
262 Proxy Selection and Performance Analysis of a Dynamic Proxy Framework

1 Department of Computer and Communication, Faculty of Engineering, University Putra Malaysia, 43400
UPM Serdang, Malaysia, E-mail: choongkn@hotmail.com or choongkn@yahoo.com

2 Department of Communication Technology and Networking, Faculty of Computer Science, University Putra
Malaysia, 43400 UPM Serdang, Malaysia

3 Motorola Multimedia Sdn Bhd, Global Software Group, 16th Floor Menara Luxor, 6B Jalan Persiaran
Tropicana, 47410 Petaling Jaya, Selangor, Malaysia

* Corresponding author
Suranaree J. Sci. Technol. 11:262-274

CPF (Choong et al., 2003) is an application level
approach that addresses the delivery of Internet
contents with active services, i.e. by deploying
intermediate object called DAPS into the
network. DAPS is regarded as the centerpiece
of CPF, and hence choosing the right and optimal
client machine to host DAPS becomes a critical
factor that affects the overall performance of the
CPF-enabled systems. This paper focuses on the
discussions of two CPF proxy selection

algorithms, i.e. the conservative and greedy
algorithms, based on two CPF clustering
policies, namely the Neighbor and Regional
clustering, in a video broadcasting application
scenario. These algorithms are augmented with
various settings such as the user-awareness,
selection threshold and resource utilisation
threshold, to further benchmark the effect of
allocating DAPS. A performance analysis of CPF
is conducted using simulation, to observe,

PROXY SELECTION AND PERFORMANCE ANALYSIS
OF A DYNAMIC PROXY FRAMEWORK

Choong Khong Neng1*, Borhanuddin Mohd Ali1, Veeraraghavan Prakash1,
Elok Robert Tee2, and Yee Yoke Chek3

Recived: Feb 10, 2004; Revised: Oct 13, 2004; Accepted: Oct 22, 2004

Abstract

The benchmark of a proxy-based service creation and content delivery framework called the Chek
Proxy Framework (CPF) was described. Unlike conventional proxy-based systems, CPF was an
application level approach that provoked the use of client machines to host at runtime an intermediate
object called the Dynamic Application Proxy Server (DAPS) based on the designed clustering policy.
We conduced performance analysis of CPF in a video broadcasting environment based on two clustering
policies, namely the Neighbor and Regional clustering policy, under the context of two proxy selection
algorithms, i.e. the conservative and greedy algorithms. The results showed that the conservative
algorithm works well at low request loads while the greedy algorithm performed better at higher request
loads. Compared to the Neighbor policy, applying the combined policy (Neighbor and Regional) with
the greedy algorithm further decreased the server workload by 11.38%, and enhanced the average
client receiving rate and network throughput by at least 100% and 35%, respectively.

Keywords: Dynamic proxy, application level active network, chek proxy framework, contents delivery

Introduction

263Suranaree J. Sci. Technol. Vol. 11 No. 4; October-December 2004

benchmark, and compare the average WAN
throughput, workload reduction of the central
server, and average data receiving rate of the
clients between the two proxy selection
algorithms under the above two different
clustering policies.
 This paper is organised as follows. Section
2 provides an introduction of the clustering
policies and group formation concept of CPF,
followed by various proxy selection factors and
two proxy selection algorithms. Section 3
describes the simulation methodology, which
includes the network and simulation model,
simulation parameters, assumptions and
performance metric. The detailed discussions on
the simulation results are provided in section 4.
Section 5 summarises the paper and spells out
possible future works of CPF.

Proxy Selection Strategies

CPF Clustering Policy

The CPF works around the concept of
clustering, similar to those in Knutsson and
Peterson (2001); NTT PF Labs (2003); Chu
et al. (2000); Pendarakis et al. (2001); Erilsson
(1994). In addition, it advocates that early
clustering at the lowest network hierarchy,
i.e. the ISP and enterprise network, serves as
a prevention approach to solve congestion.
This is because once the traffic has entered the
interior of the public Internet, it becomes much
more difficult to track, monitor and optimise
(CiteSeer, 2004). Furthermore, since most
end-hosts (clients) tend to be on the access links,
i.e. ISP access network rather than at network
backbone, it is desirable to confine traffics on
the access links rather than on the network
backbone (Pendarakis et al., 2001).

