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Abstract


This topic presents a framework in the uses of the K-nearest neighbor algorithm in evaluating an
 
object detection method of scale-space theory with feature stability. A scale-space tree is constructed
 
based on the blobs that were created from a series of images after the blurring process. Features and 
 
spatial information provide the role within the scale-space tree construction. After the process of 
 
blob extraction, users determine each type of the blob that was detected within the image by 
 
distinguishing classes to create ground truth image data. Within the same process, the KNN 
 
algorithm is applied to distinguish classes of the image’s blobs in determining the performance.  
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Introduction

A human eye is one of the most important 
 
organ structures that the vision sense relies on.  
 
Eye diseases are a common problem occurring 
 
not only to senior citizens but infants as well.  
 
The retinopathy of prematurity (ROP) is a 
 
disease in which symptoms show abnormal 
 
blood vessels and scar tissue over the retina of 
 
the eye. Most ROP cases come from a lower 
 
gestational age and birth weight and are 
 
increasing at a considerable rate.  In addition, 
 
most patients recognize this disease only 
 
when their retinal insights are degrading, 
 
resulting in a blurry vision for which treatment 
 
is complicated and nearly helpless.


	 Programs of pattern recognition and 
 
classifications have been one of the crucial 
 
subjects in computer vision analysis.  Successful 
 
implementations would provide beneficial 
 
outcomes toward the field of the study’s
 
reliability and convenience for the user. The 
 
purpose of this task is to apply a segmentation 
 
of objects in locating the object of interest 
 
within the retinal image. Consecutive tasks 
 
such as object recognition, classification, and 
 
determination are used after the object of interest 
 
has been segmented. Performance of the 
 
output in object recognition and classification 
 
usually depends on the quality and accuracy
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of object distinguishing after segmentation is 
 
applied to the image.

	 Two algorithms were used in the image 
 
segmentation; region-based (Wang, 2007) and 
 
edge-based segmentations (Forbes and Draper, 
 
2000; Bowyer et al., 2001; Konishi et al., 
 
2003). Regions of interest such as color, size, 
 
or shape are required for prior knowledge in 
 
order to provide formidable results. The 
 
following features will then be used to specify 
 
other parameters in order to improve the 
 
image’s segmentation such as intensity 
 
thresholds, entropy, etc. 

	 Proposed by Witkin (1983), a scale-space 
 
technique is a framework on a multi-scale 
 
representation which has been developed for 
 
computer vision in order to handle image 
 
structures at different scales. Applications for 
detecting image features such as blobs, edges, 
 
ridges, and corners are widely used along with 
 
scale-space techniques with a representation 
 
based on the lifetime of each application 
 
(Lindeberg, 1994, 1998a, 1998b). Jalba et al. 
 
(2006) presented a method in multiscaling for 
 
shape recognition which is based on 2 
 
morphological scale-space representations and 
 
hat-transforms.Carvalho et al. (2003) proposed 
 
the method to segment yeast cells based on 
 
watershed and scale-space analysis.    

	 The K-nearest neighbor algorithm (KNN) 
 
is a simple yet efficient method of classifying 
 
objects based on the closest training sample 
 
within the feature space (Tekmono, 2006; 
 
Thomas, 2008). The simplicity and simultaneous 
 
processing within the KNN algorithm is a 
 
considerable advantage. Plaku and Kavrati 
 
(2007) proposed a distributed computation of 
 
the KNN graph for large dimensional point 
 
sets. Performance in object detection is 
 
evaluated by demonstrating if blobs can only 
 
be linked when their features are stable over 
 
different scales. The evolution of linked blobs 
 
over different scales using feature stability 
 
shows how stable structures are in scale-
 
space. Classes are analyzed and distinguished 
 
by the process of the KNN algorithm and 
 
accuracy is determined to evaluate the  
algorithm’s efficiency (Su, 2011). Such  processes 
 
could lead to promising and reliable image 
 

segmentation and processing procedures.

	 Demonstrations of feature stability and
 
the KNN algorithm process is introduced in 
 
this research. Scale-space and feature stability 
 
provide an automatic detection of drusen and 
 
are evaluated by the KNN’s performance, 
 
comparing the results with ground truth data 
 
to determine the accuracy.


Proposed Methods


Scale-Space Tree


	 Within the structures of image classification, 
 
the scale of a particular object as well as the 
 
intensity may be important in evaluating 
 
image processes. Scale-space theory is a multi-
 
scale representation in a set of output images 
 
constructed by the convolution of an original 
 
image and a Gaussian filter with different 
values based on a scale parameter σ. The 
 
2-dimension image, f(x, y), defined by a 
 
convolution along with the Gaussian kernel   
 
g(x, y, σ) is a set of output images in various 
 
scales generated by a successive smoothing 
 
process. In addition, parameter σ moderately 
 
changes in order to create a series of smooth 
 
images. Details of the images were suppressed 
 
but noticeable structures are still in existence 
 
during the blurring process.  

