy multi-objective  
linear model to deal with the problem. In this paper,  
a new model is developed that complements  
the weakness mentioned above and proposes  
a complete fuzzy multi-objective linear model  
approach for the supplier selection problem. In  
our proposed model, a fuzzy supplier selection  
model with multiple products/suppliers, fuzzy  
objective functions (goals), fuzzy constraints,  
and fuzzy coefficients are developed and then  
the developed model is converted to a single  
objective, step by step. The weights for the  
selection criteria, including the Total Value of  
Purchasing (TVP), can be treated as of equal or  
unequal importance according to the DM’s  
preference. With the option of different weights,  
linguistic values expressed as trapezoidal fuzzy  
numbers are used to assess the weights of the  
factors. Similar to the Analytic Hierarchy  
Process (AHP) or TOPSIS approaches, new  
terms are presented as fuzzy positive ideal rating 
(FPIR) and fuzzy negative ideal rating (FNIR)  
to compute the weights of the factors. Then,  
applying he supplier constraints, goals, and  
weights of the factors, a fuzzy multi-objective  
linear model is developed to overcome the  
supplier selection problem and assign optimum  
order quantities for each supplier, for every  
product.

The Fuzzy Multi-Objective Supplier Selection  
Model for a Multi-Sourcing and Multi-
Products 

A general multi-objective model for the  
supplier selection problem for a multi-sourcing  
and multi-products can be stated as follows:

min Z1, Z2, ……, Zk (1)
max Zk+1, Zk+2, ……., Zp (2)
s.t.:
x ∈ Xd, Xd = {x|g(x)≤br, r = 1, 2,….., R} (3)

where Z1, Z2, …, Zk are the negative objectives  
or criteria such as cost, late delivery, etc., and  
Zk+1, Zk+2, …, Zp are the positive objectives or  
criteria such as quality, on time delivery, after  
sale service, and so on. Xd is the set of feasible  
solutions, which satisfy the constraints such as  

buyer demand, supplier capacity, etc.
 A typical linear model for supplier  
selection problems is min Z1; max Z2, Z3 with

Z1  = ∑e ∑i Pe,i Xe,i  (4)

Z2  = ∑e ∑i Fe,i Xe,i, (5)

Z3  = ∑e ∑i  Se,i Xe,i, (6)

s.t.:

∑i Fe,i ≥ De, (7)
Xe,i ≤ Ce,i ; i = 1, 2,…, I ; e = 1, 2, …, E (8)
Xe,i ≥ 0; i = 1, 2,…, I ; e = 1, 2,…, E (9)

where De is demand of eth product over period,  
Xe, i = amount of product e to be purchased from  
supplier i, Pe,i is per unit net purchasing cost of  
product e to be purchased from supplier i, Fe,i  

is percentage of quality level of product e to be  
purchased from supplier i, Se,i is percentage of  
service level of product e to be purchased from  
supplier i, Ce,i is capacity of product e to be  
purchased from supplier i, and I is the number  
of suppliers.
 Three objective functions, for example,  
net purchasing cost (4), quality (5), and service  
level (6) are formulated to minimize the total  
monetary cost, maximize the total quality, and  
service the level of purchased items, respectively.  
Constraint (7) ensures that demand is satisfied.  
Constraint set (8) means that the order quantity  
of each supplier should be equal or less than its  
capacity, and constraint set (9) prohibits negative  
orders.
 In reality, the DMs do not have exact data  
and complete information related to decision  
criteria and constraints. For supplier selection  
problems, the collected data do not behave  
crisply and they are typically fuzzy in nature.  
A fuzzy multi-objective model is developed to  
deal with the problem. Before presenting the  
fuzzy model, some definitions and notations  
should be discussed.

The Fuzzy Supplier Selection Model 

 In this section, first the general multi- 
objective model for supplier selection is presented,  

_16-0731(305-322)Part2.indd   308 7/22/59 BE   1:18 PM



309Suranaree J. Sci. Technol. Vol. 22 No. 4; October - December 2015

and then the appropriate operators for this  
decision-making problem are discussed. 
 A general linear multi-objective model can  
be presented as:
 Find a vector x written in the transformed 
form xT = [x1, x2, …, Xn] which minimizes the  
objective function Zk and maximizes the  
objective function Zl with

Zk = ∑e ∑i cke,i
 xe,i, k = 1, 2,…, K 

(for negative objectives), (10)

Zl = ∑e ∑i cle,i
 xe,i, l = p+1, p+2,…, L

(for positive objectives), (11)

and constraints:
xe,i ∈ xd, xd = {x|g(x)=∑e ∑i are,i

 xe,i ≤ br, 
r =1, 2,…, R; xe,i ≥ 0}, (12) 

where cke,i
, cle,i

, are,i and br are crisp or fuzzy 
values.