In CPF, a cluster is defined as a collection
of clients that are located within the same
network segment. The scope of a segment is
bounded by the number of hops (network
distance) between the clients. Each segment is
governed by a type of clustering policy, and
served by at least one DAPS. CPF performs
clustering based on the divide-and-conquer
approach and works in a bottom-up manner,

i.e. from the lowest subnetwork level to the
enterprise network level, before reaching the ISP
network level. The three levels of clustering in
CPF are:
ë Local clustering: Local clustering focuses on

the lowest network level, where clustered
clients are within the same subnetwork or
LAN. The performance of Local clustering
has been evaluated with prototype
implementation, and reported in our earlier
paper (Choong et al., 2003).

ë Neighbor clustering: This clustering
technique is applied on clients that are of two
network hops distant away, i.e. separated by
a common local gateway. Such a technique is
based on identifying the similarity of the
network prefix or domain name of the clients,
as suggested by Krishnamurthy and Wang
(2000). Neighbor clustering is feasible only
if clients that are physically co-located
within the network segment share the
same network prefix in their IP addresses.
Both the Local and Neighbor clustering
techniques are applicable to the campus
and enterprise network, depending on
how each individual LAN is physically
linked and configured.

ë Regional Clustering: Regional clustering
concentrates on the ISP network. This
clustering technique finds the topological
relationship between clients as their requests
traverse from the sources, pass through the
ISP region, to the central server. A tree or mesh
topology is to be constructed to promote an
efficient application-level routing. Similar to
Bestavros and Cunha (1996); Krishnan et al.
(2000), CPF uses the traceroute mechanism
to form a tree topology for both data and
control streams. Any cluster formed at the
network levels lower than the ISP region is
channeled to separate DAPS(s) in the ISP
region.

Group Formation

Within each segment that is governed by
a CPF clustering policy, clients can be further
gathered as application groups according to some
application-level relations, such as application
preferences, trust, QoS provisions, reliability,

264 Proxy Selection and Performance Analysis of a Dynamic Proxy Framework

and machine capacity. Each group is served by
one proxy as the leader and its size depends on
the serving capacity of the proxy. A new group
is formed dynamically at runtime in segment
with no existing group, or where the existing
groups are functionally expired, i.e. either
overloaded or terminated

Basically, for the sake of bandwidth
conservation, grouping is formed only when
there are at least two clients demonstrating
similarities in terms of application relations.
Given the presence of the first group, the creation
of subsequent groups can be driven by a number
of factors. These factors define when the first
proxy should stop serving future client requests
and when a new group should be allocated. These
factors include:
ë Number of Clients: This is the simplest way

to infer proxy overloading based on a
counter-based approach, wherein the proxy
workload is directly deduced from
the number of clients served. It is
easy to implement, and involves less
state management (bandwidth) overheads.
It uses a threshold that is defined
in finite scales based on the capacity of the
proxy-hosting machines, to induce the
respective maximum serving capacity of
various proxy-hosting machines. As an
example, by scaling the machine capacity
into 5 levels, level-0 denotes machine
with the highest capacity while level-4
represents the opposite extent. This is
known as the selection threshold of DAPS.
The ranking of machine capacity could be
judged on the CPU processing power,
or a combination of CPU processing
power, amount of memory and
secondary storage capacity, of the
proxy-hosting machine. This approach is
feasible only with an assumption
that no third party programs (user
activated desktop applications) are
competing for local resources during
the proxy-hosting session.

ë Resource Utilisation Level: This is basically
a status-monitoring approach where the
proxies periodically acknowledge the central
server about their resource utilisations. This

allows the server to determine the availability
of the proxies to serve more clients.
Monitoring and updating the status
information of distributed proxies is an
expensive process, which consumes both the
network and proxy resources. Besides,
configuring an optimal status-updating
interval is also crucial. A small interval could
result in frequent updates at the waste of
bandwidth, whereas a larger interval (which
could be due to highly congested network)
could render an inaccurate proxy status to be
reported to the central server.

