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Abstract

This paper studies the bending behavior of nanoplates, incorporating the effects of surface stress and  
nonlocal elasticity. Thin and moderately thick nanoplates embedded in an elastic medium are analyzed.  
The complete governing equations, including both the effects of surface stress and nonlocal elasticity,  
are derived, while the solution for bending is solved by Navier’s approach. The analytical solution in  
this study could serve as a benchmark in the evaluation of future research. Based on the results of this  
study, the opposite influence of surface stress and nonlocal elasticity on the bending of nanoplates is observed.  
Various parametric studies are investigated to elucidate the combined effects of surface stress and  
nonlocal elasticity.
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Introduction
Due to the dominant mechanical, thermal,  
chemical, nd electronic performances of  
nanostructures, nanoplates have been widely  
used as an important part of nanosensors  
and nanoactuators in the development of  
nanoelectromechanical systems (NEMs) in  
recent decades (Craighead, 2000). A thorough  
understanding of the bending behavior of  
nanoplates is important in the design of NEMs  
materials. Plates on an elastic foundation are  
commonly found in civil, mechanical, and  
aerospace engineering. However, nanostructures,  
such as single-layered graphene sheets, are often  
found embedded in an elastic medium (polymer 

composites) in order to enhance the strength  
of the parent material. Thus, it can be modeled  
by the plate on an elastic foundation problem.   
Many researchers have investigated the  
mechanical behavior of nanoscale multilayers,  
especially embedded graphene sheets in various  
surroundings, which can be modeled with  
different types of elastic foundations (Samaei  
et al., 2011; Asemi and Farajpour, 2014; Sobhy,  
2014). The structure at a nanoscale level shows  
a significant size-dependent behavior. It is a  
well-known fact that the classical continuum  
theory does not take into account the so-called  
size effects, which are manifested in the response  
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of nanostructures. The high surface-to-bulk ratio  
of nanostructures leads to the exhibition of  
different behaviors compared with the  
conventional structures in macroscopic elements  
because of the considerable influence of surface  
stress.
	 The effect of surface stress on the behavior  
of nanoplates has been investigated by many  
researchers. Lim and He (2004) developed a  
continuum model to analyze the bending,  
buckling, and vibration behaviors of thin elastic  
films with a nanoscale thickness. Lu et al. (2006)  
proposed a continuum model including surface  
effects for plate-like thin film structures, which  
could be used for size-dependent static and  
dynamic analysis. Assadi and Farshi (2011)  
studied the stability and self-instability of circular  
nanoplates, including surface effects. Ansari  
and Sahmani (2011) investigated the free  
vibration characteristics of nanoplates, including  
surface stress effects, based on the continuum  
model. Assadi (2013) examined the effect of  
surface properties on the forced vibration of  
rectangular nanoplates. Wang and Wang (2013)  
evaluated the influence of surface energy on the  
post-buckling behavior of nanoplates by applying  
Galerkin’s method to solve the problems. Shaat  
et al. (2013) studied the bending behavior of  
ultra-thin functionally graded plates, focusing  
on the influence of surface energy. 
	 Considering small-scale effects, nonlocal  
elastic theory has presented reliable and accurate  
results in revealing the mechanical behaviors  
of nanostructures. For example, Pradhan and  
Murmu (2009) studied the buckling of single-layer  
graphene sheets subjected to a biaxial compression  
load, and solved the problems using the differential  
quadrature method. Murmu and Pradhan (2009)  
investigated the influence of small-scale effect  
on free in-plane vibration by employing a  
nonlocal continuum model. Aksencer and  
Aydogdu (2011) analyzed the buckling and  
vibration of nanoplates using Navier- and  
Levy-type solutions. Malekzadeh et al. (2011)  
determined the thermal buckling behavior of  
orthotropic arbitrary straight-sided quadrilateral  
nanoplates in an elastic medium by employing  
the differential quadrature method. Farajpour  
et al. (2011) investigated the buckling behavior  