	 The purpose of scale-space construction
 
is to analyze the characteristics of the image’s 
 
structure from different aspects. Light blobs 
 
are created due to the scale parameter results 
 
during the process of suppressing the image 
 
structures. As a scale-space tree constructs to 
 
its limit, we can determine the areas of the 
 
object of interest depending on the blob’s
 
lifetime. After the tree is formed, each blob is 
 
represented as a node and will be evaluated 
 
for its significance. Assuming that our object
 
of interest is clearly visible towards our object 
 
detection, the object of interest should stay 
 
longer over different scales. 


Feature Stability


	 Feature stability provides a conventional 
 
blob linking process based on additional 
 
information such as color or texture. Blobs 
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from adjacent scales that have spatial 
 
intersection will be considered as a pair 
 
candidate. Feature stability can be characterized 
 
by the following Equation:




	 	
(1)




where f = [f1, f2, f3..., fn] and g = [g1, g2, g3,... gn] 
 
and are the feature vectors corresponding to 2
 
candidate blobs simplified with the Euclidean 
 
distance, dist. Additionally, the significance of 
 
the blob features may vary depending on the 
 
blob’s lifetime.


Scale-space Blob Linking and Blob Life
 
Time


	 The normal blob linking process is used 
 
to form a scale-space tree using the information 
 
of the blobs in consecutive scales. The key 
 
concept is to decrease the limitations of 
 
parameter tuning by analyzing every blob 
 

within each scale.  As a result, the scale-space 
 
blob does not require any pre-tuned parameters 
 
for finding blobs. (Duanggate et al., 2011) To 
 
obtain the blobs from each scale, the blob 
 
seeds are initialized at every local maximum. 
 
The region around the seed then grows until it 
 
meets a local minimum (Lindeberg, 1994). 
 
For example, 2 different blobs with different 
 
colors will still have the chance to be merged 
 
if they stay close together spatially. The blob 
 
lifetime is defined as a discrete value measured 
 
from the number of scales at which the 
 
structures exist.  As the lifetime increases, the 
 
blob gains more significance. The lifetime can 
 
be defined by the time at which a certain blob 
 
at a specific scale appears or disappears.  
 
Focusing on 1 group object of interest, such as 
 
the green blobs in Figure 1, the white layers 
 
of circles present the intermediate results of 
 
the scale-space construction and it is assumed 
 
that the important structures in the image 
 

Figure 1.	 Blob classification on the feature of marked ground truth data based on a retinal image where 
 
	 (a) is the original test image while (b) is the result based on blob detection indicated in the white 
 
	 circles


(a)


(a)


(b)


(b)
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should stay longer over different scales.  


K – Nearest Neighbor Algorithm (KNN)


	 After the process of blob extraction, 2
 
classifications were processed: by hand and 
 
by the KNN algorithm. Users will identify 
each blob’s significance manually to create  
 
ground truth data. Once all the blobs have
 
been identified, a training set is created for
 
each class to distinguish each blob’s level of 
 
significance. Once the ground truth image and 
 
the training set is complete, a KNN algorithm 
 
will be processed based on the training set’s 
 
data and the value of k.  

	 Given an image and features to be 
 
classified, the algorithm searches for the k –
 
nearest neighbors among the training data 
 
based on similar measures. Training examples 
 
are vectors in a multidimensional feature 
 
space, each with a class label. Neighbors are 
 
taken from the training data to determine the 
 
classes of each type. Within the classification 
 
phase, k is a user-defined constant and a query 
 
which is classified by assigning the data 
 
which is most frequent among the k training 
 
samples nearest to the query point. 

	 The data of the KNN algorithm consist 
 
of attributes Xi and the output Y. Xi is the 
 
proximity of neighboring input observations 
 
in the training data while their corresponding 
 
output values Y are used to predict the output 
 
value of the classes. To demonstrate the 
 
algorithm’s procedure, assume that the query 
 
(q) distance has a value of (X1

q, X2
q) and a 
 

training sample (t) value of (X1
t, X2

t). The 
 
output can be determined by using the 
 
Euclidean distance which can be defined by:




	 (2)



	 Training sample parameters in the KNN 
 
algorithm can also be extended for further 
 
development. By assigning more than 2 
 
features, the equation can be calculated as 
 
follows:




	 (3)



	 Given that the KNN method is dependent 
 

on distance measurements, the input data has 
 
to be standardized before proceeding to the 
 
KNN process. Figure 2 illustrates a diagram 
 
of a KNN model with 2 classes based on a 
 
training set; blue and red dots and a target 
 
which is a green dot. The inner dashed circle 
has a value of K = 1 which is the final result 
 
of the target to be considered as the blue class
 
since 2 blue classes existed within the area. 
 
