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Abstract


The paper is intended for the beginners on meshfree methods, to present the detailed matlab 
 
programming aspects for the construction of the moving least square approximation shape function 
 
and their derivatives in onedimension, with arbitrary nodal distribution, using the MATLAB code 
 
provided at the appendix. The condition of not a number (NaN) during the execution of MATLAB 
 
program has been given the vital attention and elaborated by presenting the related plots of shape 
 
function and its derivatives. The program has been further extended to solve and compare the 
 
results of an elastostatics problem, using the exact and element free galerkin method so-lutions. 
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Introduction

The development of the approximate methods 
 
for the numerical solution of practical 
 
problems, representable by partial differential 
 
equations has helped engineers, physicists 
 
and mathematicians in analyzing the complex 
 
phenomena at reduced costs. The finite 
 
element method (FEM) is one of the most 
 
popular, well-developed and possessing 
 
much versatility in analyzing complicated 
 
phenomena, whose behavior is governed by 
 
increasingly complex partial differential 
 
equations.

	 In recent years, meshfree methods have
 
been developed as an alternative numerical 
 

tool in effort to eliminate known drawbacks of 
 
the finite element methods. The nature of 
 
the various approximation functions used by 
 
meshfree methods allows the representation 
 
of the problem domains by simply adding or 
 
de-leting nodes where-ever desired. The prior 
 
knowledge of nodal connectivity to form a 
 
discrete element as in finite element methods 
 
is not necessary, only nodal coordinates and 
 
their domain of influence are sufficient to 
 
represent the problem domain.

	 There are several meshfree methods 
 
under current development, including the 
 
most versatile element free Galerkin (EFG)
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method proposed by Belytschko et al. (1994), 
 
the Reproducing Kernel Particle Method 
 
(RKPM) proposed by Liu et al. (1995), 
 
Smooth Particle Hydrodynamics (SPH) 
 
method proposed by Gingold and Monaghan, 
 
Meshless Local Petrov-Galerkin (MLPG) 
 
method proposed by Atluri et al. (1999) and 
 
many other methods (Liu 2003). The well-
 
established EFG and MLPG method use 
 
the shape functions which are derived from 
 
moving least-square approximation. The 
 
main purpose of this paper is to elaborate the 
 
construction of meshfree shape function using 
 
the MLS approximation using the arbitrary 
 
nodal distribution and implementation in 
 
matlab.


Meshfree Shape Function


	 The meshfree shape function is the 
 
central and most important issue and main 
 
differentiating point for the meshfree methods 
 
from the finite element methods. There are
 
a number of ways proposed to construct the 
 
meshfree shape functions by Belytschko 
 
et al. (1994). In this paper the finite 
 
seriesrepresentation, moving least square 
approximation method is studied and 
 
elaborated considering the programming 
 
and implementation aspects, for arbitrary 
 
distribution of nodes, for the uniform 
 
distribution of nodes one may refer to 
 
Kushawaha (2012), and the different plots 
 
have been included to indicate the different 
 
steps and effects of various parameters 
 
exclusively.

	 A good meshfree shape functions needs 
 
to satisfy the following conditions:

	 1.	 A compulsory condition for the shape 
 
function is the satisfaction of partition of 
 
unity.




	 	
(1)




	 2.	 It should be able to manage the 
 
reasonable randomness of distribution 
 
of nodes.

	 3.	 The algorithm should be numerically
 

stable.

	 4.	 The shape function constructed 
 
should have the consistency to enable the 
 
convergence of numerical results with increase 
 
of nodes.

	 5.	 The domain of influence should be 
 
compact.

	 6.	 The Kronecker-delta property should 
 
be satisfied.

	 7.	 The computational efficiency should 
 
be at par with FEM.

	 Ideally, the field approximation should 
be compatible throughout the problem 
domain. 


Meshfree Shape Function Construction

All Moving least square (MLS) was originated 
 
by mathematicians for data fitting and surface 
 
construction, the procedure for constructing 
 
the meshfree shape function using the MLS 
 
approximation starts with the assumption that 
 
x1, x2, x3, x4, and xn are the nodes distributed in 
 
the domain Ω and the associated field variable 
 
or nodal parameter with these node are u1, u2, 
 
u3, u4, and un. The different sampling points 
 
are represented by x which is the locations of
 
different points and xI represents the nodal 
 
points distributed in the domain of the 
 
problem Ω and the number of these sampling 
 
points will dictate the smoothness of the curve 
 
plotted for the weight and shape functions.

