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Abstract 

This topic presents a framework in the uses of the K-nearest neighbor algorithm in evaluating an  
object detection method of scale-space theory with feature stability. A scale-space tree is constructed  
based on the blobs that were created from a series of images after the blurring process. Features and   
spatial information provide the role within the scale-space tree construction. After the process of   
blob extraction, users determine each type of the blob that was detected within the image by   
distinguishing classes to create ground truth image data. Within the same process, the KNN   
algorithm is applied to distinguish classes of the image’s blobs in determining the performance.   
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Introduction 
A human eye is one of the most important   
organ structures that the vision sense relies on.    
Eye diseases are a common problem occurring   
not only to senior citizens but infants as well.    
The retinopathy of prematurity (ROP) is a   
disease in which symptoms show abnormal   
blood vessels and scar tissue over the retina of   
the eye. Most ROP cases come from a lower   
gestational age and birth weight and are   
increasing at a considerable rate.  In addition,   
most patients recognize this disease only   
when their retinal insights are degrading,   
resulting in a blurry vision for which treatment   
is complicated and nearly helpless. 

 Programs of pattern recognition and   
classifications have been one of the crucial   
subjects in computer vision analysis.  Successful   
implementations would provide beneficial   
outcomes toward the field of the study’s  
reliability and convenience for the user. The   
purpose of this task is to apply a segmentation   
of objects in locating the object of interest   
within the retinal image. Consecutive tasks   
such as object recognition, classification, and   
determination are used after the object of interest   
has been segmented. Performance of the   
output in object recognition and classification   
usually depends on the quality and accuracy  
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of object distinguishing after segmentation is   
applied to the image. 
 Two algorithms were used in the image   
segmentation; region-based (Wang, 2007) and   
edge-based segmentations (Forbes and Draper,   
2000; Bowyer et al., 2001; Konishi et al.,   
2003). Regions of interest such as color, size,   
or shape are required for prior knowledge in   
order to provide formidable results. The   
following features will then be used to specify   
other parameters in order to improve the   
image’s segmentation such as intensity   
thresholds, entropy, etc.  
 Proposed by Witkin (1983), a scale-space   
technique is a framework on a multi-scale   
representation which has been developed for   
computer vision in order to handle image   
structures at different scales. Applications for 
detecting image features such as blobs, edges,   
ridges, and corners are widely used along with   
scale-space techniques with a representation   
based on the lifetime of each application   
(Lindeberg, 1994, 1998a, 1998b). Jalba et al.   
(2006) presented a method in multiscaling for   
shape recognition which is based on 2   
morphological scale-space representations and   
hat-transforms.Carvalho et al. (2003) proposed   
the method to segment yeast cells based on   
watershed and scale-space analysis.     
 The K-nearest neighbor algorithm (KNN)   
is a simple yet efficient method of classifying   
objects based on the closest training sample   
within the feature space (Tekmono, 2006;   
Thomas, 2008). The simplicity and simultaneous   
processing within the KNN algorithm is a   
considerable advantage. Plaku and Kavrati   
(2007) proposed a distributed computation of   
the KNN graph for large dimensional point   
sets. Performance in object detection is   
evaluated by demonstrating if blobs can only   
be linked when their features are stable over   
different scales. The evolution of linked blobs   
over different scales using feature stability   
shows how stable structures are in scale-  
space. Classes are analyzed and distinguished   
by the process of the KNN algorithm and   
accuracy is determined to evaluate the  
algorithm’s efficiency (Su, 2011). Such  processes   
could lead to promising and reliable image   

segmentation and processing procedures. 
 Demonstrations of feature stability and  
the KNN algorithm process is introduced in   
this research. Scale-space and feature stability   
provide an automatic detection of drusen and   
are evaluated by the KNN’s performance,   
comparing the results with ground truth data   
to determine the accuracy. 

