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Abstract 

The paper is intended for the beginners on meshfree methods, to present the detailed matlab   
programming aspects for the construction of the moving least square approximation shape function   
and their derivatives in onedimension, with arbitrary nodal distribution, using the MATLAB code   
provided at the appendix. The condition of not a number (NaN) during the execution of MATLAB   
program has been given the vital attention and elaborated by presenting the related plots of shape   
function and its derivatives. The program has been further extended to solve and compare the   
results of an elastostatics problem, using the exact and element free galerkin method so-lutions.  
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Introduction 
The development of the approximate methods   
for the numerical solution of practical   
problems, representable by partial differential   
equations has helped engineers, physicists   
and mathematicians in analyzing the complex   
phenomena at reduced costs. The finite   
element method (FEM) is one of the most   
popular, well-developed and possessing   
much versatility in analyzing complicated   
phenomena, whose behavior is governed by   
increasingly complex partial differential   
equations. 
 In recent years, meshfree methods have  
been developed as an alternative numerical   

tool in effort to eliminate known drawbacks of   
the finite element methods. The nature of   
the various approximation functions used by   
meshfree methods allows the representation   
of the problem domains by simply adding or   
de-leting nodes where-ever desired. The prior   
knowledge of nodal connectivity to form a   
discrete element as in finite element methods   
is not necessary, only nodal coordinates and   
their domain of influence are sufficient to   
represent the problem domain. 
 There are several meshfree methods   
under current development, including the   
most versatile element free Galerkin (EFG)  
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method proposed by Belytschko et al. (1994),   
the Reproducing Kernel Particle Method   
(RKPM) proposed by Liu et al. (1995),   
Smooth Particle Hydrodynamics (SPH)   
method proposed by Gingold and Monaghan,   
Meshless Local Petrov-Galerkin (MLPG)   
method proposed by Atluri et al. (1999) and   
many other methods (Liu 2003). The well-  
established EFG and MLPG method use   
the shape functions which are derived from   
moving least-square approximation. The   
main purpose of this paper is to elaborate the   
construction of meshfree shape function using   
the MLS approximation using the arbitrary   
nodal distribution and implementation in   
matlab. 

Meshfree Shape Function 

 The meshfree shape function is the   
central and most important issue and main   
differentiating point for the meshfree methods   
from the finite element methods. There are  
a number of ways proposed to construct the   
meshfree shape functions by Belytschko   
et al. (1994). In this paper the finite   
seriesrepresentation, moving least square 
approximation method is studied and   
elaborated considering the programming   
and implementation aspects, for arbitrary   
distribution of nodes, for the uniform   
distribution of nodes one may refer to   
Kushawaha (2012), and the different plots   
have been included to indicate the different   
steps and effects of various parameters   
exclusively. 
 A good meshfree shape functions needs   
to satisfy the following conditions: 
 1. A compulsory condition for the shape   
function is the satisfaction of partition of   
unity. 
 

  
(1) 

 
 2. It should be able to manage the   
reasonable randomness of distribution   
of nodes. 
 3. The algorithm should be numerically  

stable. 
 4. The shape function constructed   
should have the consistency to enable the   
convergence of numerical results with increase   
of nodes. 
 5. The domain of influence should be   
compact. 
 6. The Kronecker-delta property should   
be satisfied. 
 7. The computational efficiency should   
be at par with FEM. 
 Ideally, the field approximation should 
be compatible throughout the problem 
domain.  

Meshfree Shape Function Construction 
All Moving least square (MLS) was originated   
by mathematicians for data fitting and surface   
construction, the procedure for constructing   
the meshfree shape function using the MLS   
approximation starts with the assumption that   
x1, x2, x3, x4, and xn are the nodes distributed in   
the domain Ω and the associated field variable   
or nodal parameter with these node are u1, u2,   
u3, u4, and un. The different sampling points   
are represented by x which is the locations of  
different points and xI represents the nodal   
points distributed in the domain of the   
problem Ω and the number of these sampling   
points will dictate the smoothness of the curve   
plotted for the weight and shape functions. 
 In meshfree methods approximation of   
the field variable function u(x) without any   
connectivity information between the nodes  
is done by considering the approximation as   
the product of a vector of polynomial basis   
function and a set of coefficients varying with   
x. This can be also put as the approximation of   
the function u(x) is obtained by assuming the   
approximate solution as a polynomial function   
represented as: 
  
 u(x)appx = a0(x) + a1(x)x + a2(x)x2 (2) 
 