	 In meshfree methods approximation of 
 
the field variable function u(x) without any 
 
connectivity information between the nodes
 
is done by considering the approximation as 
 
the product of a vector of polynomial basis 
 
function and a set of coefficients varying with 
 
x. This can be also put as the approximation of 
 
the function u(x) is obtained by assuming the 
 
approximate solution as a polynomial function 
 
represented as:

	

	 u(x)appx = a0(x) + a1(x)x + a2(x)x2	 (2)



Linear basis in 1D



	 u(x)appx = a0(x) + a1(x)x + a2(x)x2	 (3)
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Quadratic Basis in 1D


	 Considering the linear polynomial 
 
function in one-dimension, Equation (2), can 
 
be written in matrix form:




	 	
(3)





	 	
(4)


where, 



	 	

(5)


and



	 	 (6)



	 The value of approximate solution or 
 
approximation u(x)appx can be evaluated by 
 
determining the unknown coefficients of x. 
 
The unknown coefficients are evaluated by 
 
minimizing the difference between the local 
 
approximation at that point or the considered 
 
node in the support domain and the nodal 
 
parameter for the node I, i.e.



	 	 (7)



	 The approximated value of field variable 
 
at the local nodes is given by:



	 	 (8)



	 Again it is emphasized that a(x) is 
 
arbitrary function of the sampling point’s 
 
x and xI represents the nodal points. The 
 
minimization process starts with the 
 
construction of a weight residual functional 
 
with respect to unknown coefficients, 
 
considering the Equations (4) and (8), and 
 
given by:




	 	
(9)




	 The minimization of functional J 
 
produces a set of linear Equations [1, 4]:

 													


	 	 (10)



where,



	 	 (11)



where A(x) is known as weight moment 
matrix and given by:




	 	
(12)





	 		

					   

(13)


	 	 (14)


and,


	 	 (15)



	 The nodal parameters of the field
 
variables are represented by the vector u: 



	 	 (16)



	 The new variable w(x – x1), introduced 
 
in the Equation (10) is known as the weight 
 
function. The weight function, Belytscho and 
 
Dolbow (1998), considered in this study, is 
 
cubic spline and given by:




	

(17)




	 Another weight function known as 
 
quartic spline, is also used to present the 
 
effect of weight function on the shape 
 
function, is given as:




	
(18)




where r = |x-xI|/dI and, dI is the radius of 
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influence domain or radius of support domain 
 
of the node.

	 Substitution of Equation (12) into the 
 
approximate solution Equation (5), leads to:




	 	
(19)





	 	
(20)

	

where,



	 	 (21)	



	 The MLS shape function for ith node is 
 
defined by:

				
   
	 	 (22)     



	 The MLS shape function for the middle 
 
node i.e. I = 3 is expanded to clear the 
 
programming aspects and distinguishing 
 
between the nodes and sampling points. 
 
The domain Ω = (0, 1) is represented by five 
 
nodes located at points (0, 0.25, 0.5, 0.75 
 
and 1.0). ϕ3(x), indicates the shape function 
 
associated with the support node three, it is a 
 
vector having the values corresponding to the 
 
number of support nodes in the support or 
 
influence domain of middle node located at 
 
x = 0.5 and is given by:




	
	 (23)




	 The influence domain is considered to 
 
be equal to dI = 0.4375, this is the radius of 
 
circle; in the area of this circle all the nodes 
 
are influencing or contributing to the 
 
approximation. The number of nodes in the 
 
influence domain of the middle node is three 
 
and their location are at x = 0.25, x = 0.5 and 
 
x = 0.75. The shape function associated 
 
with this middle or star node at x = 0.5, 
 
is elaborated to bring out the clarity. The
 
evaluation of weight moment matrix-A; 
 
associated with middle node:    



 									


	 	
(24)


  	 									

	 	
(25)





	 	
(26)




	 The calculations for the shape function 
 
are:




	
(27)  	   									




	
(28)


  	   								

	
(29)




	 After performing the calculation 
 
we receive the value of shape function
 
corresponding to ϕ3(0.25) = 0.1197, ϕ3(0.50) = 
 
0.7605 and ϕ3(0.75) = 0.1197. This can be better 
 
assimilated by Figure 1, representing the 
 
shape function, using the linear basis function, 
cubic spline weight function and dI = 0.4375 
 
with two different number of sampling points 
 
(SP). The shape functions associated with six 
 
nodes are represented in Figure 2 using the 
arbitrary nodal distribution.