Proposed Methods 

Scale-Space Tree 

 Within the structures of image classification,   
the scale of a particular object as well as the   
intensity may be important in evaluating   
image processes. Scale-space theory is a multi-  
scale representation in a set of output images   
constructed by the convolution of an original   
image and a Gaussian filter with different 
values based on a scale parameter σ. The   
2-dimension image, f(x, y), defined by a   
convolution along with the Gaussian kernel     
g(x, y, σ) is a set of output images in various   
scales generated by a successive smoothing   
process. In addition, parameter σ moderately   
changes in order to create a series of smooth   
images. Details of the images were suppressed   
but noticeable structures are still in existence   
during the blurring process.   
 The purpose of scale-space construction  
is to analyze the characteristics of the image’s   
structure from different aspects. Light blobs   
are created due to the scale parameter results   
during the process of suppressing the image   
structures. As a scale-space tree constructs to   
its limit, we can determine the areas of the   
object of interest depending on the blob’s  
lifetime. After the tree is formed, each blob is   
represented as a node and will be evaluated   
for its significance. Assuming that our object  
of interest is clearly visible towards our object   
detection, the object of interest should stay   
longer over different scales.  

Feature Stability 

 Feature stability provides a conventional   
blob linking process based on additional   
information such as color or texture. Blobs   
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from adjacent scales that have spatial   
intersection will be considered as a pair   
candidate. Feature stability can be characterized   
by the following Equation: 
 

  
(1) 

 
where f = [f1, f2, f3..., fn] and g = [g1, g2, g3,... gn]   
and are the feature vectors corresponding to 2  
candidate blobs simplified with the Euclidean   
distance, dist. Additionally, the significance of   
the blob features may vary depending on the   
blob’s lifetime. 

Scale-space Blob Linking and Blob Life  
Time 

 The normal blob linking process is used   
to form a scale-space tree using the information   
of the blobs in consecutive scales. The key   
concept is to decrease the limitations of   
parameter tuning by analyzing every blob   

within each scale.  As a result, the scale-space   
blob does not require any pre-tuned parameters   
for finding blobs. (Duanggate et al., 2011) To   
obtain the blobs from each scale, the blob   
seeds are initialized at every local maximum.   
The region around the seed then grows until it   
meets a local minimum (Lindeberg, 1994).   
For example, 2 different blobs with different   
colors will still have the chance to be merged   
if they stay close together spatially. The blob   
lifetime is defined as a discrete value measured   
from the number of scales at which the   
structures exist.  As the lifetime increases, the   
blob gains more significance. The lifetime can   
be defined by the time at which a certain blob   
at a specific scale appears or disappears.    
Focusing on 1 group object of interest, such as   
the green blobs in Figure 1, the white layers   
of circles present the intermediate results of   
the scale-space construction and it is assumed   
that the important structures in the image   

Figure 1. Blob classification on the feature of marked ground truth data based on a retinal image where   
 (a) is the original test image while (b) is the result based on blob detection indicated in the white   
 circles 

(a) 

(a) 

(b) 

(b) 



KNN Akgorithm in a Framework of Scale-space Theory for Retinal Image Analysis 90

should stay longer over different scales.   

K – Nearest Neighbor Algorithm (KNN) 

 After the process of blob extraction, 2  
classifications were processed: by hand and   
by the KNN algorithm. Users will identify 
each blob’s significance manually to create    
ground truth data. Once all the blobs have  
been identified, a training set is created for  
each class to distinguish each blob’s level of   
significance. Once the ground truth image and   
the training set is complete, a KNN algorithm   
will be processed based on the training set’s   
data and the value of k.   
 Given an image and features to be   
classified, the algorithm searches for the k –  
nearest neighbors among the training data   
based on similar measures. Training examples   
are vectors in a multidimensional feature   
space, each with a class label. Neighbors are   
taken from the training data to determine the   
classes of each type. Within the classification   
phase, k is a user-defined constant and a query   
which is classified by assigning the data   
which is most frequent among the k training   
samples nearest to the query point.  
 The data of the KNN algorithm consist   
of attributes Xi and the output Y. Xi is the   
proximity of neighboring input observations   
in the training data while their corresponding   
output values Y are used to predict the output   
value of the classes. To demonstrate the   
algorithm’s procedure, assume that the query   
(q) distance has a value of (X1

q, X2
q) and a   

training sample (t) value of (X1
t, X2

t). The   
output can be determined by using the   
Euclidean distance which can be defined by: 
 