Linear basis in 1D 
 
 u(x)appx = a0(x) + a1(x)x + a2(x)x2 (3) 
 



299Suranaree J. Sci. Technol. Vol. 20 No. 4; October - December 2013 

Quadratic Basis in 1D 

 Considering the linear polynomial   
function in one-dimension, Equation (2), can   
be written in matrix form: 
 

  
(3) 

 

  
(4) 

where,  
 
  

(5) 

and 
 
  (6) 
 
 The value of approximate solution or   
approximation u(x)appx can be evaluated by   
determining the unknown coefficients of x.   
The unknown coefficients are evaluated by   
minimizing the difference between the local   
approximation at that point or the considered   
node in the support domain and the nodal   
parameter for the node I, i.e. 
 
  (7) 
 
 The approximated value of field variable   
at the local nodes is given by: 
 
  (8) 
 
 Again it is emphasized that a(x) is   
arbitrary function of the sampling point’s   
x and xI represents the nodal points. The   
minimization process starts with the   
construction of a weight residual functional   
with respect to unknown coefficients,   
considering the Equations (4) and (8), and   
given by: 
 

  
(9) 

 
 The minimization of functional J   
produces a set of linear Equations [1, 4]: 
               

  (10) 
 
where, 
 
  (11) 
 
where A(x) is known as weight moment 
matrix and given by: 
 

  
(12) 

 

    
     

(13) 

  (14) 

and, 

  (15) 
 
 The nodal parameters of the field  
variables are represented by the vector u:  
 
  (16) 
 
 The new variable w(x – x1), introduced   
in the Equation (10) is known as the weight   
function. The weight function, Belytscho and   
Dolbow (1998), considered in this study, is   
cubic spline and given by: 
 

 

(17) 

 
 Another weight function known as   
quartic spline, is also used to present the   
effect of weight function on the shape   
function, is given as: 
 

 
(18) 

 
where r = |x-xI|/dI and, dI is the radius of   
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influence domain or radius of support domain   
of the node. 
 Substitution of Equation (12) into the   
approximate solution Equation (5), leads to: 
 

  
(19) 

 

  
(20)

  
where, 
 
  (21)  
 
 The MLS shape function for ith node is   
defined by: 
     
  (22)      
 
 The MLS shape function for the middle   
node i.e. I = 3 is expanded to clear the   
programming aspects and distinguishing   
between the nodes and sampling points.   
The domain Ω = (0, 1) is represented by five   
nodes located at points (0, 0.25, 0.5, 0.75   
and 1.0). ϕ3(x), indicates the shape function   
associated with the support node three, it is a   
vector having the values corresponding to the   
number of support nodes in the support or   
influence domain of middle node located at   
x = 0.5 and is given by: 
 

 
 (23) 

 
 The influence domain is considered to   
be equal to dI = 0.4375, this is the radius of   
circle; in the area of this circle all the nodes   
are influencing or contributing to the   
approximation. The number of nodes in the   
influence domain of the middle node is three   
and their location are at x = 0.25, x = 0.5 and   
x = 0.75. The shape function associated   
with this middle or star node at x = 0.5,   
is elaborated to bring out the clarity. The  
evaluation of weight moment matrix-A;   
associated with middle node:     
 
           

  
(24) 

             

  
(25) 

 

  
(26) 

 
 The calculations for the shape function   
are: 
 

 
(27)               

 

 
(28) 

              

 
(29) 

 
 After performing the calculation   
we receive the value of shape function  
corresponding to ϕ3(0.25) = 0.1197, ϕ3(0.50) =   
0.7605 and ϕ3(0.75) = 0.1197. This can be better   
assimilated by Figure 1, representing the   
shape function, using the linear basis function, 
cubic spline weight function and dI = 0.4375   
with two different number of sampling points   
(SP). The shape functions associated with six   
nodes are represented in Figure 2 using the 
arbitrary nodal distribution. 