The outer dashed circle has a value of K = 3 
 
which results as a red class (6 versus 4).


Experimental Results


	 Three general features were used as a 
 
blob descriptor vector; the blob’s entropy, the 
 
average value of the Grey (G) channel, and 
the standard deviation of the G channel. Texture, 
 
color, and color distribution represents the 3 
 
values for the blob, respectively. All features 
 
are normalized to values ranging from 0 to 1.  
 
Other specific features were implemented for 
 
particular applications such as compactness. 
 
Each blob generates a unique ID at a specific 
 
scale alongside the data of the blob’s entropy,
 
average G channel, and standard deviation of 
 

Figure 2. 	 A representation of a KNN algorithm. 
 
	 The green dot represents the target 
 
	 whereas the red and blue dots represent 
 
	 2 different classes based on the training 
 
	 set. 2 dashed circles represent the value 
 
	 of K in which the inner circle is equal to 
 
	 1 and the outer dashed circle is 3
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the G channel for further verification in the 
 
ground truth data.  

	 For the seeding process of the blob, 3 
 
criteria were used within the blob classification. 
 
Regions can be classified as a background or 
 
as blobs with the 3 following criteria: A) it is 
 
a local maximum point and will be used as a 
 
seed of the blob if the region has no neighbours 
 
then, or B) if the region is next to other 
 
background regions with higher grey levels, 
 
then the current region should be assigned as 
 
a background as well, or C) if the region has 
 
many neighbours within a higher grey level 
 
and those neighbouring regions are not parts 
 
of the same blob, then the current region must 
 
be assigned as a background.

	 All digital retinal images were obtained 
 
from a Kowa-7 non-mydriatic retinal camera 
 
(Kowa Co. Ltd., Nagoya, Japan) with a 45o 
 
field of view taken at Thammasat University 
 
hospital. The images were stored in JPEG 
 
image format les with the lowest compression 
 
rates. The image size used was 752 × 500 
 
pixels with 24 bit colour. Ten retinal images
 
were used to evaluate the algorithm of which 
 

several images were demonstrated in Figures 3 
 
and 4. Many drusen cases in the retinal 
 
images were taken into account such as retinas 
 
with bright exudates shown in Figure 3 and 
 
translucent exudates shown in Figure 4. Blobs 
 
were created from the process of feature 
 
stability, providing the object of interest. The
 
maximum number of scale-space constructed 
 
blobs was set at 50 and 80 in order to determine 
 
whether the accuracy of the KNN algorithm is 
 
likely to increase or decrease its efficiency.  

	 Each picture’s blobs will be analyzed 
 
by hand and  be indicated to be from the 3 
 
following classes; optic disc (1), drusen exudate 
 
(2), and non-related class (3). During this
 
process, we assume that blobs that cover more 
 
than 50% of the exduates are considered as 
 
class 2. Features of the blob (entropy, average 
 
value, and the standard deviation of G channel) 
 
will be used as the main references between 
 
the KNN implementation processes.

	 Once all the blobs have been identified, 
 
3 blobs will be chosen as a training set for 
 
each class based on the previously mentioned 
 
general features in order to initiate the KNN 
 

Figure 3. 	 An example of retinal images including bright exudates shown in (a) Feature stability is 
 
	 processed, creating blobs within the image and general features are recorded, as shown in (b)


(a)


(b)


(a)


(b)
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program using the value of K = 1.  The KNN 
will evaluate the significance of the blob’s 
 
entropy, average G channel, and standard 
 
deviation of the G channel in respect to the 

selected ground truth’s class. Once the process 
 
is completed, results of a ground truth image 
 
and KNN image will be evaluated to determine 
 
the accuracy. The percentage of the accuracy 
 

Figure 4. 	 An example of retinal images including translucent exudates shown in (a) Feature stability is 
 
	 processed, creating blobs within the image and general features are recorded, as shown in (b)


(a)


(a)


(b)


(b)


Table 1.	 Detection rate at maximum blobs = 50




Image 

No.