Figure 1.	 Shape function for middle node with
 
	 uniform nodal distribution
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Shape Function Derivative


	 The derivatives of shape function can be 
 
calculated by applying the product rule to 
 
Equation (23):



	 	 (30)



	 The first derivative is obtained as

	

	 )T

I x Ip x A x B x x  	 (31)




	 (32)



	 The further expansion for the equation is 
 
similar to as described for the shape function.


Nan Error

The critical and erroneous situation occurs 
 
whenever the derivative of shape function 
 
is to be evaluated at the node which is also a 
 
sampling point or point of interest. The 
 
derivative of weighting function and shape 
 
function cease to exist, this condition if occurs 
 
during the meshfree program execution the 
 
results will not be logical and accurate. 
 
Figure 3 presents the plot of shape function 
 
derivatives, in this case the NaN error has 
 
been solved by shifting each node by a 
 
distance of 0.0001 from the locations of 
 

uniform distribution, within the boundary of 
 
domain. The next combined Figure 4 presents 
 
the plots of weight function, shape function 
 
and their derivatives with (above) and without 
 
(below) implementing the node shifting. The 
 
derivatives of the weighting function are 
 
discontinuous and the shape function derivatives 
 
cease to exist. The attached matlab program 
 
provides two underlined entries the % symbol 
 
may be placed alternately on each line and the 
 
plots can be visualized. 


Matlab Program Implementation


	 The programming flow chart for the 
 
moving least square shape function and their 
 
derivatives, given by Equation (22 and 32) is 
 
presented in Figure 5. The Matlab program 
 
for getting the shape function plots is 
 
provided at appendix. The program steps are 
 
elaborated, here under: 

	 1.	 Enter the domain of the problem and 
 
represent the geometry into nodal and 
 
sampling points.

	 2.	 Initialize the support domain of 
 
influence, matrices for the weight function 
 
and shape function

	 3.	 Initialize the first “for” loop for number 
of nodes as the shape function needs to be  
calculated at each node, within this “for” loop  
other loops are initialized to:
		  3.1	 Find the values of weight function 
 
and derivatives at the nodal points,


Figure 2. 	 Shape function for six nodes with 
 
	 arbitrary nodal distribution


Figure 3. 	 Shape function and derivative for middle 
 
	 node
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		  3.2	 Find the values of weight function 
 
and derivatives at the sampling points

		  3.3	 Find A-matrices  and their inverse 
 
at nodes

		  3.4	 Find B-matrices and derivatives 
 
at Sampling points

		  3.5	 Find the value of shape function 
 
and derivatives at the nodal and sampling 
 
points


		  3.6	 End of first “for” loop

	 4.	 Plot the nodal points

	 5.	 Plot the weight function and 
derivatives

	 6.	 Plot the shape function and derivatives 
 
using nodal points and sam-pling points

	 7.	 Add legend, x and y label to the 
 
plots.


Figure 5.  Shape function and derivatives with arbitrary nodal distribution


Figure 4.  Effect of node shifting for uniform nodal distribution 
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Observations


	 The various findings related to the 
 
properties and effects of various factors on the 
 
behavior of the shape function are included 
 
along with the plots obtained using the matlab 
 
program.


	 Partition of Unity


	 The Figure 7 presents the shape function 
 
for uniformly distributed 9 nodes and the 
 
values of the shape function for the middle 
 
node, corresponding to other node locations, 
 
marked by circles; are presented in the 
 
Table 1, to show that the shape function 
 
approximates and satisfies partition of unity 
 
conditions subject to use of constant terms. 
 
Similarly Table 2 tabulates the shape function 
 
values con-sidering the arbitrary distribution 
 
of the nodes and it is confirmed that the nodal 
 

arbitrary distribution also satisfies the partition 
 
of unity.

	 Lack of Kronecker Delta


	 The Table 1 presents the values of shape 
 
function associated with node number five
 
x = 0.5, the value of shape function at this 
node is ϕ(5)(x) = 0.3807 ≠ 1.0. Thus the 
 
moving least square shape functions do not 
 
satisfy the Kronecker delta condition.