Figure 1. Shape function for middle node with  
 uniform nodal distribution 
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Shape Function Derivative  
 The derivatives of shape function can be   
calculated by applying the product rule to   
Equation (23): 
 
  (30) 
 
 The first derivative is obtained as 
  
 )T

I x Ip x A x B x x   (31) 
 

 (32) 
 
 The further expansion for the equation is   
similar to as described for the shape function. 

Nan Error 
The critical and erroneous situation occurs   
whenever the derivative of shape function   
is to be evaluated at the node which is also a   
sampling point or point of interest. The   
derivative of weighting function and shape   
function cease to exist, this condition if occurs   
during the meshfree program execution the   
results will not be logical and accurate.   
Figure 3 presents the plot of shape function   
derivatives, in this case the NaN error has   
been solved by shifting each node by a   
distance of 0.0001 from the locations of   

uniform distribution, within the boundary of   
domain. The next combined Figure 4 presents   
the plots of weight function, shape function   
and their derivatives with (above) and without   
(below) implementing the node shifting. The   
derivatives of the weighting function are   
discontinuous and the shape function derivatives   
cease to exist. The attached matlab program   
provides two underlined entries the % symbol   
may be placed alternately on each line and the   
plots can be visualized.  

Matlab Program Implementation 

 The programming flow chart for the   
moving least square shape function and their   
derivatives, given by Equation (22 and 32) is   
presented in Figure 5. The Matlab program   
for getting the shape function plots is   
provided at appendix. The program steps are   
elaborated, here under:  
 1. Enter the domain of the problem and   
represent the geometry into nodal and   
sampling points. 
 2. Initialize the support domain of   
influence, matrices for the weight function   
and shape function 
 3. Initialize the first “for” loop for number 
of nodes as the shape function needs to be  
calculated at each node, within this “for” loop  
other loops are initialized to:
  3.1 Find the values of weight function   
and derivatives at the nodal points, 

Figure 2.  Shape function for six nodes with   
 arbitrary nodal distribution 

Figure 3.  Shape function and derivative for middle   
 node 
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  3.2 Find the values of weight function   
and derivatives at the sampling points 
  3.3 Find A-matrices  and their inverse   
at nodes 
  3.4 Find B-matrices and derivatives   
at Sampling points 
  3.5 Find the value of shape function   
and derivatives at the nodal and sampling   
points 

  3.6 End of first “for” loop 
 4. Plot the nodal points 
 5. Plot the weight function and 
derivatives 
 6. Plot the shape function and derivatives   
using nodal points and sam-pling points 
 7. Add legend, x and y label to the   
plots. 

Figure 5.  Shape function and derivatives with arbitrary nodal distribution 

Figure 4.  Effect of node shifting for uniform nodal distribution  
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Observations 

 The various findings related to the   
properties and effects of various factors on the   
behavior of the shape function are included   
along with the plots obtained using the matlab   
program. 

 Partition of Unity 

 The Figure 7 presents the shape function   
for uniformly distributed 9 nodes and the   
values of the shape function for the middle   
node, corresponding to other node locations,   
marked by circles; are presented in the   
Table 1, to show that the shape function   
approximates and satisfies partition of unity   
conditions subject to use of constant terms.   
Similarly Table 2 tabulates the shape function   
values con-sidering the arbitrary distribution   
of the nodes and it is confirmed that the nodal   

arbitrary distribution also satisfies the partition   
of unity. 
 Lack of Kronecker Delta 

 The Table 1 presents the values of shape   
function associated with node number five  
x = 0.5, the value of shape function at this 
node is ϕ(5)(x) = 0.3807 ≠ 1.0. Thus the   
moving least square shape functions do not   
satisfy the Kronecker delta condition. 
 Continuity 

 The shape functions have high order of   
continuity, although only linear basis has been   
used, because of the fact that shape functions  
inherit the continuity of the weighting   
function. The weighting function used is  
cubic spline. Figure 9 indicates the effect of   
the weighting functions, as the two weighting   
functions have different shapes and order of   

Figure 6.  Flow chart for shape function calculation 

Figure 7. Shape function to confirm partition of  
 unity: uniform nodal distribution  

Figure 8.  Shape function for arbitrary nodal   
 distribution  
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continuities the shape function inherits these   
features of the weighting functions. 