ë Operational Time: This is a time-based
approach whereby the proxy is limited to work
only for a fixed period of time, e.g. one hour
at lunchtime, or during off-office hours. The
principle adopted here is that the computer
resources are volunteered only when there are
no major computing tasks in actions.
However, DAPS services may be highly
demanded during office hours, particularly in
streaming lecturing materials or clips in either
the academic or business environments, and
barely even acquired at some other intervals.
Another obstacle of this approach is the
absence of a cost factor, such as workload or
resource utilisation. As an example, ignoring
these costs would result the proxy to work in
a highly overloaded manner.

 In practice, a combination of the above
factors should be considered to ensure smooth
application sessions. In our simulation, we have
taken the number of clients as the overloading
threshold of proxy for its simplicity and
practicability.

Selection Factor

In CPF, the two main factors that influence
proxy selection are user awareness and resource
contribution mode. The user awareness is
divided into both user-aware and user-unaware.
In the user-aware arrangement, users are asked
for the permissions to serve their machines as
proxies. This is the case where users are in full
control over their machines, e.g. a personally-
used machine. In the user-unaware environment,
CPF makes implicit utilisation of the user
machines without acknowledging the users

265Suranaree J. Sci. Technol. Vol. 11 No. 4; October-December 2004

individually4. The user-unaware technique serves
as a comparison template against the user-aware
technique.

The resource contribution mode is also
divided into two types, namely the dedicated
mode and the shared mode. The dedicated mode
simply means that the proxy is granted to
consume all the resources of the client machine.
The shared mode states that only a portion of
the resources (e.g. 50% or 75%) should be used.
This is to leave room for the executions of other
desktop applications. Based on the explanation
above, a logical selection preference of the given
factors would be alphabetically labeled as shown
in Table 1.

text editing. A 100% utilisation of resources
could cause significant interruptions to any
ongoing computing work. Our simulation studies
the effect of choosing various percentage of
resource utilisation for the user-unaware
approach in relation to a range of selection
thresholds, and makes reasonable conclusions
based on the simulation results.

Selection Algorithms

Two proxy selection algorithms have been
proposed in CPF, namely the conservative and
greedy algorithms. In the conservative algorithm,
the best machine is selected among a group of
active clients. The next machine is not selected
until the current proxy machine is overloaded
or failed. The selected machine continues to
serve as the proxy even if more capable machines
are available within the same cluster. Due to its
conservative characteristic, this algorithm does
not incur extra communication and processing
overheads on monitoring the status of machines.
Unfortunately, for the same reason, it has
a tendency of not utilising the best available
machine to host the proxy.

Contrasting to the conservative algorithm,
the greedy algorithm always hunts for a better
machine to host the proxy, similar to the Bully
election algorithm (Coulouris et al., 2001). Being
highly dynamic, this algorithm trades-off the
extra overheads of status monitoring for
(possibly) better proxy performance. Whenever
a better machine is encountered, a proxy
handover shall be initiated. This involves a series
of steps on shifting the workloads from the
current proxy to the more capable proxy. In cases
where the total number of clients (which includes
both 2-tier clients and clients served by the
current proxy) exceeds the serving capability of
the new proxy, priority shall be given to the
2-tier clients. In such case, 2 proxies will be
allocated to serve requests. Assuming all clients
have been successfully shifted to the new proxy,
the current proxy shall be configured into an
inactive mode, waiting to be invoked again.

Table 1. Selection preferences.

Dedicated Shared

 User-aware A -

 User-unaware C B

4 This is the scenario of a network where machines are centrally managed by a common administrator, who
wishes to contribute a pool of possibly spare machine resources (frequently less loaded) to improve the
overall system performance where possible. Typical examples include the voluntary computing (Sarmenta
and Hirano, 1999), grid computing and potentially the Storage Area Network.

The most effective CPF session would be
to allocate DAPS on a dedicated and user-aware
machine (A). Running on a dedicated machine
allows DAPS to make full utilisation of the local
resources and thus subject to less sudden
disruptions such as scarcity of resources due to
the execution of other applications, or machine
shutdown. Being user-aware should not restrict
the DAPS from making total utilisation of local
resources. Hence, the user-aware and shared
column is considered logically irrelevant. The
user-unaware and shared column deserve the
second priority (B) because it is practically more
feasible to allow DAPS to run in a user-unaware
environment to tap into only 50-75% of
resources, instead of 100% as denoted by (C).