	 Continuity


	 The shape functions have high order of 
 
continuity, although only linear basis has been 
 
used, because of the fact that shape functions
 
inherit the continuity of the weighting 
 
function. The weighting function used is
 
cubic spline. Figure 9 indicates the effect of 
 
the weighting functions, as the two weighting 
 
functions have different shapes and order of 
 

Figure 6.  Flow chart for shape function calculation


Figure 7.	 Shape function to confirm partition of
 
	 unity: uniform nodal distribution 


Figure 8. 	 Shape function for arbitrary nodal 
 
	 distribution 
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continuities the shape function inherits these 
 
features of the weighting functions.


	 Weighting Function


	 The selection of the weighting function 
 
plays a very vital role in the for-mulation and 
 
solution of meshfree methods. The shape 
 
functions generated with cubic spline and 
 
quartic spline are represented in Figure 9. The
 
conclusion from this can be made that the 
 
cubic spline weighting function gives the 
 
shape function which posses more local 
 
character.


	 Bell Shape


	 The shape functions possess the bell 
 
shape, presented in Figures 1-6, as the number 
 

of nodes in the support domain is increased 
 
the height of the bell gets lo-wered and 
 
spreads gets lengthened increasing the global 
 
influence.


	 Reduction of Peaks


	 The peak values of the shape functions 
 
fall down as the number of the nodes in the 
 
support domain is increased as a result the 
 
smoothness increases and the local character 
 
starts decreasing and the behavior tends to 
 
be global. Comparing Figures 1 and 7, give a
 
better visualization, note the values on the 
 
y-axis.


	 Sampling Points


	 The difference between the nodal points 
 
and sampling points is very vital and made 
 
very clear and unambiguous by Figure 10, 
 
representing the plots for the first and the 
 
second nodes, as the number of sampling 
 
points is increased the smoothness of the 
 
curve is increased without affecting the peak 
 
values of the shape function corresponding 
 
to the nodes. 


	 Mirror Image


	 The shape functions are the mirror 
 
image of each other from the central node, 
 
for the uniform nodal distribution. These 
 
approach or/and reach unit values near the 
 
boundaries of the domain so that the 
 
imposition of the boundary condition is 
 
sim-plified. The approach to unit value
 
is reasonably gradual and emphasized 
 

Table 2.	 Partition of unity: Arbitrary nodal distribution



Node no.
 ϕ(1)
 ϕ(2)
 ϕ(3)
 ϕ(4)
 ϕ(5)
 ϕ(6)


1
 0.983
 0.221
 0.008
 0
 0
 0

2
 0.035
 0.515
 0.240
 0.002
 0
 0


3
 0.019
 0.260
 0.582
 0.137
 0
 0


4
 0
 0.002
 0.168
 0.730
 0.140
 0


5
 0
 0
 0
 0.130
 0.675
 0


6
 0
 0
 0
 0
 0.184
 1


Total
 1
 1
 1
 0.999
 1
 1


Table 1. 	 Partition of unity: Uniform nodal 
 
	 distribution



Node number
 ϕ(5)


1
 0

2
 0.0022


3
 0.0599


4
 0.2475


5
 0.3807


6
 0.2475


7
 0.0599


8
 0.0022


9
 0


Total
 0.9999
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Figure 9. 	 Shape function with cubic and quarti
 
	  spline using linear basis


Figure 10.	 Shape function for the first and second 
 
	 node


(a) Sampling points-51
 (b) Sampling points-21


Figure 11.  Shape function for 9 nodes with Linear basis, Cubic spline, (dI = 0.4375)


by drawing a horizontal line in Figure 11(a) 
 
and 11(b).


	 Influence of Support Domain


	 The effect of influence of support 
 
domain is represented by Figure 12, it can be 
 
concluded that with the increase of support 
 
domain the local behavior of the shape 
 
function diminishes and as the nodes in the 
 
support domain are decreased the shape 
 
function value approaches to unity. In this 
 
condition the shape function will interpolate 
 
through the nodal values, if the A-matrix is 
 
invertible, however if the number of node in 
 
the support domain becomes less than the 
 
num-ber of monomials in the basis function, 
 
inverse of A-matrix will not exist.


	 Basis Function


	 The effect of the basis function on the 
 
shape function is presented by Figure 13. 
 