of variable thickness nanoplates under biaxial  
compression, and solved the problems by  
Galerkin’s method. Satish et al. (2012) analyzed  
the thermal vibration of orthotropic nanoplates  
by using the 2 variable refined plate theory and  
nonlocal continuum mechanics. Wang and Li  
(2012) studied the bending behavior of a nanoplate  
embedded in an elastic matrix. Pouresmaeeli  
et al. (2013) examined the vibration of viscoelastic  
orthotropic nanoplates embedded in a viscoelastic  
medium. Zenkour and Sobhy (2013) investigated  
thermal buckling of nanoplates resting on a  
Winkler-Pasternak elastic medium, based on  
the sinusoidal shear deformation plate theory.  
Chakraverty and Behera (2014) studied the free  
vibration of rectangular nanoplates, and solved  
the problems by the Rayleigh–Ritz method.  
Moreover, some researchers considered a  
combination of both surface effects and nonlocal  
elasticity. For example, Wang and Wang (2011)  
studied the vibration of rectangular nanoplates,  
which combined the effects of surface energy  
and nonlocal elasticity.  Narendar and  
Gopalakrishnan (2012) investigated the wave  
propagation characteristics of nanoplates, using  
nonlocal plate theory together with surface  
effects. Juntarasaid et al. (2012) analyzed the  
bending and buckling load of nanowires,  
including surface stress and the nonlocal  
elasticity effect with various boundary conditions.  
Farajpour et al. (2013) investigated the influence  
of temperature change, surface parameters, and  
nonlocal effects on the buckling of single-layer  
graphene sheets, using the differential quadrature  
method. Asemi and Farajpour (2014) studied  
thermo-mechanical vibration of circular graphene  
sheets, when both surface and nonlocal effects  
are taken into account, and solved the formulation  
by using Galerkin̓s method.
	 To the best of the authors’ knowledge,  
based on a review of past literature, no studies  
have been performed on the bending behavior of  
nanoplates embedded in an elastic medium and  
incorporating both the surface effect and nonlocal  
elasticity. Therefore, the main purpose of this  
study is to investigate the bending behavior of  
nanoplates, combining the 2 above-mentioned  
small-scale effects, based on classical plate  
theory and the Mindlin plate theory. Thus, the 
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complete governing equations for the bending  
analysis of nanoplates are achieved. The present  
work also studies the influence of the surface effect  
and nonlocal parameter on the displacement  
ratio when the sizes of the nanoplates are varied.

Formulation of the Problem
A rectangular nanoplate is considered by the 
thickness h, length  a, width  b, and an embedded  
elastic medium that is shown in Figure1. The  
elastic medium is characterized as a 2-parameter  
elastic foundation. The perfect chemical bonds  
are assumed to form between the nanoplates and  
the elastic medium. The nanoplates maintain  
continuous contact with the elastic medium,  
and there are no friction forces at the interface.  
At the contact surface, the effects of the surface  
stress of the elastic medium surrounding the  
nanoplates will be ignored, while only the  
influence of the surface stress of the nanoplates  
is considered. The formulation presented in this  
study is concerned with the application of nonlocal  
constitutive relations and surface stress at the  
upper and lower surfaces of the nanoplates. Thus,  
it is limited to 2-dimensional cases and the plate  
theories, which are employed to derive the  
governing equations for the bending problem  
with the displacement at any material point  
depending only on the displacement middle  
plane of the nanoplates. 

Nonlocal Elasticity Theory

	 In nonlocal elasticity theory, it is assumed  
that the stress at a point depends not only on the  
strain at that point but also on the strains at all  
other points in the body. According to Eringen  
(2002), the nonlocal constitutive relations of a  
Hookean body can be expressed as

	 (1a)

	 (1b)

	 (1c)

	 (1d)

                                                                                           (1e) 

where E, G and υ are the elastic modulus, the  
shear modulus, and Poisson’s ratio, respectively.  
The scale factor μ = (e01i)2 is a nonlocal parameter,  
where li is an internal characteristic length  
(such as lattice spacing, granular distance, distance  
between C-C bonds) and  e0 is a material constant  
which is determined to calibrate the nonlocal  
model with experimental results or the results  
of molecular dynamics simulations.

