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Abstract 

The effects of radiation and joule heating with viscous dissipation on magnetohydrodynamic (MHD)   
free convection flow around a sphere have been studied in this paper. The governing equations are   
transformed into dimensionless non-similar equations by using a set of suitable transformations and   
solved numerically by the finite difference method along with Newton’s linearization approximation.   
The solutions are expressed in terms of the skin friction coefficient, the rate of heat transfer, the   
velocity profiles, and temperature profiles over the whole boundary layer. The effects of pertinent   
parameters such as radiation parameter Rd, viscous dissipation parameter Vd, magnetic parameter   
M, joule heating parameter J, and the Prandtl number Pr are shown graphically and discussed. 

Keywords: Natural convection, radiation, prandtlnumber, joule heating parameter, viscous   
   dissipation parameter, magnetohydrodynamics 

Introduction 
The phenomenon of the free convection   
boundary layer flow of an electrically   
conducting fluid on various geometrical   
shapes in the presence of a magnetic field   
is very common because of the applications in   
many engineering fields in connection with   
the cooling of reactors. It is usual to prescribe   
either the wall temperature or the wall heat   

flux and many researches have been done   
in order to understand the heat transfer   
characteristics over a wide range of flow   
configurations and fluid properties. But in   
many real engineering systems the wall   
conduction resistance cannot be neglected   
since conduction in the wall affects   
significantly the fluid flow and the heat   
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transfer characteristics of the fluid in the   
vicinity of the wall. The problems of free   
convection boundary layer flow along various   
types of geometrical shapes have been studied   
by many researchers. Amongst them Nazar  
et al. (2002) studied the free convection   
boundary layer on an isothermal sphere in a   
micropolar fluid. Huang and Chen (1987)   
considered the free convection boundary layer   
on an isothermal sphere and on an isothermal   
horizontal circular cylinder both in a   
micropolar fluid. Takhar and Soundalgekar   
(1980) studied the dissipation effects on   
magnetohydrodynamic (MHD) free convection   
flow past a semi-infinite vertical plate. Akhter   
and Alim (2008) studied the effects of   
radiation on natural convection flow around   
a sphere with a uniform surface heat flux.   
Limitations of this approximation are 
discussed briefly in Özisik (1973). The   
transformed boundary layer equations are   
solved numerically using the Keller box   
scheme describe by Keller (1978) and later   
by Cebeci and Bradshaw (1984) along with   
Newton’s linearization approximation. Hossain   
(1992) analyzed the effect of viscous and   
joule heating on the flow of an electrically   
conducting fluid past a semiinfinite plate in   
which the temperature varies linearly with the   
distance from the leading edge and in the   
presence of a transverse magnetic field. In his   
paper, the finite difference method has been   
used to solve the equations governing the flow   
and the numerical solutions were obtained   
for small Prandtl numbers, appropriate for   
coolant liquid metal, in the presence of a large   
magnetic field. Miraj et al. (2010) and (2011)   
studied the effects of radiation and joule   
heating on MHD free convection flow along a   
sphere with heat generation. Molla et al.   
(2005) studied the problem of MHD natural   
convection flow on a sphere in the presence of   
heat generation or absorption. Alam et al.   
(2007) studied the viscous dissipation effects   
with MHD natural convection flow on a   
sphere in the presence of heat generation.   
El-Amin (2003) also analyzed the influences   
of both first and second order resistance, due   
to the solid matrix of a non-Darcy porous   

medium, joule heating, and viscous dissipation   
on a forced convection flow from a horizontal   
circular cylinder under the action of a   
transverse magnetic field. The present study   
is to incorporate the idea of the effects of   
radiation and joule heating on MHD free   
convection flow around a sphere with viscous   
dissipation. The numerical results in terms   
of local skin friction, rate of heat transfer,   
velocity profiles, as well as temperature   
profiles for different values of relevant   
physical parameters are presented graphically. 