 (2) 
 
 Training sample parameters in the KNN   
algorithm can also be extended for further   
development. By assigning more than 2   
features, the equation can be calculated as   
follows: 
 

 (3) 
 
 Given that the KNN method is dependent   

on distance measurements, the input data has   
to be standardized before proceeding to the   
KNN process. Figure 2 illustrates a diagram   
of a KNN model with 2 classes based on a   
training set; blue and red dots and a target   
which is a green dot. The inner dashed circle 
has a value of K = 1 which is the final result   
of the target to be considered as the blue class  
since 2 blue classes existed within the area.   
The outer dashed circle has a value of K = 3   
which results as a red class (6 versus 4). 

Experimental Results 

 Three general features were used as a   
blob descriptor vector; the blob’s entropy, the   
average value of the Grey (G) channel, and 
the standard deviation of the G channel. Texture,   
color, and color distribution represents the 3   
values for the blob, respectively. All features   
are normalized to values ranging from 0 to 1.    
Other specific features were implemented for   
particular applications such as compactness.   
Each blob generates a unique ID at a specific   
scale alongside the data of the blob’s entropy,  
average G channel, and standard deviation of   

Figure 2.  A representation of a KNN algorithm.   
 The green dot represents the target   
 whereas the red and blue dots represent   
 2 different classes based on the training   
 set. 2 dashed circles represent the value   
 of K in which the inner circle is equal to   
 1 and the outer dashed circle is 3 
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the G channel for further verification in the   
ground truth data.   
 For the seeding process of the blob, 3   
criteria were used within the blob classification.   
Regions can be classified as a background or   
as blobs with the 3 following criteria: A) it is   
a local maximum point and will be used as a   
seed of the blob if the region has no neighbours   
then, or B) if the region is next to other   
background regions with higher grey levels,   
then the current region should be assigned as   
a background as well, or C) if the region has   
many neighbours within a higher grey level   
and those neighbouring regions are not parts   
of the same blob, then the current region must   
be assigned as a background. 
 All digital retinal images were obtained   
from a Kowa-7 non-mydriatic retinal camera   
(Kowa Co. Ltd., Nagoya, Japan) with a 45o   
field of view taken at Thammasat University   
hospital. The images were stored in JPEG   
image format les with the lowest compression   
rates. The image size used was 752 × 500   
pixels with 24 bit colour. Ten retinal images  
were used to evaluate the algorithm of which   

several images were demonstrated in Figures 3   
and 4. Many drusen cases in the retinal   
images were taken into account such as retinas   
with bright exudates shown in Figure 3 and   
translucent exudates shown in Figure 4. Blobs   
were created from the process of feature   
stability, providing the object of interest. The  
maximum number of scale-space constructed   
blobs was set at 50 and 80 in order to determine   
whether the accuracy of the KNN algorithm is   
likely to increase or decrease its efficiency.   
 Each picture’s blobs will be analyzed   
by hand and  be indicated to be from the 3   
following classes; optic disc (1), drusen exudate   
(2), and non-related class (3). During this  
process, we assume that blobs that cover more   
than 50% of the exduates are considered as   
class 2. Features of the blob (entropy, average   
value, and the standard deviation of G channel)   
will be used as the main references between   
the KNN implementation processes. 
 Once all the blobs have been identified,   
3 blobs will be chosen as a training set for   
each class based on the previously mentioned   
general features in order to initiate the KNN   

Figure 3.  An example of retinal images including bright exudates shown in (a) Feature stability is   
 processed, creating blobs within the image and general features are recorded, as shown in (b) 

(a) 

(b) 

(a) 

(b) 
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program using the value of K = 1.  The KNN 
will evaluate the significance of the blob’s   
entropy, average G channel, and standard   
deviation of the G channel in respect to the 

selected ground truth’s class. Once the process   
is completed, results of a ground truth image   
and KNN image will be evaluated to determine   
the accuracy. The percentage of the accuracy   

Figure 4.  An example of retinal images including translucent exudates shown in (a) Feature stability is   
 processed, creating blobs within the image and general features are recorded, as shown in (b) 

(a) 

(a) 

(b) 

(b) 

Table 1. Detection rate at maximum blobs = 50 
 

Image  
No. 