Surface Stress

	 For nanostructures, the surface-to-bulk  
ratio is significant. Therefore, the surface effect  

Figure 1. Geometric of a uniform rectangular nanoplate embedded in elastic medium
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cannot be ignored. Recently, the Gurtin–Murdoch  
theory of an elastic solid surface (Gurtin and  
Murdoch, 1975, 1978) has been widely employed  
for the investigation of various mechanical  
responses of the nanoplates. Based on this theory,  
the original surface stress tensor is expressed by  
the following equation:
	

(2)

where τ0 is the residual surface tension, λ0 and    
u0 are the surface Lame constants, I is the  
unit tangent tensor, trεsur is the trace of the  
surface strain tensor εsur, and  is the surface 
gradient of the displacement field describing  
its deformation. Equation (2) refers to the  
constitutive relation of a tensor tangent to the  
surface and a component normal to this surface.  
In previous works (Sharma and Ganti, 2002;  
Sharma et al., 2003; Duan et al., 2005a, 2005b),  
the original surface stress tensor has been  
simplified by ignoring the last term in Equation  
(2). However, if the residual surface tension is  
important, the last term in Equation (2) should  
be included (Mogilevskaya et al., 2008).  
Especially, for the bending problem, the residual  
surface tension is significant and contributes to  
the bending stiffness of structures (Miller and  
Shenoy, 2000). Therefore, in the present work,  
the original surface stress equation is developed  
without any simplifications. Let the upper and  
lower surfaces of the nanoplates be denoted by   
S+ and S–, respectively. Using Equation (2), the 
surface stresses at the upper and lower surfaces  
of the nanoplates can be expressed as follows:

	
(3a)  

	
(3b)

	
(3c)

	
(3d)   

	
(3e)

	
(3f)

Classical Plate Theory 

	 The displacement field of the classical or  
Kirchhoff plate theory can be written as

 
	

(4a) 

	 (4b) 

	 (4c) 

where u(x, y), v(x, y) and w(x, y) are the  
displacement components of the material point  
at the middle plane of the plate. The strain- 
displacement relations can be expressed as

	
(5a)

	
(5b) 

	 (5c)

	 (5d)–(5f)

	 The  bending  moment  resu l tan ts  
incorporating the effects of surface stress and  
nonlocal elasticity can be written as

	 (6a) 

	 (6b)

	
(6c)

Considering Equations (6a)–(6c), the first and  
second parts of the right-hand side result from  
the surface stress effect and the nonlocal  
elasticity, respectively. Let the upper and lower  
surfaces of the nanoplates have the same  
properties. Then, using Equations (1a) – (1c),  
(3a) – (3c), (4a) – (4c), (5a) – (5c), and  
(6a) – (6c), we obtain the bending moment  
resultants, as follows:
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 (7a)

	

(7b)	
	

(7c) 

	
where D = Eh3 / 12(1–υ2)is the flexural rigidity  
of the nanoplates. To derive the equilibrium  
equations of the classical plate theory, it is necessary  
to find the shear forces (Sx, Sy) acting on the cross  
sections; both lower and upper surfaces of the  
nanoplates must be considered, as follows (Assadi,  
2013):

	
(8a)

	

(8b) 

	 From the sum of the resultant forces in  
the transverse direction, which contain the  
external loading q(x, y) and reaction force of  
an elastic medium, then, applying Equations  
(7a) – (7c) and (8a) – (8b), the following governing  
equation can be obtained:

(9)

where kw and Gb are the Winkler foundation  
stiffness and the shear layer stiffness of the  
foundation, respectively.

Mindlin Plate Theory 

	 The Mindlin plate theory is known as  
the first-order shear deformation theory, and  
is based on the displacement field that can be  
expressed as
 

	 (10a)

	 (10b)

	 (10c) 

where u(x, y), v(x, y) and w(x, y) are the  
displacement components of the material point  
at the middle plane, and x and y are the  
rotations about the y and x axes, respectively.  
Furthermore, the strain can be expressed as

	
(11a)

	
(11b)

	
(11c)

	
(11d) 

	
(11e)

	 The bending moment and shear force  
resultants, including surface stress and nonlocal  
effects, can be written by the following equations:

	
(12a)

	
(12b)

	
(12c)

	
(12d)

	
(12e)

	
(12f) 
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where k2 is the shear correction factor.  
Consequently, by using Equations (1a) – (1e),  
(3a) – (3f), (10a )– (10c), (11a) – (11e), and  
(12a) – (12f), assuming that the top and bottom  
surfaces have the same material properties, the  
bending moment and shear force resultants can  
be simplified to the following relations:

	

(13a)

		
	

(13b)

	(13c)

	(13d)

	
(13e)

	
(13f) 

	 The equilibrium equations of the Mindlin  
plate resting on a 2-parameter elastic foundation  
are given as

	
(14a)

	
(14b)

	
(14c)

	 Finally, by substituting Equations (13a)  
– (13f) into Equations (14a) – (14c), the governing  
equations of the nanoplates, including the surface  
and nonlocal effects based on the Mindlin plate  
theory, can be expressed as

	 (15a)

	
(15b)

	
(15c)

Note that if the surface effect is ignored (τ0, u0 
and y0 are all set to 0), Equations (15a) – (15c)  
agree with the work of Wang and Li (2012).