 Weighting Function 

 The selection of the weighting function   
plays a very vital role in the for-mulation and   
solution of meshfree methods. The shape   
functions generated with cubic spline and   
quartic spline are represented in Figure 9. The  
conclusion from this can be made that the   
cubic spline weighting function gives the   
shape function which posses more local   
character. 

 Bell Shape 

 The shape functions possess the bell   
shape, presented in Figures 1-6, as the number   

of nodes in the support domain is increased   
the height of the bell gets lo-wered and   
spreads gets lengthened increasing the global   
influence. 

 Reduction of Peaks 

 The peak values of the shape functions   
fall down as the number of the nodes in the   
support domain is increased as a result the   
smoothness increases and the local character   
starts decreasing and the behavior tends to   
be global. Comparing Figures 1 and 7, give a  
better visualization, note the values on the   
y-axis. 

 Sampling Points 

 The difference between the nodal points   
and sampling points is very vital and made   
very clear and unambiguous by Figure 10,   
representing the plots for the first and the   
second nodes, as the number of sampling   
points is increased the smoothness of the   
curve is increased without affecting the peak   
values of the shape function corresponding   
to the nodes.  

 Mirror Image 

 The shape functions are the mirror   
image of each other from the central node,   
for the uniform nodal distribution. These   
approach or/and reach unit values near the   
boundaries of the domain so that the   
imposition of the boundary condition is   
sim-plified. The approach to unit value  
is reasonably gradual and emphasized   

Table 2. Partition of unity: Arbitrary nodal distribution  

Node no. ϕ(1) ϕ(2) ϕ(3) ϕ(4) ϕ(5) ϕ(6) 

1 0.983 0.221 0.008 0 0 0 
2 0.035 0.515 0.240 0.002 0 0 

3 0.019 0.260 0.582 0.137 0 0 

4 0 0.002 0.168 0.730 0.140 0 

5 0 0 0 0.130 0.675 0 

6 0 0 0 0 0.184 1 

Total 1 1 1 0.999 1 1 

Table 1.  Partition of unity: Uniform nodal   
 distribution  

Node number ϕ(5) 

1 0 
2 0.0022 

3 0.0599 

4 0.2475 

5 0.3807 

6 0.2475 

7 0.0599 

8 0.0022 

9 0 

Total 0.9999 
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Figure 9.  Shape function with cubic and quarti  
  spline using linear basis 

Figure 10. Shape function for the first and second   
 node 

(a) Sampling points-51 (b) Sampling points-21 

Figure 11.  Shape function for 9 nodes with Linear basis, Cubic spline, (dI = 0.4375) 

by drawing a horizontal line in Figure 11(a)   
and 11(b). 

 Influence of Support Domain 

 The effect of influence of support   
domain is represented by Figure 12, it can be   
concluded that with the increase of support   
domain the local behavior of the shape   
function diminishes and as the nodes in the   
support domain are decreased the shape   
function value approaches to unity. In this   
condition the shape function will interpolate   
through the nodal values, if the A-matrix is   
invertible, however if the number of node in   
the support domain becomes less than the   
num-ber of monomials in the basis function,   
inverse of A-matrix will not exist. 

 Basis Function 

 The effect of the basis function on the   
shape function is presented by Figure 13.   
Moving least square shape functions using   
linear, quadratic and cubic basis function and   
cubic spline weighting function are computed   
and plotted to vi-sualize the effect of basis   
function on the shape functions.  The study   
concludes that as the order of basis function is 
increased, the value of ϕ(5)(x) increases to   
maximum and becomes constant as the order   
of basis and weighting function be-come   
equal. 