Total number 
of blobs 

Ground truth result KNN result 

Accuracy Class  

1 2 3 1 2 3 

#1 40 4 8 28 7 7 26 87.50% 

#2 35 0 16 19 0 22 13 65.71% 

#3 40 5 1 34 3 3 27 65.71% 

#4 43 2 10 31 6 20 27 65.71% 

#5 41 5 19 17 12 21 8 57.14% 

#6 42 5 25 12 5 27 10 88.57% 

#7 25 6 4 15 5 5 15 95.83% 

#8 39 10 4 25 10 13 16 77.14% 

#9 26 6 7 13 5 8 13 80.00% 

#10 42 4 7 31 6 2 34 80.95% 
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Figure 5. A demonstration of the maximum number of blobs indicated where (a) is set at 50 and (b) is  
 set at  

(a) (b) 

(a) (b) (c) 

Figure 6.  Images providing an example of an individual blob being assigned to each of the 3 classes in  
 order to create  ground truth data where (a) is an optic disc (1), (b) is a drusen exudate (2), and   
 (c) is a non-related class (3) 

Table 2. Detection rate at maximum blobs = 80 
 

Image  
No. 

Total number 
of blobs 

Ground truth result KNN result 

Accuracy Class  

1 2 3 1 2 3 

#1 55 9 10 36 8 17 30 74.28% 

#2 69 3 19 47 13 19 47 71.01% 

#3 68 6 0 32 6 0 32 100.00% 

#4 74 3 16 55 3 27 41 76.81% 

#5 53 7 25 21 7 33 13 84.90% 

#6 71 5 25 41 6 19 46 84.90% 

#7 49 8 5 36 6 6 37 93.88% 

#8 46 12 4 30 12 6 28 91.30% 

#9 55 8 13 34 7 15 33 84.76% 

#10 64 6  16 42 6 8 50 82.61% 
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Table 3. Detection rate on class 2 (Drusen) at maximum blobs = 50 
 

Image No. Ground truth result KNN result Accuracy 

#1 8 7 87.50% 

#2 16 22 72.72% 

#3 1 3 33.33% 

#4 10 20 50.00% 

#5 19 21 90.48% 

#6 25 27 92.59% 

#7 4 5 80.00% 

#8 4 13 30.77% 

#9 7 8 87.50% 

#10 7 2 28.57% 

is computed by the overall correct class   
evaluated by the KNN compared with the   
ground truth data.   
 Most images resulted in an overall above   
average accuracy in detecting each class for   
each blob. In addition, most images with the   
parameter of a larger number of blobs tend   
to increase the performance of the KNN’s  
accuracy. However, class 2 results are currently   
in a fluctuated state as shown in Tables 3 and 4.   
 Table 1 and Table 2 illustrate the overall   
results of the detection rates from all 10 images.   
Table 1 provides the results at the maximum   
number of blobs set to 50 and Table 2 at 80.   
The purpose of these Tables is to determine   
whether a larger number of blobs will improve   
the detection rate performance and the KNN   
classifications. Images No.1 and No.4 are   
based from the retinal image provided in   
Figure 3 and Images No.2 and No.5 are based   
from the retinal image provided in Figure 4.    
The accuracy of both Tables is determined by   
the KNN on how many results of each blob   
based on the KNN matches with the ground   
truth data divided by the total number of   
blobs.   

Discussion 
In summary, an implementation of blob   

detection with feature stability and the use of   
the KNN classification have been proposed in   
this research. The object of interest can be   
detected effectively due to the robustness of   
the algorithm for detecting variable size and   
variable shape objects. Gaussian filters provide   
the means of extracting the feature vectors of   
each blob by convoluting the original image.    
The blobs, taking account of their feature   
stability, construct a scale-space tree. While   
traversing on the tree, the lifetime of each   
blob can be calculated to notify its significance.    
All blobs are contained and extracted to analyze   
their significance in order to create a ground   
truth image. The KNN classification is   
processed and compared with the ground truth   
data for the algorithm’s effectiveness. Feature   
vectors can be extended or modified to suit   
different applications and images. Blobs   
within a specified lifetime can be considered   
chosen as an object of interest, rather than the   
blob with the longest lifetime which does not   
indicate the object of interest. 
 The proposed algorithm could lead to an   
ideal outcome towards various applications   
that may require precision such as in medical   
applications for diagnosing symptoms and   
pinpointing interests. The processes of   
pinpointing the feature may still require   
human analysis in order to fully enhance   
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Table 4. Detection rate on class 2 (Drusen) at maximum blobs = 80 
 