Solution to the Problem

	 In this section, the governing differential  
equations for the bending behavior of the  
nanoplates, including surface stress and nonlocal  
effects, have been solved by Navier’s approach  
for simply supported boundary conditions. The  
simply supported boundary conditions for a  
rectangular plate are:-

for the classical plate:
	 a)	w = 0 and Mxx = 0 at x = 0 and a,
	 b)	w = 0 and My = 0 at y = 0 and b,
for the Mindlin plate:
	 c)	w = 0, Mxx = 0, and y at x = 0 and a,
	 d)	w = 0, Myy = 0, and x at y = 0 and b,

where a and b are the length and width of the  
nanoplates, respectively. The displacement  
solutions can be expressed as
for the classical plate:

	
(16)

for the Mindlin plate:

	
(17a)

	
(17b)
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(17c)

where αm = mπ / a and βn = nπ / b, and m and n  
denote the half-wave numbers in the x and y  
directions, respectively. From Equations (16) and  
(17a) – (17c), the simply supported boundary  
conditions for the nanoplates will be satisfied  
automatically. Furthermore, the external load  
can be also expressed by the Fourier series as

	 (18) 

The Displacement Coefficient of the Classical  
Plate 

	 Substituting Equations (16) and (18) into  
Equation (9), the displacement coefficient of the  
classical plate is represented by

	
(19)

where

From Equation (19), by setting λ0, u0, τ0 and μ  
to 0, the coefficient of the traditional solution is  
obtained, which does not include the effects of  
surface stress and nonlocal elasticity:

	
(20) 

The displacement ratio  in the classical  
plate theory is defined as 

	
(21)

The Displacement Coefficient of the Mindlin 
Plate

	 Substituting Equations (17a) – (17c) and  
(18) into Equations (15a) – (15c) generates a  
linear system
 		           

	 (22)

where aij, i, j = 1, 2, 3 as given in the Appendix.  
Then, by solving the above equation, the  
displacement coefficient of the Mindlin plate  
can be written as 

	
(23)

	 The displacement coefficient without the  
effects of surface stress and nonlocal elasticity  
can be calculated by setting λ0, u0, τ0, and μ   
in the expressions of aij to 0. By excluding the  
effect of size-dependent behavior in Equation  
(23), the traditional coefficient  is obtained.   
Furthermore, the displacement ratio  in the  
Mindlin plate theory is also defined as 

	
(24)

Numerical Example and Discussion

	 For the present study, an aluminum nanoplate  
is embedded in an elastic medium with the 
following material properties (Assadi, 2013);     
E = 68.5 GPa, υ = 0.35, τ0 = 0.910 N / m,  
λ0 = 5.26 N / m and u0 = 2.26 N / m. It is assumed  
that h = 2 nm, the shear correction factor is  
k2 = π2 / 12, the elastic medium properties  
(Wang and Li, 2012) are the Winkler foundation  
modulus, kw = 1.13 × 1018 Pa / m, and the stiffness  
of the shearing layer, Gb = 2 N / m. Nanoplates  
with the effects of either nonlocal elasticity  
or surface stress are considered separately.  
Meanwhile, nanoplates with a combination of  
these effects are also examined. 
	 The relationships between the displace-
ment ratio  and the non-dimensional  
length (a / h) of nanoplates with different half- 
wave numbers are shown in Figure 2(a) – (h) and  
Figure 3(a) – (h) for the classical and Mindlin  
plate theory, respectively. It is apparent that all  
graphs show a similar trend. For low values of  
the non-dimensional length (a / h), there is a  
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Figure 2.	 (a)-(h). Variation of the displacement ratio as a non-dimensional length of nanoplates for the  
	 classical plate with different length-to-width ratio and half-wave numbers
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Figure 3(a)-(h).	 Variation of the displacement ratio as a non-dimensional length of nanoplates for the Mindlin  
		  plate with different length-to-width ratio and half-wave numbers
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large difference in the displacement ratio  
between each small-scale effect, whereas the  
ratio gradually converges to 1, namely to the  
solution of the classical plate theory, with  
increasing the non-dimensional length (a / h).  
Based on these results, both surface stresses and  
nonlocal elasticity have a greater influence on  
nanoplates with smaller sizes. Furthermore, if  
only the effect of surface stress is considered, the  
displacement ratio will always be less than 1.  
This means that the surface stresses improve the  
bending stiffness of nanoplates. In contrast, the  
displacement ratio will always be higher than 1  
when only the effect of nonlocal elasticity is  
taken into account. It is evident that the influence  
of the nonlocal parameter is predominant when  
high values of the half-wave numbers (m, n) are  
examined. From the aforementioned results, it is  
interesting to highlight the incorporated effects  
of surface stress and nonlocal elasticity from the  
proposed formulations. Due to the opposite results  
of each individual effect, the displacement ratio  
tapers off when the combination of both effects  
is considered. 
	 To evaluate the influence of shear  
deformation on nanoplates, Figure 3(a–h),  
plotted according to the Mindlin plate theory,  
can be compared with Figure 2(a-h), based  
on the classical plate theory. It is obvious that the  
displacement ratio  seems to have a value less  
than the displacement ratio  when the same  
parameters, the half-wave numbers (m, n),  