Total number 
of blobs


Ground truth result
 KNN result


Accuracy
Class
 


1
 2
 3
 1
 2
 3


#1
 40
 4
 8
 28
 7
 7
 26
 87.50%


#2
 35
 0
 16
 19
 0
 22
 13
 65.71%


#3
 40
 5
 1
 34
 3
 3
 27
 65.71%


#4
 43
 2
 10
 31
 6
 20
 27
 65.71%


#5
 41
 5
 19
 17
 12
 21
 8
 57.14%


#6
 42
 5
 25
 12
 5
 27
 10
 88.57%


#7
 25
 6
 4
 15
 5
 5
 15
 95.83%


#8
 39
 10
 4
 25
 10
 13
 16
 77.14%


#9
 26
 6
 7
 13
 5
 8
 13
 80.00%


#10
 42
 4
 7
 31
 6
 2
 34
 80.95%
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Figure 5.	 A demonstration of the maximum number of blobs indicated where (a) is set at 50 and (b) is
 
	 set at 


(a)
 (b)


(a)
 (b)
 (c)


Figure 6. 	 Images providing an example of an individual blob being assigned to each of the 3 classes in
 
	 order to create  ground truth data where (a) is an optic disc (1), (b) is a drusen exudate (2), and 
 
	 (c) is a non-related class (3)


Table 2.	 Detection rate at maximum blobs = 80




Image 

No.


Total number 
of blobs


Ground truth result
 KNN result


Accuracy
Class
 


1
 2
 3
 1
 2
 3


#1
 55
 9
 10
 36
 8
 17
 30
 74.28%


#2
 69
 3
 19
 47
 13
 19
 47
 71.01%


#3
 68
 6
 0
 32
 6
 0
 32
 100.00%


#4
 74
 3
 16
 55
 3
 27
 41
 76.81%


#5
 53
 7
 25
 21
 7
 33
 13
 84.90%


#6
 71
 5
 25
 41
 6
 19
 46
 84.90%


#7
 49
 8
 5
 36
 6
 6
 37
 93.88%


#8
 46
 12
 4
 30
 12
 6
 28
 91.30%


#9
 55
 8
 13
 34
 7
 15
 33
 84.76%


#10
 64
 6 
 16
 42
 6
 8
 50
 82.61%
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Table 3.	 Detection rate on class 2 (Drusen) at maximum blobs = 50




Image No.
 Ground truth result
 KNN result
 Accuracy


#1
 8
 7
 87.50%


#2
 16
 22
 72.72%


#3
 1
 3
 33.33%


#4
 10
 20
 50.00%


#5
 19
 21
 90.48%


#6
 25
 27
 92.59%


#7
 4
 5
 80.00%


#8
 4
 13
 30.77%


#9
 7
 8
 87.50%


#10
 7
 2
 28.57%


is computed by the overall correct class 
 
evaluated by the KNN compared with the 
 
ground truth data.  

	 Most images resulted in an overall above 
 
average accuracy in detecting each class for 
 
each blob. In addition, most images with the 
 
parameter of a larger number of blobs tend 
 
to increase the performance of the KNN’s
 
accuracy. However, class 2 results are currently 
 
in a fluctuated state as shown in Tables 3 and 4.  

	 Table 1 and Table 2 illustrate the overall 
 
results of the detection rates from all 10 images. 
 
Table 1 provides the results at the maximum 
 
number of blobs set to 50 and Table 2 at 80. 
 
The purpose of these Tables is to determine 
 
whether a larger number of blobs will improve 
 
the detection rate performance and the KNN 
 
classifications. Images No.1 and No.4 are 
 
based from the retinal image provided in 
 
Figure 3 and Images No.2 and No.5 are based 
 
from the retinal image provided in Figure 4.  
 
The accuracy of both Tables is determined by 
 
the KNN on how many results of each blob 
 
based on the KNN matches with the ground 
 
truth data divided by the total number of 
 
blobs.  


Discussion

In summary, an implementation of blob 
 

detection with feature stability and the use of 
 
the KNN classification have been proposed in 
 
this research. The object of interest can be 
 
detected effectively due to the robustness of 
 
the algorithm for detecting variable size and 
 
variable shape objects. Gaussian filters provide 
 
the means of extracting the feature vectors of 
 
each blob by convoluting the original image.  
 
The blobs, taking account of their feature 
 
stability, construct a scale-space tree. While 
 
traversing on the tree, the lifetime of each 
 
blob can be calculated to notify its significance.  
 
All blobs are contained and extracted to analyze 
 
their significance in order to create a ground 
 
truth image. The KNN classification is 
 
processed and compared with the ground truth 
 
data for the algorithm’s effectiveness. Feature 
 
vectors can be extended or modified to suit 
 
different applications and images. Blobs 
 
within a specified lifetime can be considered 
 
chosen as an object of interest, rather than the 
 
blob with the longest lifetime which does not 
 
indicate the object of interest.