Verification 

 The program for the shape function is 
validated by solving the problem from the   
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elastostatics using uniform nodal distribution.   
The problem is considered from Hutton  
(2004) and Kushawaha (2012). A tapered bar   
of un-iformly varying cross sectional area,   
A1 = 1 m2, A2 = 0.5 m2 on each end, subjected   
to tensile point load, P = 1000 kN, and   
young's modulus, E = 200 GPa; was mod-eled   
and solved usingthe element free galerkin   
method and the results are positive and  
in good agreement to the exact solution,   
validating that the developed of for-mulation   
and matlab program. The Figure 14 represents   
the comparative plots ob-tained by exact   
solution and the element free galerkin (EFG)   
method with the variation of support domain   
of influence. The increase in the number of   
nodes brings the convergence of the meshfree   

solution to the exact solution. 

Conclusions 
The moving least square shape function and   
its derivative is studied after generating a   
Matlab program and the various characteristics   
of the shape functions are elabo-rated in   
context to the parameters affecting the   
features of shape function. The significance   
of NaN in contribution to meshfree solution   
errors is highlighted and prevention   
methodology has been implemented to   
minimize the error generation. The plots   
are presented to support the discussion.   
The program is extensively explained and   
provided as appendix to help the beginners   
on the meshfree metho-dology. 

Figure 12.  Influence of support domain, dI Figure 13.  Shape function with different basis   
 functions 

 

Figure 14.  Comparison of EFG and exact solution 
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Appendix  
This program is written to explain the   
implementation and plotting of the moving   
least square shape function used in the   
meshfree methods. The program will display   
the plots of shape function & its derivatives   
for the arbitrarily distributed Seven Nodes   
with influence domain= 0.4375. No effort has   
been made to optimize the program to keep it   
easy to grasp. 
 
% SETTING UP DOMAIN AND NODAL POINTS 
OR LOCATION OF NODES 
xnode=[0 0.12 0.42 0.57 0.78 0.87 1];% 
ARBITRARILY DISTRIBUTED SEVEN NODES 
ynode=zeros(1,length(xnode)); % TO PLOT NODES 
% SETTING UP SAMPLING POINTS  
X=linspace(0,1,31); 
% SETTING UP INFLUENCE DOMAIN  
di=0.4375; 
% TO PREVENT THE NaN ERROR DURING THE 
PROGRAMM EXECUTION THE NODES ARE 
% SHIFTED BY NEGLIGIBLE DISTANCE 
WITHIN THE DOMAIN, TRY RUNNING THE 
% PROGRAM WITH THE FOLLOWING VALUES 
EQUAL TO THAT OF DOMAIN = xnode TO 
VISUALISE 
% THE NaN EFFECT AND YOU SHOULD GET 
THE PLOT SHOWN IN FIGURE-16, WITH 
MISSING   
% CURVES FOR DERIVATIVES 
Shift_xnode(1)=0.0001; 
Shift_xnode(2)=0.1201; 
Shift_xnode(3)=0.4201; 
Shift_xnode(4)=0.5699; 
Shift_xnode(5)=0.7801; 
Shift_xnode(6)=0.8701; 
Shift_xnode(7)=0.9999;  
% INITIALISE MATRICES FOR WEIGHT 
FUNCTION & DERIVATIVES AT NODAL POINTS 
w=zeros(length(xnode),length(xnode));  
dw=zeros(length(xnode),length(xnode));  
% INITIALISE MATRICES FOR WEIGHT 
FUNCTION & DERIVATIVES AT SAMPLING 
POINTS 
W=zeros(length(xnode),length(X)); 
dW=zeros(length(xnode),length(X)); 
% INITIALISE MATRICES FOR SHAPE 
FUNCTION & DERIVATIVES AT SAMPLING 
POINTS 
Phi=zeros(length(xnode),length(X)); 
dPhi=zeros(length(xnode),length(X)); 
% SET UP ‘for’ LOOPS FOR CALCULATING   
SHAPE FUNCTION & DERIVATIVES 
for i =1:length(xnode) 