the non-dimensional length (a / h), and the  
parameters of small scale are concerned. This  
implies that the small scale of nanoplates has  
less effect on the Mindlin plates than on classical  
plates. 
	 To demonstrate the effect of residual  
surface tension, Figure 4 and Figure 5 are  
established to compare the results between  
including and excluding the residual surface 
effects for both the classical and Mindlin plates,  
respectively. It is evidently observed that  
including the residual surface has had a  
significant effect in increasing the displacement  
ratios  and . The effect on the bending of  
nanoplates has been also reported by Miller and  
Shenoy (2000).
	 Finally, the relationships between the  
displacement ratio and the elastic foundation  
parameters are presented in Figures 6 and 7 and  
Figures 8 and 9 for the classical and Mindlin  
plate theory, respectively. A decreasing trend  
can be clearly observed in the displacement  
ratios  and  as the values of the Winkler  
foundation stiffness (kw) and shear layer stiffness  
(Gb) increase.

Conclusions
In this study, the governing equations for the  
bending analysis of nanoplate models, including  
both surface stress and nonlocal elasticity effects,  
are derived. Thin and moderately thick nanoplates  

Figure 4. 	 The effect of residual surface tension on the  
	 displacement ratio for the classical plate  
	 with different half-wave numbers 

Figure 5. 	 The effect of residual surface tension on  
	 the displacement ratio for the Mindlin  
	 plate with different half-wave numbers 
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Figure 6. 	 Variation of the displacement ratio as the  
	 Winkler foundation stiffness for the classical  
	 plate

Figure 7. 	 Variation of the displacement ratio as the  
	 shear layer stiffness for the classical plate

Figure 8. 	 Variation of the displacement ratio as the  
	 Winkler foundation stiffness for the Mindlin  
	 plate

Figure 9.	 Variation of the displacement ratio as the  
	 shear layer stiffness for the Mindlin plate

and the 2-parameter elastic foundation are also  
considered in the formulations. The analytical  
solution from the present study could be applied  
as a benchmark for comparison with other  
numerical solutions in future work.
	 The results of this investigation can be  
summarized as follows:
	 •	 When the size of a structure is in the order  
of nanometers, the surface stress and nonlocal  
elasticity have a great significance on the bending  
behavior, which cannot be ignored.
	 •	 If the surface stress effect is examined  
in particular, the displacement ratio will always  
be less than 1. This means that the surface stresses  
improve the bending stiffness of nanoplates. In  
contrast, the displacement ratio will always be  

higher than 1 when only the effect of nonlocal  
elasticity is taken into account.
	 •	 Because opposite results of each  
individual effect are observed, the displacement  
ratio will have a value between those obtained  
from each effect when the combined surface  
stress and nonlocal elasticity are considered.
	 •	 The small scale of nanoplates has less  
effect on the Mindlin plates than on classical  
plates.
	 •	 The effect of residual surface tension  
leads to an improvement in the bending stiffness  
of nanoplates. 
	 •	 The influence of surface stress and  
nonlocal elasticity decreases when nanoplates  
rest on an elastic foundation.
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Appendix 
Coefficients a11 through a33 :

	
(A1)

	
(A2)

	
(A3)

	 (A4)

	
(A5)

	(A6)

	 (A7)

	 (A8)

	
(A9)
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