	 The proposed algorithm could lead to an 
 
ideal outcome towards various applications 
 
that may require precision such as in medical 
 
applications for diagnosing symptoms and 
 
pinpointing interests. The processes of 
 
pinpointing the feature may still require 
 
human analysis in order to fully enhance 
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Table 4.	 Detection rate on class 2 (Drusen) at maximum blobs = 80




Image No.
 Ground truth result
 KNN result
 Accuracy


#1
 10
 17
 58.82%


#2
 19
 19
 100%


#3
 0
 0
 100%


#4
 16
 27
 59.26%


#5
 25
 33
 75.76%


#6
 25
 19
 76.00%


#7
 5
 6
 83.33%


#8
 4
 6
 66.67%


#9
 13
 15
 86.67%


#10
 16
 8
 50.00%


the results of the output, along with the 
 
improvements to the algorithm. However, 
 
blob indication is recommended for enhancement 
 
in order to prevent an excess amount of blob 
 
identification, especially when executed on a 
 
high number of blobs. Developments in
 
classification accuracy may lead to major 
 
benefits in computer analysis such as less 
 
human analysis and better performance such 
 
as the enhancement in integrating additional 
 
classification algorithms like Bayesian 
 
classifiers.  

	 Although the current drusen detection 
 
rate is at a satisfactory level, this process 
 
consumes a certain amount of time. Blob 
 
indication requires a hand-drawn analysis 
 
over each blob in order to evaluate the blob’s 
 
class by using the KNN classification. Certain 
 
retinal images that provide distinctive areas of 
 
optic disc and bright drusen exudates result in 
 
high accuracy towards the KNN classification 
 
process such as the results in Image No.7. In
 
contrast, images that provide translucent or 
 
relatively small drusen exudates will likely 
 
result in a lower accuracy such as Image No. 8. 
 
However, several images provide a higher 
 
accuracy when the number of blobs is set to 
 
80. In order to provide a better detection result 
 
for translucent drusen exudates at this current 
 
time, increasing the limit of the number of 
 

blobs to about 100 is the optimal choice while 
 
bright drusen exudate retinal images could be 
 
set at a lower number of blobs. However, the 
 
user is also required to indicate all those blob 
 
identifications before implementing the 
 
classification process. As a result, blob
 
indication becomes one of the most time 
 
consuming tasks within this process. Class 2 
 
results based on Tables 3 and 4 are still in a 
 
highly varied state due to the low number of 
 
drusen exudates that existed within several 
 
images and the existence of translucent drusen 
 
exudates which results in blobs being unable 
 
to be detected. In addition, human errors are 
 
also an issue in creating ground truth data 
 
since some blobs provide a dilemma as to 
 
which class should be selected since the blob 
 
may not cover the areas entirely or may exceed 
 
the areas. 


Conclusions

Studies of the implementation of retinal 
 
detection based on scale-space theory, feature 
 
stability, and an evaluation of the KNN were 
 
presented in this paper. In summary, an 
 
automatic optic disc, ROP, and drusen detection 
 
are investigated for further development.  
 
Many experiments have provided promising 
 
results within the rate of drusen and optic disc 
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detection. The procedures of detection include 
 
scale-space implementation and blob detection 
 
methods. All ground truth retinal images are 
 
analyzed by hand. Data analysis and results 
 
are presented using the implementation of the 
 
KNN classification. Both results are compared 
 
to evaluate the performance. Each retinal 
image is assigned with a specific identification 
 
of a blob and is analyzed on its significance 
 
accordingly. Overall, the automatic detection 
 
of drusen within the patient’s retina could provide
 
a major benefit toward the ophthalmologist’s role
 
in patient’s treatment. Accurate classifications 
 
based on the KNN could also help in 
 
identifying the abnormal areas of a patient’s 
 
eye. In addition, further developments in 
 
classification techniques could also be 
 
implemented in the near future for higher 
 
accuracy.

	 There are possibilities of expanding the 
 
process of scale-space theory, feature stability, 
 
and classification procedure and of being able 
 
to optimize the program for a better result 
 
regarding precision and accuracy. Since the
 
process requires a certain amount of time to 
 
implement each retinal image, the first and 
 
foremost priority is to find the best solution in 
 
optimizing the time for all the procedures.  
 
Tweaks in the algorithm of scale-space and 
 
the feature stability procedure need to be 
 
looked at. Providing a solution with complex 
 
retinal images (for example, drusen that have 
 
a similar shape and intensity with the optic 
 
disc) is another challenge that must be 
 
undertaken.  
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