% CALCULATE WEIGHT FUNCTION & 
DERIVATIVES FOR NODAL POINT 
 for j = 1:length(xnode) 
  r =  (abs(Shift_xnode(i)-xnode(j)))/di;  
 if r< = 0.5 
   w(i,j) = (2/3) - 4*r*r + 4*r^3; 
   dw(i,j)= (-8*r + 12*r^2)*(Shift_xnode(i)-  
xnode(j))/(di*(abs(Shift_xnode(i)-xnode(j)))); 
   elseif (r>0.5)&(r<=1.0) 
   w(i,j)= (4/3)-4*r+4*r*r -(4/3)*r^3; 
   dw(i,j)= (-4 + 8*r-4*r^2)*(Shift_xnode(i)-  
xnode(j))/(di*(abs(Shift_xnode(i)-xnode(j)))); 
               elseif r>1.0 
             w(i,j) = 0.0; 
       dw(i,j) = 0.0; 
             end     
 end     
 w;   dw;          
% CALCULATE WEIGHT FUNCTION & 
DERIVATIVES AT SAMPLING POINTS TO GET 
SMOOTH PLOTS  
 for l = 1:length(X) 
             r  =  (abs(xnode(i)-X(l)))/di; 
             if r<=0.5 
                W(i,l) = (2/3) - 4*r*r + 4*r^3; 
                dW(i,l)= (-8*r + 12*r^2)*(Shift_xnode(i)-
X(l))/(di*(abs(Shift_xnode(i)-X(l)))); 
            elseif (r>0.5)&(r<=1.0) 
               W(i,l)= (4/3)-4*r+4*r*r -(4/3)*r^3; 
                dW(i,l)= (-4 + 8*r-4*r^2)*(Shift_xnode(i)-
X(l))/(di*(abs(Shift_xnode(i)-X(l)))); 
            elseif r>1.0 
               W(i,l) = 0.0; 
               dW(i,l) = 0.0; 
           end      
       end         
        W;   dW;         
% NOW WE START TO DERIVE THE SHAPE 
FUNCTIONS AND DERIVATIVES USING 
% EQUATION 1.23 AND 1.33 
    won=ones(1, length(xnode)); % Initialisation of 
ones vector 
    Won=ones(1, length(X)); % Initialisation of ones 
vector 
  p=[won; xnode]; 
    P=[Won; X]; 
    A=zeros(2, 2);            % Initialization of A-Matrix 
    dA=zeros(2, 2);          % Initialization of dA-Matrix 
        for j=1:length(xnode)% CALCULATE  A-
MATRIX AT NODAL POINT 
             A= A + (w(i,j)*p(1:2,j)*p(1:2,j)’); 
            dA= dA + (dw(i,j)*p(1:2,j)*p(1:2,j)’); 
       end 
        A  ;    dA;               
        invA=inv(A); 
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        invdA=-invA*dA*invA; 
        for j=1:length(X)% CALCULATE THE B-
MATRIX AT SAMPLING POINTS  
            B(1:2,j)=W(i,j).*P(1:2,j); 
            dB(1:2,j)=dW(i,j)*P(1:2,j); 
        end 
        B; dB; 
        phi=[1 xnode(i)]*invA*B;% CALCULATE 
SHAPE FUNCTION  
        dphi=([0 1]*invA*B) + [1 xnode(i)]*(invdA*B + 
invA*dB); 
        Phi(i,:)=phi; 
        dPhi(i,:)=dphi; 
end 
plot(X,Phi,’LineWidth’,0.5) 
hold on 
plot(X,dPhi,’LineWidth’,0.5,’MarkerSize’,1.5); 
hold on 
title(‘S F & Derivatives’,’FontSize’,5) 
xlabel(‘Domain’,’FontSize’,5) 
ylabel(‘Function value’,’FontSize’,5) 
plot(xnode,ynode,’ro’,’MarkerEdgeColor’,’r’,’Marker
FaceColor’,’g’,’MarkerSize’,5) 
hold on  
%  We are getting the plot shown below (figure-I): 

Figure I. Shape function and derivatives plot by  
 above Matlab program 

Figure II. Shape function and derivatives plot   
 with NaN error 
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