Formulation of the Problem 
A steady 2-dimensional MHD natural   
convection boundary layer flow from   
an isothermal sphere of radius a, which is   
immersed in a viscous and incompressible   
optically dense fluid with radiation heat loss is   
considered. Let us consider that the surface   
temperature of the sphere with radius a where   
Tw is the constant temperature (Tw > T∞),   
T is the ambient temperature of the fluid, T is   
the temperature of the fluid in the boundary   
layer, g is the acceleration due to gravity, and   
(U, V) are velocity components along the   
(X, Y) axes. The physical configuration   
considered is as shown in Figure 1. 
 According to the above assumption, the   
governing Equations’ continuity, momentum,   
and energy for a steady 2-dimensional   
laminar boundary layer flow problem under   
consideration can be written as: 
 

Figure 1.  Physical model and coordinate system 
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(1) 

 (2) 

 (3) 
 
with the boundary conditions: 
 
 U = V = 0, T = Tw  at Y = 0 (4) 
 U → 0, T → T∞  as Y → ∞ 
 
where r(X) = asin  is the radial distance   
from the symmetrical axis to the surface of   
the sphere, k is the thermal conductivity, β   
is the coefficient of thermal expansion, B0   
is the strength of magnetic field, σ0 is   
the electricalconductivity, v (= μ/ρ) is the   
kinematic viscosity, μ is the viscosity of the   
fluid, ρ is the density, and cpis the specific   
heat due to constant pressure. 
 The above equations are non-  
dimensionalised using the following new   
variables: 
 

 
(5) 

 

 
(6) 

 (7) 

where Gr is the Grashof number, θ is the non-  
dimensional temperature function, and θw   
is the surface temperature parameter. 
 The Rosseland diffusion approximation   
proposed by Siegel and Howell (1972) is   
given by the simplified radiation heat flux   
term as: 
 

  
(8) 

 
where ar is the Rosseland mean absorption  
co-efficient, σs is the scattering co-efficient,   
and σ is the Stefan-Boltzmann constant. 
 Substituting (5), (6), and (7) in the   
continuity Equation (1), the momentum   
Equation (2), and the energy Equitation (3)   

leads to the following non-dimensional   
Equations: 
 

 
(9) 

 
(10) 

  
(11) 

where Pr =  is the Prandtl number,    

 is the joule heating parameter,  

 is the viscous dissipation,   

and  is the radiation parameter. 
 
 With the boundary conditions (4)   
become 
 
  u = v = 0, θ = 1  at  η = 0 
 u → 0, θ → 0  as  η → ∞ (12) 
 
to solve Equations (10) and (11) with the help  
of following variables: 
 

 (13) 
 
where  is the stream function defined by:  
 

  
(14) 

 
Using the above values in Equitation (10), we   
get the following Equation: 
 

where  is the MHD parameter 
 
 Putting the values of u and v in Equation   
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(11), we get the following Equation: 
 

along with boundary conditions 
 
  f = f  = 0, θ = 1  at  η = 0 
 f  → 0, θ → 0  as  η → ∞ (17) 
 
 
where primes denote the differentiation of the 
function with respect to η. 
 It can be seen that near the lower   
stagnation point of the sphere, i.e., ξ ≈ 0,   
Equations (15) and (16) reduce to the   
following ordinary differential Equations: 
 

 (18) 
 

 
(19) 

 
subject to the boundary conditions; 
 
  f (0) = f (0) = 0, θ(0) = 1 
 f  → 0, θ → 0  as  η → ∞ (20) 
 
 In practical applications, the physical   
quantities of principle interest are the shearing   
stress τw, the rate of heat transfer, and the rate  
of species concentration transfer in terms of   
the skin friction coefficient Cf and Nusselt   
number Nu, which can be written in non-   
dimensional form as: 
 

 
(21) 

where is the shearing stress,  

is the conduction heat flux,    
k being the thermal conductivity of the fluid,   
and qr is the radiation heat flux. The heat flux   
qr is defined by:  
 

 
 
Using Equations (5) and (6), boundary  
condition (20) and putting the values of τw  

and qr in (21), we get the following Equations: 
 

   
(22) 

 
   (23) 
 
 The values of the velocity and temperature   
distribution are calculated respectively from   
the following relations: 
 

 
 
 We discuss the velocity distribution as   
well as the temperature profiles for a selection   
of relevant parameters. 