 Zimmermann (1987) has solved (10-12)  
with a single product. The fuzzy linear programing  
was introduced by separating every objective  
function Zj into its maximum  and minimum  

 value, as follows:

 = max Zk, x ∈ Xa,  = min Zk, x ∈ Xd, (13)
 = max Zl, x ∈ Xd,  = min Zl, x ∈ Xa, (14)

  and  are obtained through solving the  
multi-objective problem as a single objective at  
a time and x ∈ Xd means that solutions must  

satisfy constraints, while Xa is the set of all optimal  
solutions through solving as a single objective.
 Since for every objective function Zj, its  
value changes linearly from  to , it may be 
considered as a fuzzy number with the linear  
membership function μzj(x), as shown in Figure 1.
 It was shown that a linear programing  
problem (10-12) with a fuzzy goal and fuzzy  
constraints may be presented with multiple 
products as follows:
 
Find a vector x to satisfy:

 = ∑e ∑i cke,i
 x

e,i
 ≤ ~  , k = 1, 2,…, K, (15)

 = ∑e ∑i cke,i
 xe,i > ~ , l = p+1, p+2,…, L 

 (16)
s.t.:

(x) = ∑e ∑i are,i
 xe,i ≤ ~br, r =1, 2,…, R

(for fuzzy constraints), (17)

(x) = ∑e ∑i are,i
 xe,i ≤ bp, p = h+1,…, P 

(for deterministic constraints), (18)
xe,i ≥ 0; i =1, 2,…, I ; e =1, 2,…, E ; (19)

 In this model, the sign ~ indicates the fuzzy  
environment. The symbol ≤ ~ in the constraints  
set denotes the fuzzified version of ≤ and has the  
linguistic interpretation “essentially smaller than  
or equal to” and the symbol ≥ ~ has the linguistic  
interpretation “essentially greater than or equal  
to”.  and  are the aspiration levels that the  
decision-maker wants to reach.
 Assuming that membership functions,  
based on preference or satisfaction are linear,  
the linear membership for minimization goals  

Figure 1. Objective function as fuzzy number: (a) min Zk
 and (b) max Zl
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(Zk) and maximization goals (Zl) are given as  
follows:

          
(20)

          

(21)

The linear membership function for the fuzzy 
constraints is given as:

 
        (22)

 dr is the subjectively chosen constants  
expressing the limit of the admissible violation  
of the rth inequalities constraints (tolerance  
interval). 

Decision Making Operators 

 In this study, our proposed approach  
(integrated weighted additive with Kannan 
approach) has been developed and compared  
with three 3 previous approaches (Zimmermann,  
weighted additive, and weighted max-min 
approaches First, the max-min operator is  
discussed, which was used by Zimmermann  
(1987, 1993) to assign weights to various criteria  

in the Zimmermann approach. A fuzzy solution  
is given by the intersection of all the fuzzy sets  
representing either the fuzzy objective or fuzzy  
constraints. The solution for all fuzzy objectives  
and the fuzzy constraints may be given as:

μD(x) = {{∩j μzj (x)} ∩{∩r μgr
 (x)}}. (23)

 
The optimal solution (x*) is given by

   (24)

 In order to findFinding the optimal solution  
(x*) in the above fuzzy model, it is equivalent  
to solving the following crisp model:

Max λ (25)

s.t.:
λ ≤ μzj (x), j =1, 2,…, J, 
(for all objective functions), (26)
λ ≤ μgr

 (x), r =1, 2,…, R,
(for fuzzy constraints), (27) 
λ ∈ [0,1], and xi ≥ 0, i =1, 2,…, I. (28)

where μD(x), μzj(x), and μgr
(x) represent the  

membership functions of solution, objective  
functions, and fuzzy constraints.
 Regarding this Zimmerman Aapproach,  
the relationship between objective functions  
and constraints in a fuzzy environment is fully  
symmetric since there is no difference between  
the fuzzy goals and fuzzy constraints. If the DMs  
decide to have unequal importance between  
them, the weighted additive approach can handle  
this problem. By multiplying each membership  
function of fuzzy goals by their corresponding  
weights and then adding the results together,  
a linear weighted utility function is obtained.  
The convex fuzzy model proposed by Bellman  
and Zadeh (1970), Sakawa (1993), and the  
weighted additive approach by Tiwari et al.  
(1987) is:

μD(x)= ∑jwj μzj(x)+∑r βr μgr
 (x), (29)

∑jwj + ∑r βr =1, βr ≥ 0, (30)
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where wj and βr are the weighting coefficients  
that present the relative importance among the  
fuzzy goals and fuzzy constraints and λj is the  
satisfaction level of the criteria. The following  
crisp single objective programing is equivalent  
to the above fuzzy model:

max ∑jwj λj + ∑r βr γr (31)

s.t.:
λj ≤ μzj (x), j = 1, 2, …, J, (32)

γr ≤ μgr
(x), r = 1, 2,…, R, (33)

λj, γr∈
 [0, 1], j = 1, 2,…, J and r = 1, 2, …, R,

 (34)

xi ≥ 0, i = 1, 2,…, I. (35)

 Lin (2004) proposed a weighted max–min  
approach such that the ratio of the achievement  
level objective functions is as close to the ratio  
of the weight or the importance of the objectives.  
This model is formulated as follows:

Max λ (36)

s.t.:
wj λ ≤ μzj (x), j = 1, 2, …, J, (37)

βrγr ≤ μgr (x), r = 1, 2,…, R, (38)