Moving least square shape functions using 
 
linear, quadratic and cubic basis function and 
 
cubic spline weighting function are computed 
 
and plotted to vi-sualize the effect of basis 
 
function on the shape functions.  The study 
 
concludes that as the order of basis function is 
increased, the value of ϕ(5)(x) increases to 
 
maximum and becomes constant as the order 
 
of basis and weighting function be-come 
 
equal.


Verification


	 The program for the shape function is 
validated by solving the problem from the 
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elastostatics using uniform nodal distribution. 
 
The problem is considered from Hutton
 
(2004) and Kushawaha (2012). A tapered bar 
 
of un-iformly varying cross sectional area, 
 
A1 = 1 m2, A2 = 0.5 m2 on each end, subjected 
 
to tensile point load, P = 1000 kN, and 
 
young's modulus, E = 200 GPa; was mod-eled 
 
and solved usingthe element free galerkin 
 
method and the results are positive and
 
in good agreement to the exact solution, 
 
validating that the developed of for-mulation 
 
and matlab program. The Figure 14 represents 
 
the comparative plots ob-tained by exact 
 
solution and the element free galerkin (EFG) 
 
method with the variation of support domain 
 
of influence. The increase in the number of 
 
nodes brings the convergence of the meshfree 
 

solution to the exact solution.


Conclusions

The moving least square shape function and 
 
its derivative is studied after generating a 
 
Matlab program and the various characteristics 
 
of the shape functions are elabo-rated in 
 
context to the parameters affecting the 
 
features of shape function. The significance 
 
of NaN in contribution to meshfree solution 
 
errors is highlighted and prevention 
 
methodology has been implemented to 
 
minimize the error generation. The plots 
 
are presented to support the discussion. 
 
The program is extensively explained and 
 
provided as appendix to help the beginners 
 
on the meshfree metho-dology.


Figure 12.  Influence of support domain, dI
 Figure 13. 	 Shape function with different basis 
 
	 functions





Figure 14.  Comparison of EFG and exact solution
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Appendix 

This program is written to explain the 
 
implementation and plotting of the moving 
 
least square shape function used in the 
 
meshfree methods. The program will display 
 
the plots of shape function & its derivatives 
 
for the arbitrarily distributed Seven Nodes 
 
with influence domain= 0.4375. No effort has 
 
been made to optimize the program to keep it 
 
easy to grasp.



% SETTING UP DOMAIN AND NODAL POINTS 
OR LOCATION OF NODES

xnode=[0 0.12 0.42 0.57 0.78 0.87 1];% 
ARBITRARILY DISTRIBUTED SEVEN NODES

ynode=zeros(1,length(xnode)); % TO PLOT NODES

% SETTING UP SAMPLING POINTS 

X=linspace(0,1,31);

% SETTING UP INFLUENCE DOMAIN 

di=0.4375;

% TO PREVENT THE NaN ERROR DURING THE 
PROGRAMM EXECUTION THE NODES ARE

% SHIFTED BY NEGLIGIBLE DISTANCE 
WITHIN THE DOMAIN, TRY RUNNING THE

% PROGRAM WITH THE FOLLOWING VALUES 
EQUAL TO THAT OF DOMAIN = xnode TO 
VISUALISE

% THE NaN EFFECT AND YOU SHOULD GET 
THE PLOT SHOWN IN FIGURE-16, WITH 
MISSING  

% CURVES FOR DERIVATIVES

Shift_xnode(1)=0.0001;

Shift_xnode(2)=0.1201;

Shift_xnode(3)=0.4201;

Shift_xnode(4)=0.5699;

Shift_xnode(5)=0.7801;

Shift_xnode(6)=0.8701;

Shift_xnode(7)=0.9999; 

% INITIALISE MATRICES FOR WEIGHT 
FUNCTION & DERIVATIVES AT NODAL POINTS

w=zeros(length(xnode),length(xnode)); 

dw=zeros(length(xnode),length(xnode)); 

% INITIALISE MATRICES FOR WEIGHT 
FUNCTION & DERIVATIVES AT SAMPLING 
POINTS

W=zeros(length(xnode),length(X));

dW=zeros(length(xnode),length(X));

% INITIALISE MATRICES FOR SHAPE 
FUNCTION & DERIVATIVES AT SAMPLING 
POINTS

Phi=zeros(length(xnode),length(X));

dPhi=zeros(length(xnode),length(X));