It is unknown how much resource should
be tapped in the user-unaware approach.
However, to be conservative, we believe that
exploiting only 50-75% of resources is logical,
while leaving an extra quarter for other
computing purposes, such as web browsing and

266 Proxy Selection and Performance Analysis of a Dynamic Proxy Framework

Poisson and 2-state distributions. The simulation
models all events occurring in the running
of the CPF system where possible, to closely
adhere to the CPF hand-shaking setup protocol
(Choong et al., 2003).

The proxy delivery mechanism is as
follows. Upon receiving a stream of video data,
the proxy distributes the data to a list of clients
in a round-robin fashion. In a LAN, such
a distribution could take less than 1 second
(at a certain type of video resolution) with the
speed of 100 Mbps and the availability of
Ethernet-based IP multicasting facility. In
a network without multicasting facility,
disseminating contents within 1 second is
impossible, particularly when the number of
clients is large. This is because the interval of
the subsequent distribution cycle has a linear
relation to the client size. To simulate such
a distribution, an equation of the transfer_rate
has been derived as follows:

transfer_rate = bandwidth_LOCAL _NETWORK/

(clients.size() * bandwidth_VIDEO_TRANSMIT *

PROXY_RELAY_COST* getRelayDelay(proxy.

client.machineType) * CLIENT_RECEIVE_COST*

getReceiveDelay(client.machineType)); (1)

Figure 1. The CPF proxy selection algorithms.

Enriching the above 2 algorithms with the
user-awareness factors results in 4 different
algorithms, denoted as AC, UC, AG and UG as
shown in Figure 1. By governing these 4
algorithms with the selection thresholds, which
is scaled into 5 levels (0 - best, 4 - worst), and 3
levels of resource utilisations (100, 75 and 50%),
these algorithms are given more options.

Simulation Methodology

We study the performance of CPF by using
simulation as a complement effort to the
prototype implementation in Choong et al.
(2003). Doing this allows us to examine the
effect of CPF on large networks with different
scenarios, and enables us to evaluate different
proxy selection algorithms, choices of
configuration thresholds, and their impacts on
different performance parameters, before
applying them into our future CPF system.

Network Model

The campus or enterprise network is
considered in this simulation study. Separate
links of similar bandwidth connect all clients
over a common router. This means the distance
between each client is at least 2 hops apart. Each
client is assumed to represent a subnetwork,
where more clients were attached. Further, it is
assumed that no multicast-capable switch or
router exists in the network. In this paper, we start
by studying the effect of the Neighbor clustering
policy. From the results collected, we further
evaluate the Regional clustering policy based on
the preferred algorithms and selection thresholds.

Simulation Model

This simulation is based on the event-
driven model. Events are generated according
to the standard traffic distributions, i.e. the

This equation is composed according to a list of
cost factors as follows:
ë Client size: It has a direct impact on the

delivery rate.
ë Bandwidth requirement of the video:

A constant value.
ë Proxy relaying weight: A constant value for

each proxy, set to 1.
ë proxy machine types: The capability of the

proxy-hosting machine.
ë Client receiving weight: A constant value for

each client, set to 1.
ë Client machine types: The capability of the

client machine.

By multiplying the transfer_rate with the
bandwidth of LAN, the amount of data received
is given by the following equation:

data_received = bandwidth_LOCAL _NETWORK *

transfer_rate (2)

Selection threshold

Selection algorithms

Conservative

User-awareness

Greedy

User-aware User-unaware
100%

75%

50%

User-unaware
geedy (UG)

User-unaware
conservative (UC)

User-aware
greedy (AG)

User-aware
conservative (AC)

0, 1, 2, 3, 4 0, 1, 2, 3, 4

267Suranaree J. Sci. Technol. Vol. 11 No. 4; October-December 2004

10 similar requests originating from the
campus network to the central server. To study
the effect of proxy on different network
topology, 20 clients are assigned per slotted
time to simulate larger and busier campus
network.