 More recently, Kannan et al. (2013) used  
the model based on the weighted max-min 

approach and added the Total Value of  
Purchasing (TVP) to be another objective  
(criterion) with its assigned weight in relation  
to the other objectives. They used the supplier’s  
weights as coefficients of an objective function  
to allocate order quantities among the suppliers  
such that the TVP becomes a maximum too.  
wTVP is then used as a given weight of the TVP in  
relation to the remaining objectives. In their  
illustrative example, they presented the case with  
only two 2 objectives, which are maximizing the  
Total Value of Purchasing (TVP) and minimizing  
the Ttotal Ccost of Ppurchasing (TCP) with an  
equal weight assignment between them (or  
wTVP = 0.5).
 As the Wweighted Mmax-Mmin Aapproach  
performed quite poorly in our preliminary  
experiment and as well as its results could not be  
obtained under a certain range of weighting  
allocation during the sensitivity analysis (see the  
results’ section for the relative performance of  
the weighted max-min approach), the proposed  
new model in this study (the so called Integrated  
Weighted Additive with Kannan Aapproach  
(IAK)) is developed by integrating the Kannan’s  
approach with the Weighted Additive Approach  
and weighting TVP with other objectives and  
fuzzy constraints (Delivery, Quality, Cost, and  
Demand). wTVP is again used as a given weight of  
the TVP in relation to the remaining objectives  
and fuzzy constraints. By keeping the TVP as  
another goal, it is expected that the TVP can still  
become a maximum. The proposed model can  
then be formulated as follows:

Figure 2. Products that each supplier produces
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Max ∑j wj (1-wTVP)λj + (wTVP)λTVP +∑r βr 
(1-wTVP)γr (39)

λj ≤ μzj (x), j = 1, 2,…, J, (40)

γr ≤ μgr
 (x), r = 1, 2,…, R (41)

Illustrative Example 
A company tries to select the appropriate  
suppliers for purchasing 4 products. At the  
moment, the company has three 3 suppliers  
(S1, S2, and S3), as shown in Figure 2, and there  
are three 3 decision makers (DM1, DM2, DM3)  
in the judging committee. The criteria for the  
purchasing consideration are on time delivery  
(C1), good quality (C2), and low cost (C3). In this 
problem, the demand of each product is equally  
set, which and ranges from 300 to 375 units, as shown  
in Table 1, and each supplier has a limited  
capacity to supply each product, as shown in  
Table 2, as well as a limited credit for each  
purchase granted by each supplier, as shown  
in Table 3.

Table 1.  Required demand for each product

Demand (units)
Product Min Mode Max

1 300 325 375
2 300 325 375
3 300 325 375
4 300 325 375

Table 2.  Capacity of each supplier

Maximum order quantity (units)

Supplier
Product

1 2 3 4
Supplier 1 400 0 300 350
Supplier 2 350 450 0 350
Supplier 3 400 350 450 350

Table 3. Limited purchasing credit from each  
 supplier

Limited purchasing credit amount ($)
Supplier 1 Supplier 2 Supplier 3

Budget 15000 15500 15000

 These three decision makers use the  
given linguistic variables in Table 4 to assess the  
importance of their criteria, suppliers, and the  
demand constraint. Each decision maker has  
7 rating levels ranging from Very Low, Low,  
Medium Low, Medium, Medium Good, Good, and  
Very Good to judge the important importance of  
each item. The linguistic values determined by  
the decision makers for evaluating among the  
criteria and supplier VSvs criteria are shown in  
Table 5 and Table 6, respectively.

Table 4.  Linguistic variables for rating

Linguistic variables  Triangular fuzzy number
Very low (VL) (0,0,2)
Low (L) (1,2,3)
Medium Low (ML) (2,3.5,5)
Medium (M) (4,5,6)
Medium good (MG) (5,6.5,8)
Good (G) (7,8,9)
Very Good (VG) (8,10,10)

Table 5. Importance of weights among criteria from  
 3 decision makers

DM1 DM2 DM3

Delivery (C1) VG VG G
Quality (C2) G G G
Cost (C3) G MG G
Demand G MG MG

Table 6.  Importance of weights of 3 suppliers vs  
 criteria

Delivery 
(C1)

Quality 
(C2)

Cost 
(C3) Demand

DM1
S1 VG G F G
S2 G MG G MG
S3 MG MG VG F

DM2
S1 G VG G VG
S2 VG F VG MG
S3 MG F MG F

DM3
S1 VG VG MG G
S2 G F VG MG
S3 G MG VG MG

 Then, the normalized weights of each 
criterion and a fuzzy constraint are calculated  
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using fuzzy TOPSIS. For the purpose of this  
paper, full details of fuzzy TOPSIS procedures  
are not presented here but more details of  
fuzzy TOPSIS can be seen in the past lterature,  
such as İrfan and Nilsen (2008); Atakan and Ali 
(2011) and Ahmet and Mehmet (2012). Table 7  
shows the closeness coefficients and the relative  
normalized weights of delivery, quality, cost,  
and demand. Table 8 shows the normalized  
weighted scores of each supplier obtained from  
fuzzy TOPSIS such that Supplier 1 has the  

highest rating with the weighted score of  
0.365, followed by Supplier 2 (0.33), and  
Supplier 3 (0.305).
 Next, it is assumed that each supplier can  
provide different goal performances (% on time  
delivery, % good product quality, and unit cost),  
as presented in Table 9. Table 10 summarizes  
the data set for the membership function,  
which was individually optimized by the linear  
programming.