Method of Solution 
The finite-difference methods are numerical   
methods for approximating the solutions to   
differential equations using finite difference   
equations to approximate derivatives. The   
governing partial differential equations  
are reduced to dimensionless local non-  
similar equations by adopting appropriate   
transformations. The transformed boundary   
layer equations are solved numerically using   
in-house FORTRAN code based on the Keller   
box method. The partial differential Equations   
(15) and (16) are first converted into a system   
of first order differential equations. These   
equations are expressed in finite difference   
forms by approximating the functions and   
their derivatives in terms of the centered   
differences and 2 point averages using only   
values at the corner of the box (or mesh   
rectangle). Denoting the mesh points in the   
(ξ , η)-plane by ξi and ηj where i = 1, 2, . . . ,   
M and j = 1, 2, . . . , N, central difference  
approximations are made, such that those   
equations involving ξ explicitly are centered   
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at (ξi-1/2, ηj-1/2) and the remainder at (ξi , ηj-1/2),   
where ηj-1/2 = (ηj + ηj-1) etc. Grid dependency   
has been tested and solutions are obtained   
with a grid of optimum dimensions 182×200   
in the (ξ, η) domain and a non-uniform mesh   
size is employed to produce results of high   
accuracy near the coordinate ξ = 0, η = 0. The   
central difference approximations reduce the   
system of first order differential equations to   
a set of non-linear difference equations for the   
unknown at ξi in terms of their values at ξi-1.   
The resulting set of nonlinear difference   
equations are solved by using the Newton’s  
quasi-linearization method. The Jacobian   
matrix has a block-tridiagonal structure and   
the difference equations are solved using a   
block-matrix version of the Thomas algorithm;   
further details of the computational procedure   
have been discussed in the book by Cebeci   
and Bradshaw (1984) and widely used by   
many authors including Hossain (1992). 

Results and Discussion 
Solutions are obtained in terms of velocity   
profiles, temperature profiles, skin friction   
coefficient, and rate of heat transfer and   
presented graphically for selected values of   
the radiation parameter Rd, Prandtl number   
Pr, magnetic parameter M, joule heating   
parameter J, and viscous dissipation parameter   

Vd. The effects for different values of the   
radiation parameter (Rd = 1.00, 3.00, 5.00,   
7.00, 9.00), the velocity profiles, and   
temperature profiles in the case of the Prandtl   
number Pr = 0.72, magnetic parameter   
M = 0.50, joule heating parameter J = 0.30,   
and viscous dissipation parameter Vd = 25.00   
are shown in Figures 2(a) and 2(b), respectively.   
We observe that, when the radiation parameter   
Rd increases, both the velocity and the   
temperature profiles increase such that there   
exists a local maximum of the velocity within   
the boundary layer but the velocity increases   
near the surface of the sphere and then the   
temperature increases slowly and finally   
approaches to 0. In Figure 2(a) we observed   
that the velocity boundary layer thickness   
increases. The thermal boundary layer thickness   
increases for the increasing values of the   
radiation parameter Rd. The increasing values   
of the Prandtl number (Pr = 0.72, 1.50, 3.00,   
4.00, 7.00), the velocity profiles, and the   
temperature profiles decrease are shown in   
Figures 3(a) and 3(b), respectively. The velocity   
boundary layer thickness and thermal boundary   
layer thickness decrease for the increasing   
values of Prandtl number Pr. 
 In Figure 4(a), it is shown that the   
magnetic field action along the horizontal   
direction retards the fluid velocity with the   
radiation parameter Rd = 1.00, Prandtl  

Figure 2. (a) Velocity profiles and (b) Temperature profiles for different values of Rd when Pr = 0.72,   
 M = 0.5, J = 0.3, and Vd = 25.0 
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number Pr = 0.72, joule heating parameter   
J = 0.30, and viscous dissipation parameter   
Vd = 25.00. Here, the position of peak   
velocity moves toward the interface with   
increasing the values of M, so the velocity   
boundary layer decreases for increasing the   
values of M. From Figure 4(b), it can be   
observed that the temperature within the   
boundary layer increases for increasing the   
values of M from 0.10 to 1.80. 
 Figures 5(a) and 5(b) display that, for   
the results of the velocity and temperature   
profiles, for different values of the joule heating   
parameter (J = 0.30, 4.00, 8.00, 12.00, 15.00)   
with radiation parameter Rd = 1.00, Prandtl   
number Pr = 0.72, magnetic parameter   

M = 2.00, and viscous dissipation parameter   
Vd =25.00, the joule heating parameter J   
increases, the velocities rise up to the   
position of η = 1.23788, and from that the  
position of η velocities falls down slowly and   
finally approaches to 0. It is also observed   
from Figure 5(b) that as the joule heating   
parameter J increases, the temperature profiles   
increase. Figures 6(a) and 6(b) display the   
results that, for the increasing values of the   
viscous dissipation parameter (Vd = 0.10,   
25.00, 50.00, 75.00, 100.00), both the velocity   
profiles and temperature profiles increase. 
 It has been seen from Figure 7(a) that as  
the radiation parameter Rd increases, the   
skin friction coefficient Cf increases up to the   