Image No. Ground truth result KNN result Accuracy 

#1 10 17 58.82% 

#2 19 19 100% 

#3 0 0 100% 

#4 16 27 59.26% 

#5 25 33 75.76% 

#6 25 19 76.00% 

#7 5 6 83.33% 

#8 4 6 66.67% 

#9 13 15 86.67% 

#10 16 8 50.00% 

the results of the output, along with the   
improvements to the algorithm. However,   
blob indication is recommended for enhancement   
in order to prevent an excess amount of blob   
identification, especially when executed on a   
high number of blobs. Developments in  
classification accuracy may lead to major   
benefits in computer analysis such as less   
human analysis and better performance such   
as the enhancement in integrating additional   
classification algorithms like Bayesian   
classifiers.   
 Although the current drusen detection   
rate is at a satisfactory level, this process   
consumes a certain amount of time. Blob   
indication requires a hand-drawn analysis   
over each blob in order to evaluate the blob’s   
class by using the KNN classification. Certain   
retinal images that provide distinctive areas of   
optic disc and bright drusen exudates result in   
high accuracy towards the KNN classification   
process such as the results in Image No.7. In  
contrast, images that provide translucent or   
relatively small drusen exudates will likely   
result in a lower accuracy such as Image No. 8.   
However, several images provide a higher   
accuracy when the number of blobs is set to   
80. In order to provide a better detection result   
for translucent drusen exudates at this current   
time, increasing the limit of the number of   

blobs to about 100 is the optimal choice while   
bright drusen exudate retinal images could be   
set at a lower number of blobs. However, the   
user is also required to indicate all those blob   
identifications before implementing the   
classification process. As a result, blob  
indication becomes one of the most time   
consuming tasks within this process. Class 2   
results based on Tables 3 and 4 are still in a   
highly varied state due to the low number of   
drusen exudates that existed within several   
images and the existence of translucent drusen   
exudates which results in blobs being unable   
to be detected. In addition, human errors are   
also an issue in creating ground truth data   
since some blobs provide a dilemma as to   
which class should be selected since the blob   
may not cover the areas entirely or may exceed   
the areas.  

Conclusions 
Studies of the implementation of retinal   
detection based on scale-space theory, feature   
stability, and an evaluation of the KNN were   
presented in this paper. In summary, an   
automatic optic disc, ROP, and drusen detection   
are investigated for further development.    
Many experiments have provided promising   
results within the rate of drusen and optic disc 
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detection. The procedures of detection include   
scale-space implementation and blob detection   
methods. All ground truth retinal images are   
analyzed by hand. Data analysis and results   
are presented using the implementation of the   
KNN classification. Both results are compared   
to evaluate the performance. Each retinal 
image is assigned with a specific identification   
of a blob and is analyzed on its significance   
accordingly. Overall, the automatic detection   
of drusen within the patient’s retina could provide  
a major benefit toward the ophthalmologist’s role  
in patient’s treatment. Accurate classifications   
based on the KNN could also help in   
identifying the abnormal areas of a patient’s   
eye. In addition, further developments in   
classification techniques could also be   
implemented in the near future for higher   
accuracy. 
 There are possibilities of expanding the   
process of scale-space theory, feature stability,   
and classification procedure and of being able   
to optimize the program for a better result   
regarding precision and accuracy. Since the  
process requires a certain amount of time to   
implement each retinal image, the first and   
foremost priority is to find the best solution in   
optimizing the time for all the procedures.    
Tweaks in the algorithm of scale-space and   
the feature stability procedure need to be   
looked at. Providing a solution with complex   
retinal images (for example, drusen that have   
a similar shape and intensity with the optic   
disc) is another challenge that must be   
undertaken.   
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