Table 7.  Weights, distances, and coefficients of each criterion and constraint

d* d- d*+d- CCi Final weight

Delivery (C1) 0.79 0.06 0.85 0.929412 0.275831
Quality (C2) 0.74 0.13 0.85 0.847059 0.251391
Cost (C3) 0.68 0.17 0.86 0.802326 0.238115
Demand 0.67 0.18 0.86 0.790698 0.234664

Table 9.  Suppliers’ quantitative information

Delivery (%)
Product 1 Product 2 Product 3 Product 4

Supplier 1 0.80            0 0.90 0.80
Supplier 2 0.75 0.85             0 0.85
Supplier 3 0.70 0.75 0.85 0.75
Quality (%)

Supplier 1 0.8            0 0.75 0.95
Supplier 2 0.75 0.70              0 0.8
Supplier 3 0.70 0.85 0.8 0.7
Cost ($)

Supplier 1 20 0 25 20
Supplier 2 25 30                0 25
Supplier 3 15 20 35 25

Table 8. Weighted score and coefficients of each supplier

CCi Final weighted score

Supplier 1 0.56078 0.3651474
Supplier 2 0.51275 0.3300022
Supplier 3 0.47027 0.3048504
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Model Formulations 
The multi-objective linear model formulation  
of the illustrative example is presented. The  
objectives are to maximize Z1 (Ddelivery) and  
Z2 (quality) while minimize minimizing Z3 

(cost).

Z1 =  0.80X1,1 + 0.75X1,2 + 0.70X1,3 + 0.85X2,2  
 + 0.75X2,3 + 0.90X3,1 + 0.85X3,3 +0.80X4,1  

 + 0.85X4,2 +0.75X4,3

Z2 = 0.80X1,1 + 0.75X1,2 + 0.70 X1,3 + 0.70X2,2  

 + 0.85X2,3 + 0.75X3,1 + 0.80X3,3 +0.95X4,1  

 + 0.80X4,2 +0.70X4,3

Z3 = 20X1,1 + 25X1,2 + 15X1,3 + 30X2,2 + 20X2,3   

 + 25X3,1 + 35X3,3 + 20X4,1+ 25X4,2 + 25X4,3

s.t.:
X1,1 + X1,2 + X1,3 ≅ 325
X2,2 + X2,3 ≅325
X3,1 + X3,3 ≅ 325
X4,1+ X4,2 + X4,3 ≅ 325 ; 
Xe,i ≥ 0, 

 With 4 aforementioned approaches for  
comparison, the formulation of each approach  
can be shown as follows:

Zimmermann Aapproach

 Applying the membership function and the  
final weights, the following model formulation  
can be obtained.

Max λ   
s.t. :
λ ≤ ((0.80X1,1 +  0.75X1,2 +  0.70X1,3 + 0.85X2,2 + 
0.75X2,3 + 0.90X3,1 + 0.85X3,3 +0.80X4,1+ 0.85X4,2 
+0.75X4,3) -1,022.5/74.95)
λ ≤ ((0.8X1,1 +  0.75X1,2 +  0.70X1,3 + 0.70X2,2 + 
0.85X2,3 + 0.75X3,1 +0.8X3,3 +0.95X4,1+ 0.80X4,2 

+0.70X4,3) -1,053.75 /48.75)
λ ≤ (32,120 - (20X1,1 + 25X1,2 + 15X1,3 + 30X2,2 

+ 20X2,3 + 25X3,1 + 35X3,3 + 20X4,1+ 25X4,2 + 
25X4,3) /5,870)
λ ≤ (375 - (X1,1 + X1,2 + X1,3))/50;
λ ≤ ((X1,1 + X1,2+ X1,3) - 300)/25;
λ ≤ (375 - (X2,1 + X2,2+ X2,3))/50;
λ ≤ ((X2,1 + X2,2+ X2,3) - 300)/25;
λ ≤ (375 - (X3,1 + X3,2+ X3,3))/50;
λ ≤ ((X3,1 + X3,2+ X3,3) - 300)/25;
λ ≤ (375 - (X4,1 + X4,2+ X4,3))/50;
λ ≤ ((X4,1 + X4,2+ X4,3) - 300)/25;
X1,1 ≤ 400; X1, 2 ≤ 350;  X1,3 ≤  400;  X2,2 ≤ 450;  
X2,3 ≤ 350; X3,1 ≤ 300,  X3,3 ≤ 450;        
Limit capacity of each supplier

X4,1 ≤ 350; X4,2 ≤ 350; X4,3 ≤ 350
20X1,1 + 25 X3,1 + 20 X4,1 ≤ 15,000
25X1,2 + 30X2,2 + 25X4,2 ≤ 15,500

Limit purchasing credit from each supplier
15X1,3 + 20X2,3 + 35X3,3 + 25X4,4 ≤ 15,000

Table 10. Data set for the membership function

Criteria & constraint µ =  0 µ =  1 µ =  0
Delivery 1022.50 1097.45 -
Quality 1053.75 1102.50 -

Cost - 32120 26250
TVP 380.71 513.85 -
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Weighted Aadditive Aapproach

 From Table 7, the relative normalized  
weights of the delivery, quality, and cost  
objectives as well as the weight of a fuzzy  
constraint (demand) from fuzzy TOPSIS are  
presented. It was found that w1 = 0.276, w2 =  
0.251, w3 = 0.238, and β1 = 0.23. Having  
applied the membership function and these final  
weights, the following model formulation can  
be obtained.