Figure 3. (a) Velocity profiles and (b) Temperature profiles for different values of Pr when Rd = 1.0,   
 M = 0.5, J = 0.3, and Vd = 25.0 

Figure 4. (a) Velocity profiles and (b) Temperature profiles for different values of M when Rd = 1.0,  
 Pr = 0.72, J = 0.3, and Vd = 25.0 
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position of ξ = 1.08210 and from that position  
the skin friction coefficient Cf decreases and  
the rate of heat transfer Nu increases, as  
shown in the Figure 7(b). In Figure 8(a) it is   
shown that when the Prandtl number Pr 
increases, the skin friction coefficient Cf   
decreases up to the position of ξ = 0.89012   
and from that position of ξ the skin friction   
coefficient Cf changes with the increasing   
values of the Prandtl number Pr. It has been   
seen from Figure 8(b) that as the Prandtl   
number Pr increases, the rate of heat transfer   
Nu increases up to the position of ξ = 0.31416   
and from that position of ξ the rate of heat   
transfer decreases. Due to the combined effects   
of viscous dissipation with heat generation   

and higher radiation, the rate of heat transfer   
Nu is higher initially but the temperature   
falls down quickly for higher radiation and   
temperature differences between the wall and   
fluid as well as the rate of heat transfer Nu   
reduces. For a lower radiation, the rate of heat   
transfer Nu is lower initially but the temperature   
falls down slowly and the rate of heat transfer   
Nu decreases slowly. Eventually, the rate of   
heat transfer lines meet at a certain point   
and cross the sides. In Figure 9(a), with the   
increasing values of magnetic parameter M,   
the skin friction coefficient Cf decreases. It is   
observed from Figure 9(b), that the rate of   
heat transfer decreases up to the same position   
of ξ and then the rate of heat transfer increases   

Figure 5. (a) Velocity profiles and (b) Temperature profiles for different values of J when Rd = 1.0,   
 Pr = 0.72, M = 2.0, and Vd = 25.0 

Figure 6. (a) Velocity profiles and (b) Temperature profiles for different values of Vd when Rd = 1.0,  
 Pr = 0.72, M = 0.5, and J = 0.3 
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Figure 7. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of Cf when   
 Pr = 0.72, M = 0.5, J = 0.3, and Vd = 25.0 

Figure 8. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of Pr when   
 Rd = 1.0, M = 0.5, J = 0.3, and Vd = 25.0 

Figure 9. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of Q when Rd = 1.0,   
 Pr = 0.72, J = 0.3, and Vd = 25.0 
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for increasing values of the magnetic parameter   
M. From Figures 10(a) and 10(b) we observed   
that the skin friction coefficient Cfincreases   
and the heat transfer coefficient decreases  
for increasing values of the joule heating   
parameter J with radiation parameter Rd =  
1.00, Prandtl number Pr = 0.72, magnetic   
parameter M = 2.00, and viscous dissipation   
parameter Vd =25.00. Figure 11(a) shows   
the skin friction coefficient Cf increases for  
increasing values of the viscous dissipation   
parameter Vd with radiation parameter Rd =  
1.00, Prandtl number Pr = 0.72, magnetic   
parameter M = 0.50, and joule heating   
parameter J = 0.30. Frictional force at the wall   

becomes much higher towards the downstream   
for higher values of Vd and the rate of heat   
transfer, as shown in Figure 11(b), gradually   
decreased for higher values of the viscous   
dissipation parameter. 

Comparison of the Results 
The comparison of the present numerical   
results of the rate of heat transfer Nu with   
those obtained by Nazar et al. (2002) and   
Huang and Chen (1987) is shown in Table 1.   
Here, the magnetic parameter M, radiation   
parameter Rd, joule heating parameter J, and   
viscous dissipation parameter Vd are ignored   

Figure 10. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of J when Rd = 1.0,   
 Pr = 0.72, M = 2.0, and Vd = 25.0 

Figure 11. (a) Skin friction coefficient and (b) Rate of heat transfer for different values of Vd when  
 Rd = 1.0, Pr = 0.72, M = 0.5, and J = 0.3 
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Table 1. Comparison of numerical results with those obtained by Huang and Chen (1987) and Nazar   
 et al. (2002)  

ξ 
in degree 

Pr = 0.70 Pr = 7.00 

Nazar 
et al. (2002) 

Huang and 
Chen (1987) 

Present 
results 

Nazar 
et al. (2002) 