% SET UP ‘for’ LOOPS FOR CALCULATING 
 
SHAPE FUNCTION & DERIVATIVES

for i =1:length(xnode)


% CALCULATE WEIGHT FUNCTION & 
DERIVATIVES FOR NODAL POINT

	 for	 j	 =	 1:length(xnode)

		  r	= 	(abs(Shift_xnode(i)-xnode(j)))/di; 

	 if r<	 =	 0.5

			   w(i,j) = (2/3) - 4*r*r + 4*r^3;

			   dw(i,j)= (-8*r + 12*r^2)*(Shift_xnode(i)-
 
xnode(j))/(di*(abs(Shift_xnode(i)-xnode(j))));

			   elseif (r>0.5)&(r<=1.0)

			   w(i,j)= (4/3)-4*r+4*r*r -(4/3)*r^3;

			   dw(i,j)= (-4 + 8*r-4*r^2)*(Shift_xnode(i)-
 
xnode(j))/(di*(abs(Shift_xnode(i)-xnode(j))));

             		 elseif r>1.0

           		  w(i,j) = 0.0;

    			   dw(i,j) = 0.0;

             end    

	 end    

	 w;   dw;         

% CALCULATE WEIGHT FUNCTION & 
DERIVATIVES AT SAMPLING POINTS TO GET 
SMOOTH PLOTS 

	 for	 l	 =	 1:length(X)

            	r 	= 	(abs(xnode(i)-X(l)))/di;

            	if r<=0.5

                W(i,l) = (2/3) - 4*r*r + 4*r^3;

                dW(i,l)= (-8*r + 12*r^2)*(Shift_xnode(i)-
X(l))/(di*(abs(Shift_xnode(i)-X(l))));

            elseif (r>0.5)&(r<=1.0)

              	 W(i,l)= (4/3)-4*r+4*r*r -(4/3)*r^3;

                dW(i,l)= (-4 + 8*r-4*r^2)*(Shift_xnode(i)-
X(l))/(di*(abs(Shift_xnode(i)-X(l))));

            elseif r>1.0

               W(i,l) = 0.0;

               dW(i,l) = 0.0;

           end     

       end        

        W;   dW;        

% NOW WE START TO DERIVE THE SHAPE 
FUNCTIONS AND DERIVATIVES USING

% EQUATION 1.23 AND 1.33

    won=ones(1, length(xnode)); % Initialisation of 
ones vector

    Won=ones(1, length(X)); % Initialisation of ones 
vector

	  p=[won; xnode];

    P=[Won; X];

    A=zeros(2, 2);            % Initialization of A-Matrix

    dA=zeros(2, 2);          % Initialization of dA-Matrix

        for j=1:length(xnode)% CALCULATE  A-
MATRIX AT NODAL POINT

             A= A + (w(i,j)*p(1:2,j)*p(1:2,j)’);

            dA= dA + (dw(i,j)*p(1:2,j)*p(1:2,j)’);

       end

        A  ;    dA;              

        invA=inv(A);
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        invdA=-invA*dA*invA;

        for j=1:length(X)% CALCULATE THE B-
MATRIX AT SAMPLING POINTS 

            B(1:2,j)=W(i,j).*P(1:2,j);

            dB(1:2,j)=dW(i,j)*P(1:2,j);

        end

        B; dB;

        phi=[1 xnode(i)]*invA*B;% CALCULATE 
SHAPE FUNCTION 

        dphi=([0 1]*invA*B) + [1 xnode(i)]*(invdA*B + 
invA*dB);

        Phi(i,:)=phi;

        dPhi(i,:)=dphi;

end

plot(X,Phi,’LineWidth’,0.5)

hold on

plot(X,dPhi,’LineWidth’,0.5,’MarkerSize’,1.5);

hold on

title(‘S F & Derivatives’,’FontSize’,5)

xlabel(‘Domain’,’FontSize’,5)

ylabel(‘Function value’,’FontSize’,5)

plot(xnode,ynode,’ro’,’MarkerEdgeColor’,’r’,’Marker
FaceColor’,’g’,’MarkerSize’,5)

hold on 

%  We are getting the plot shown below (figure-I):


Figure I.	 Shape function and derivatives plot by
 
	 above Matlab program


Figure II.	 Shape function and derivatives plot 
 
	 with NaN error
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