Max 0.276λ1 + 0.251λ2 + 0.238λ3 + 0.23γr
s.t. :
λ1 ≤ ((0.80X1,1 +  0.75X1,2 +  0.70 X1,3 + 0.85X2,2 + 
0.75X2,3 + 0.90X3,1 +0.85X3,3 +0.80X4,1+ 0.85X4,2 
+0.75X4,3) -1,022.5/74.95)
λ2 ≤ ((0.80X1,1 + 0.75X1,2 + 0.70 X1,3 + 0.70X2,2 + 
0.85X2,3 + 0.75X3,1 +0.80X3,3 +0.95X4,1+ 0.80X4,2 
+0.70X4,3) -1,002.2/48.75)
λ3 ≤ (32,120 - (20X1,1 + 25X1,2 + 15X1,3 + 30X2,2 

+ 20X2,3 + 25X3,1 + 35X3,3 + 20X4,1 + 25X4,2 + 
25X4,3) /5,870)
γ1 ≤ (375 - (X1,1 + X1,2 + X1,3))/50;
γ1 ≤ ((X1,1 + X1,2 + X1,3) - 300)/25;
γ2 ≤ (375 - (X2,1 + X2,2 + X2,3))/50;
γ2 ≤ ((X2,1 + X2,2 + X2,3) - 300)/25;
γ3 ≤ (375 - (X3,1 + X3,2 + X3,3))/50;
γ3 ≤ ((X3,1 + X3,2 + X3,3) - 300)/25;
γ4 ≤ (375 - (X4,1 + X4,2 + X4,3))/50;
γ4 ≤ ((X4,1 + X4,2 + X4,3) - 300)/25;

 Similar supplier capacity and limited  
purchasing credit constraints as the Zimmermann  
approach are applied.

Weighted Max-Min Approach 

 Having applied the membership function  
and the final weights, the following Mmax- 
Mmin model formulation can be obtained.

Max λ   
s.t. :
0.276λ ≤ ((0.80X1,1 + 0.75X1,2 + 0.70X1,3 +  
0.85X2,2 + 0.75X2,3 + 0.90X3,1 +0.85X3,3 + 

0.80X4,1+ 0.85X4,2 +0.75X4,3) -1,022.5/74.95)
0.251λ ≤ ((0.80X1,1 + 0.75X1,2 + 0.70X1,3 +  
0.70X2,2 + 0.85X2,3 + 0.75X3,1 + 0.80X3,3 + 
0.95X4,1+ 0.80X4,2 +0.70X4,3) -1,002.2/48.75)
0.238λ ≤ (32,120 - (20X1,1 +  25X1,2 + 15X1,3 +  
30X2,2 + 20X2,3 + 25X3,1 + 35X3,3 + 20X4,1+  
25X4,2 + 25X4,3) /5,870)
0.058 λ ≤ (375 - (X1,1 + X1,2 + X1,3))/50;
0.058 λ ≤ ((X1,1 + X1,2 + X1,3) - 300)/25;
0.058 λ ≤ (375 - (X2,1 + X2,2 + X2,3))/50;
0.058 λ ≤ ((X2,1 + X2,2 + X2,3) - 300)/25;
0.058 λ ≤ (375 - (X3,1 + X3,2 + X3,3))/50;
0.058 λ ≤ ((X3,1 + X3,2 + X3,3) - 300)/25;
0.058 λ ≤ (375 - (X4,1 + X4,2 + X4,3))/50;
0.058 λ ≤ ((X4,1 + X4,2 + X4,3) - 300)/25;

 Similar supplier capacity and limited  
purchasing credit constraints as the Zimmermann  
approach are applied.

Integrated Weighted Additive with Kan nan 
Approach (IAK) 

 Having applied the membership, the  
following Integrated Weighted Additive with  
Kannan model formulation can be obtained.

Max 0.276(1-wTVP )λ1 + 0.251(1-wTVP)λ2 +  
0.238(1-wTVP)λ3 + wTVP λTVP + 0.23(1-wTVP)γr 
s.t. :
λ1 ≤ ((0.80X1,1 +  0.75X1,2 + 0.70 X1,3 + 0.85X2,2 +  
0.75X2,3 + 0.90X3,1 + 0.85X3,3 +0.80X4,1+  
0.85X4,2 +0.75X4,3) -1,022.5/74.95)
λ2 ≤ ((0.80X1,1 + 0.75X1,2 +  0.70 X1,3 + 0.70X2,2 +  
0.85X2,3 + 0.75X3,1 +0.80X3,3 + 0.95X4,1 +  
0.80X4,2 + 0.70X4,3) -1,002.2/48.75)
λ3 ≤ (32,120 - (20X1,1 + 25X1,2 + 15X1,3 + 30X2,2 +  
20X2,3 + 25X3,1 + 35X3,3 + 20X4,1 + 25X4,2 +  
25X4,3)/5,870)
λTVP ≤ 0.365(X1,1 + X3,1 + X4,1) + 0.33(X1,2 + X2,2 +  
X4,2) + 0.304(X1,3 + X2,3 + X3,3 + X4,3)
γ1 ≤ (375 - (X1,1 + X1,2+ X1,3))/50;
γ1 ≤ ((X1,1 + X1,2+ X1,3) - 300)/25;
γ2 ≤ (375 - (X2,1 + X2,2+ X2,3))/50;
γ2 ≤ ((X2,1 + X2,2+ X2,3) - 300)/25;
γ3 ≤ (375 - (X3,1 + X3,2+ X3,3))/50;
γ3 ≤ ((X3,1 + X3,2+ X3,3) - 300)/25;
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γ4 ≤ (375 - (X4,1 + X4,2+ X4,3))/50;
γ4 ≤ ((X4,1 + X4,2+ X4,3) - 300)/25;