Huang and 
Chen (1987) 

Present 
results 

0 0.4576 0.4574 0.4577 0.9595 0.9581 0.9564 
10 0.4565 0.4563 0.4566 0.9572 0.9559 0.9542 

20 0.4533 0.4532 0.4533 0.9506 0.9496 0.9477 

30 0.4480 0.4480 0.4480 0.9397 0.9389 0.9389 

40 0.4405 0.4407 0.4406 0.9239 0.9239 0.9218 

50 0.4308 0.4312 0.4310 0.9045 0.9045 0.9022 

60 0.4189 0.4194 0.4191 0.8801 0.8805 0.8781 

70 0.4046 0.4053 0.4049 0.8510 0.8518 0.8493 

80 0.3879 0.3886 0.3883 0.8168 0.8182 0.8154 

90 0.3684 0.3694 0.3690 0.7774 0.7792 0.7763 

and the Prandtl numbers Pr = 0.70 and 7.00   
are chosen. The present results agreed well   
with the solutions of Nazar et al. (2002) in the  
absence of the micropolar parameter and of  
Huang and Chen (1987) in the absence of   
suction and blowing. This comparison is   
shown in the following Table1. 

Conclusions 
The present investigation focuses on the   
effects of radiation and joule heating with   
viscous dissipation on MHD free convection   
flow around a sphere. Velocity profiles increase   
for increasing values of the radiation parameter   
Rd, joule heating parameter J, and viscous   
dissipation parameter Vd. Temperature profiles   
increase for increasing values of radiation   
parameter Rd, magnetic parameter M, joule   
heating parameter J, and viscous dissipation   
parameter Vd. Velocity profiles and temperature   
profiles decrease for increasing values of the   
Prandlt number Pr. Skin friction coefficients   
Cf increase for increasing values of the joule   
heating parameter J and viscous dissipation   
parameter Vd. Skin friction coefficients Cf  

decrease for increasing values of the magnetic   
parameter M. The rate of heat transfer Nu   

increases for increasing values of the radiation   
parameter Rd and the rate of heat transfer Nu   
decreases for increasing values of the joule   
heating parameter J and viscous dissipation   
parameter Vd. 

Nomenclature 

 a – Radius of the sphere [m] 
 ar – Rosseland mean absorption   
   co-efficient [cm3/s] 
 B0 – Strength of magnetic field [A/m] 
 Cf – Skin-friction coefficient  
 CP – Specific heat at constant pressure  
   [Jkg-1k-1] 
 f – Dimensionless stream function  
 g – Acceleration due to gravity [ms-2] 
 Gr – Grashof number  
 J – Joule heatingparameter [–] 
 k – Thermal conductivity [wm-1k-1] 
 M – Magnetic parameter [–] 
 Nu – Nusselt number [–] 
 Pr – Prandtl number [–] 
 qc – Conduction heat flux [w/m2] 
 qr – Radiative heat flux [w/m2] 
 qw – Heat flux at the surface [w/m2] 
 Rd – Radiation parameter [–] 
 r – Radial distance from the symmetric   
   axis to the surface [m] 
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 T – Temperature of the fluid in the   
   boundary layer [K] 
 T∞ – Temperature of the ambient fluid  
   [K] 
 Tw – Temperature at the surface [K] 
 U – Velocity component along the   
   surface [ms-1] 
 V – Velocity component normal to   
   the surface [ms-1] 
 u – Dimensionless velocity along the   
   surface [–] 
 v – Dimensionless velocity normal   
   to the surface [–] 
 Vd – Viscous dissipation parameter   
   [–] 
 X – Coordinate along the surface [m] 
 Y – Coordinate normal to the surface    
   [m] 

Greek Symbols 

 β – Coefficient of thermal expansion  
   [K-1] 
 θ – Dimensionless temperature [–] 
 μ – Dynamic viscosity of the fluid   
   [kgm-1s-1] 
 v – Kinematic viscosity [m2/s] 
 ρ – Density of the fluid [kgm-3] 
 σ – Stefan Boltzmann constant   
   [js-1 m-2 k-4] 
 σ0 – Electrical conductivity [mho.m-1] 
 σs – Scattering coefficient [m-1] 
 τw – Shearing stress at the wall  
   [N/m2] 
 ξ – Dimensionless coordinate along  
   the surface [–] 
 η – Dimensionless coordinate normal   
   to the surface [–] 
 Ψ – Stream function [m2s-1] 
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