 Similar supplier capacity and limited  
purchasing credit constraints as the Zimmermann  
Aapproach are applied. Please also note that 
WTVP will be experimented with 4 levels ranging  
its in value from 0.2 to 0.8 in a step of 0.2, which  
is named IAKcase1 to IAKcase4, respectively.
 Table 11 presents the results from each  
approach. Due to the fact that each approach has  
different settings, the obtained results are also  
different. For example, the weighted max-min  
approach recommends purchasing 324 units  
of Product 1 in which 290 units will be bought  
from Supplier 1 and 34 units from Supplier 3.  
As each approach provides different results, we  
use two 2 indicators to judge their performances,  
which are: (1) weighted average of satisfaction  
level, and (2) minimum satisfaction level. The  
weighted average of satisfaction level presents  
how close the results of that approach, in overall  
with their relative important weights, could  

achieve the maximum set goals (the maximum is  
1). Then, the minimum satisfaction level presents 
the most minimum satisfaction levels from all  
goals, so that with a low satisfaction value, it shows  
that one 1 goal may be deserted and left to perform  
poorly.
 Table 12 shows the relative performances  
from each indicator for comparison. It was found  
that IAKcase1 gives relatively good results from  
both indicators. In terms of the weighted average  
of the satisfaction level, IAKcase1 yields the best  
result while the Zimmerman Aapproach shows  
the best result for the minimum satisfaction  
level. This is as expected since the Zimmerman  
Aapproach does not apply weights to its goals. As  
a result, there is no attempt to give more or less  
importance to one 1 goal in particular, obtaining  
a low satisfaction level for that goal. For the  
Integrated Weighted Additive with Kannan  
Approach (IAK), four 4 patterns of weight  
assignment have been performed. It was found  
that applying the weight 0.2 to the TVP and 0.8  
to other objectives shows the best result in this  

Table 11. Recommended results from all approaches

Solution X1,1 X1,2 X1,3 X2,2 X2,3 X3,1 X3,3 X4,1 X4,2 X4,3
Total units 
purchased

Zimmerman 0 325 0 75 249 300 25 325 0 0 1299
Additive 326 0 0 0 326 300 26 0 277 59 1314
Max-Min 290 0 34 0 325 300 35 85 239 0 1308
IAKcase1 35 0 304 0 340 300 40 340 35 0 1359
IAKcase2 280 0 45 80 245 210 115 115 210 0 1300
IAKcase3 45 0 280 264 60 210 115 65 245 14 1298
IAKcase4 146 0 178 325 0 239 85 304 21 0 1298

Table 12.  Results obtained from the comparison

Zimmerman Additive Max-Min IAKcase1
WTVP = 0.2

IAKcase2
WTVP = 0.4

IAKcase3
WTVP = 0.6

IAKcase4
WTVP = 0.8

Weighted average of 
satisfaction level

0.77218 0.776481 0.623582 0.84648 0.76336 0.585693 0.496152

Ranking of the 
weighted average of 
satisfaction level*

3 2 5 1 4 6 7

Minimum 
satisfaction level

0.6667 0.475578 0.547853 0.640864 0.6 0.3999 0.2

Ranking of minimum 
satisfaction level*

1 5 4 2 3 6 7

* Ranking from the best (1) to the worst (7)  

_16-0731(305-322)Part2.indd   316 7/22/59 BE   1:18 PM



317Suranaree J. Sci. Technol. Vol. 22 No. 4; October - December 2015

instance. As a result, IAKcase1 will be used to  
represent the IAK Approach for further  
comparison. When the TVP is integrated into  
the model’s goals with a suitable weight, it was  
found that better results, in relation to the results  
from the basic weighted additive approach  
(which is the starting model of IAK), can be  
obtained. This is due to the fact that the weighted  
score of each supplier, which represents the  
overall supplier performance, is used as a part  
of the consideration.

Sensitivity Analysis 
To give insights into the robustness of the solutions  
with respects to the vagueness related to the  
DMs’ inputs, a sensitivity analysis is performed  
to the weighted satisfaction level on two 2 factors,  
which are the deterministic constraints and weight  
assignments to each goal.

Sensitivity Analysis on the Constraints 

 This sensitivity analysis is performed to  
examine the degree of vagueness in setting the  
deterministic constraints (i.e., supplier capacity  
and purchasing credit limitation) from each  
supplier. These two 2 constraints are varied up to  
±30% from the base case in a step of 10%. The  
percentage deviations of the weighted average  
of the satisfaction level from the base case are  

plotted against the vagueness in the capacity  
and purchasing credit limitation to analyze such  
effect of the vagueness that could happen in  
reality.

Vagueness in Capacity

 Figure 3 presents the comparison results  
among the studied approaches in terms of the  
percentage deviation of the weighted average of  
the satisfaction level from the base case.
 Regarding the weighted average of the  
satisfaction level, the Zimmerman and max-min  
approaches are quite sensitive to the change while  
the weighted additive and IAK approaches are  
quite robust, by performing steadily with this  
change.

 Vagueness in Purchasing Credit  
Limitation 

 Figure 4 presents the result comparisons  
among the studied approaches in terms of the  
percentage deviation of the weighted average of  
the satisfaction level according to the vagueness  
of the purchasing credit limitation.  
 Similar to the case of the varying capacity  
of each supplier, the weighted additive and IAK  
approaches are quite stable throughout the change  
of the vagueness of the purchasing credit limitation  
while the Zimmerman and max-min approaches  
are severely affected by the change.

Figure 3. % deviation of the weighted average of satisfaction level of the vagueness in supplier capacity
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Sensitivity Analysis on Weight Assignment 

 Weight assignment from a decision also  
plays an important role in supplier selection  
problems.  In order to perform a sensitivity analysis  
on this weight assignment, 20 different cases of  
weight assignment are conducted. This weight  
assignment pattern follows the work done by  
Kannan et al. (2013). In the first four 4 cases (case  
1 to case 4), the decision members’ preference  
or ranking the delivery (criteria C1) are varied  
from VL to VH by maintaining the other criteria’s  
preferences similar to the base case. Then, the  
next 4 cases (case 5 to case 8) vary the preference  
for ranking the quality (criteria C2). Similarly  
case 9 to case 12 are for the cost (criteria C3), and  
case 13 to case 16 are for the demand. Case 17 and  
case 18 assign VL and VG to the first two 2 criteria  
(delivery and quality) while case 19 and case 20  
assign VL and VG to the last two 2 criteria (cost 
and demand). Table 13 shows the pattern of  
these 20 sets (cases) of weight assignment. Even  
though, this assignment pattern does not cover  
all possible combinations, it is aimed to explore  
a certain degree of misjudgment in evaluating  
the weight assignment from decision makers and  

the robustness of each approach to information  
vagueness.
 Table 14 presents the results of the  
weighted average of the satisfaction levels and  
their ranking among the studied approaches.  
It was found that IAK can maintain the highest  
weighted average of the satisfaction level under  
the vagueness of weight assignment in most cases.  
For the extreme weight assignment in cases 17  
and 19 where Very Low is assigned to both to the  
delivery and quality criteria or cost and demand  
criteria, its weighted average of the satisfaction  
level is then inferior to the other approaches. This  
also shows the robustness of the IAK Approach  
to achieve the goals set by the decision makers  
under the vagueness of assigning weights to  
these goals.

Conclusions
Supplier selection is an important strategic 
supply chain decision. It is always exposed to 
major risks and a number of uncertainties in 
the decision such as multiple objectives and 
risks of not having sufficient raw materials to 

Figure 4.  % deviation of the weighted average of satisfaction level of the vagueness in purchasing credit  
 limitation
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Table 13. Weight assignment patterns given by 3 decision makers in Case 1 – Case 20 
 

Case 1 DM1 DM2 DM3 Case 11 DM1 DM2 DM3 
Criteria Delivery (C1) VL VL VL Criteria Delivery (C1) VG VG G 

 Quality (C2) G G G  Quality (C2) G G G 
 Cost (C3) G MG G  Cost (C3) MG MG MG 
 Demand G MG MG  Demand G MG MG 

Case 2 DM1 DM2 DM3 Case 12 DM1 DM2 DM3 
Criteria Delivery (C1) ML ML ML Criteria Delivery (C1) VG VG G 

 Quality (C2) G G G  Quality (C2) G G G 
 Cost (C3) G MG G  Cost (C3) VG VG VG 
 Demand G MG MG  Demand G MG MG 

Case 3 DM1 DM2 DM3 Case 13 DM1 DM2 DM3 
Criteria Delivery (C1) MG MG MG Criteria Delivery (C1) VG VG G 

 Quality (C2) G G G  Quality (C2) G G G 
 Cost (C3) G MG G  Cost (C3) G MG G 
 Demand G MG G  Demand VL VL VL 

Case 4 DM1 DM2 DM3 Case 14 DM1 DM2 DM3 
Criteria Delivery (C1) VG VG VG Criteria Delivery (C1) VG VG G 

 Quality (C2) G G G  Quality (C2) G G G 
 Cost (C3) G MG G  Cost (C3) G MG G 
 Demand G MG MG  Demand ML ML ML 

Case 5 DM1 DM2 DM3 Case 15 DM1 DM2 DM3 
Criteria Delivery (C1) VG VG G Criteria Delivery (C1) VG VG G 

 Quality (C2) VL VL VL  Quality (C2) G G G 
 Cost (C3) G MG G  Cost (C3) G MG G 
 Demand G MG MG  Demand MG MG MG 

Case 6 DM1 DM2 DM3 Case 16 DM1 DM2 DM3 
Criteria Delivery (C1) VG VG G Criteria Delivery (C1) VG VG G 

 Quality (C2) ML ML ML  Quality (C2) G G G 
 Cost (C3) G MG G  Cost (C3) G MG G 
 Demand G MG MG  Demand VG VG VG 

Case 7 DM1 DM2 DM3 Case 17 DM1 DM2 DM3 
Criteria Delivery (C1) VG VG G Criteria Delivery (C1) VL VL VL 

 Quality (C2) MG MG MG  Quality (C2) VL VL VL 
 Cost (C3) G MG G  Cost (C3) G MG G 
 Demand G MG MG  Demand G MG MG 

Case 8 DM1 DM2 DM3 Case 18 DM1 DM2 DM3 
Criteria Delivery (C1) VG VG G Criteria Delivery (C1) VG VG VG 

 Quality (C2) VG VG VG  Quality (C2) VG VG VG 
 Cost (C3) G MG G  Cost (C3) G MG G 
 Demand G C MG  Demand G MG MG 

Case 9 DM1 DM2 DM3 Case 19 DM1 DM2 DM3 
Criteria Delivery (C1) VG VG G Criteria Delivery (C1) VG VG G 

 Quality (C2) G G G  Quality (C2) G G G 
 Cost (C3) VL VL VL  Cost (C3) VL VL VL 
 Demand G MG MG  Demand VL VL VL 

Case 10 DM1 DM2 DM3 Case 20 DM1 DM2 DM3 
Criteria Delivery (C1) VG VG G Criteria Delivery (C1) VG VG G 

 Quality (C2) ML ML ML  Quality (C2) G G G 
 Cost (C3) G MG G  Cost (C3) VG VG VG 
 Demand G MG MG  Demand VG VG VG 
          

 

Table 13.  Weight assignment patterns given by 3 decision makers in Case 1 – Case 20
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Table 14.  Results obtained from comparison of the weighted average of satisfaction level

(Ranking from the best (1) to the worst (4))
Zimmerman Additive Max-Min IAK

Case 1 0.777498 (3) 0.822727 (1) N/A* 0.822727 (1)
Case 2 0.754565 (3) 0.778845 (2) 0.32166 (4) 0.865691 (1)
Case 3 0.754565 (3) 0.778845 (2) 0.32166 (4) 0.865691 (1)
Case 4 0.751698 (3) 0.77336 (2) 0.605692 (4) 0.863122 (1)
Case 5 0.780478 (2) 0.699608 (3) N/A* 0.818413 (1)
Case 6 0.753511 (3) 0.770785 (2) 0.245082 (4) 0.770785 (1)
Case 7 0.756147 (3) 0.763827 (2) 0.242403 (4) 0.861439 (1)
Case 8 0.750118 (3) 0.779739 (2) 0.611537 (4) 0.866852 (1)
Case 9 0.775254 (3) 0.998104 (2) N/A* 1 (1)
Case 10 0.753266 (3) 0.777469 (2) 0.490646 (4) 0.862415 (1)
Case 11 0.755415 (3) 0.78864 (2) 0.48891 (4) 0.861287 (1)
Case 12 0.750499 (3) 0.773694 (2) 0.24815 (4) 0.862415 (1)
Case 13 0.682454 (3) 0.784995 (2) N/A* 0.802764 (1)
Case 14 0.751429 (3) 0.774479 (2) 0.481658 (4) 0.793541 (1)
Case 15 0.744159 (3) 0.776318 (2) 0.254609 (4) 0.793541 (1)
Case 16 0.760793 (3) 0.780413 (2) 0.463063 (4) 0.792376 (1)
Case 17 0.834305 (2) 1 (1) N/A* 0.786322 (3)
Case 18 0.749658 (3) 0.778796 (2) 0.500317 (4) 0.794017 (1)
Case 19 0.674833(3) 1 (1) N/A* 0.813809 (2)
Case 20 0.752503 (3) 0.776812 (2) 0.622423 (4) 0.794017 (1)

* These values cannot be calculated since with the Max-Min Approach when all DMs assign the weight of one objective  
(wj) to be very low, the objective function’s value, which is Max λ, would be 0. As a result, the calculated values of weighted  
average satisfaction level are misleading.

meet their fluctuating demand. In this paper,  
multi-sourcing multi-product supplier selection  
was presented. Integrating the fuzzy TOPSIS  
and fuzzy linear model programming for  
choosing suppliers among conflicting objectives  
(that which are quick delivery, good quality,  
but low cost) was able to accomplish the task.  
In this model, the fuzzy TOPSIS was used  
first to calculate the weights of the criteria and  
weighted scores of suppliers, and then fuzzy  
linear programming was used to find out the  
optimum solution of the problem. Vagueness and  
imprecision could also be effectively handled  
in this model. In a practical situation, all objective  
functions do not possess the same weight.  
Therefore, the weights of the objective functions  
must be able to change according to the  
requirement of the DMs. These assigned weights  
can be easily calculated by using the fuzzy  

TOPSIS method. The supplier selection problem  
under multiple sourcing and multiple product  
scenarios could be even more complicated since  
the consideration of weight assignment is 
required, not only among criteria VS vs suppliers,  
but among different products as well. However,  
this could be successfully incorporated in this  
study.
 In addition, an illustrative example was  
used to demonstrate the implication of the proposed  
approach for supplier selection. It was found  
that the new proposed algorithm, the Integrated  
Weighted Additive with Kannan ApproachIAK,  
could outperform other approaches in most  
performance measures, and performed best  
under the sensitivity analysis, showing its  
robustness on the degree of vagueness in the  
demand and two 2 imposed deterministic  
constraints (capacity and purchasing credit  
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limitation). When the TVP was integrated into  
the model’s goals with a suitable weight, better  
results could be obtained. This is due to the fact  
that the weighted score of each supplier, which  
represents overall supplier performance, is used  
as a part of the consideration.
 However, further analysis may be required  
to find out more outcomes and explore other kinds  
of comparisons. Due to the complex procedures  
of the proposed approach, a decision support tool  
developed in Excel with its solver was also built  
to accommodate such complex processes and  
make the decision processes easier for the DMs.  
This is a very useful decision making tool for  
mitigating buying challenges but more user  
friendly interfaces are still required to make the  
tool more appealing to users. The tool also needs  
to be extended for solving larger scale problems.
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