ë Distribution of machine capacity, scaling at
5 levels with the following ratio: 2 : 10 : 38 :
25 : 25. The ordering is arranged in such
a way where the most capable machines
occupy only 12% (the first 2 ratio values) of
the total machines, average capacity
machine at 38%, and the remaining 50% for
lower capacity machines.

ë Types of client contribution modes: dedicated,
shared and ordinary clients (as explained in
earlier section).

ë Distribution of client contribution (user-aware
computing) is of the following ratio: 10, 20
and 70 (as respective to the above client
contribution modes). The ratio is
conservatively assigned, i.e. only 10% of the
clients are fully sharing their machine
resources (dedicated volunteers), followed
by 20% and 70% as shared and ordinary
clients, respectively.

ë Distribution of client contribution (user-
unaware computing): 10, 90 and 0. In this
case, the resource of every client machine is
assumed to be usable. However, the possible
amount of accessible resources is limited to
50%, 75% and 100%.

ë Traffic arrival pattern: Poisson distribution
represents the traffic with some bursty nature,
and hence it is being used to simulate the client
inter-arrival time, with a mean value of 3.3
(IPAM, 2004). The transition between various
event stages simulates a series of network
connection (on) and disconnection (off);
hence represents the 2-state traffic pattern
(Liu et al., 2000; Moore, 2002).

ë Packet size is 32 bytes.
ë Initial client request uses 1 packet.
ë The size of both proxy and client application

object: 320 packets. This comes to 10,240
bytes (10 KB), the exact file size of the
customised video proxy and client programs.

ë Bandwidth requirement of the video
broadcasting system is 320 packets per second

Simulation Parameters

To study the effect of proxy on a typical
campus network environment, some simulation
studies have been conducted with synthetic
workloads. The trace-driven simulation is not
conducted for two reasons. First, most server
traces available on the web (CS Department,
2003) are of HTTP-traffic types; hence they are
not compatible to the CPF underlying transport
protocols. Second, these traces are generally
collected from globally sparse populated clients
instead of those originated from the same
subnetwork or enterprise network regions, on
which the CPF clustering policies are focusing.
Furthermore, the concept of voluntary
computing is still new to the Internet user
community, and we do not have sufficient
statistical logs or data to justify a trace-driven
simulation. However, using synthetic workloads
allows us to demonstrate that the behaviour of
the framework is consistent with our intuitions,
and are useful for studying the sensitivity of the
framework and selection algorithms to various
networking and server parameters.

Several simulation parameters have been
synthetically defined as follows:
ë Number of clusters: 10. This is an arbitrary

value to denote the number of faculties in the
campus.

ë Total simulation time is 150 slotted time. This
value is chosen because the most significant
proxy allocation activities happen only at the
very beginning of the simulation, and the
overall traffics would then be stabilised once
sufficient proxies are allocated. Therefore,
running the simulation beyond 150 slotted
time exhibits little workload difference on the
bandwidth and server.

ë Client arrival period is restricted to the first
30 slotted time, to study the effect of proxy
on network and server workload conservation
with large clients arriving within a short
period of time.

ë Number of clients arriving per simulation
slotted time has been assigned values from
2, 4, 6, 8 to 10, for 5 different runnings.
This means that there are a maximum of

268 Proxy Selection and Performance Analysis of a Dynamic Proxy Framework

(pps). This value is adopted from the
RealVideo standard in delivering a “talking
head with motion” video with the total bitrate
conservatively coded at 80 Kbps (Technology
College Software, 2003).

ë Backbone bandwidth (from the local router
to the server) is 6,144 packets per second,
representing a T1 connection, i.e. 1.5 Mbps.

ë Local network bandwidth is assumed to be
50% of a 100 Mbps Ethernet, where the
remaining 50% is assumed to be occupied by
other applications.

Assumptions

To clearly observe the effect of proxy
allocation, the simulation starts with a clean
network with no users. For conservative reasons,
the most capable clients do not arrive in the first
20 simulation time so as to study the effect of
different selection thresholds and the outcome
of the greedy algorithm. Further, 3 out of 10
clusters are assumed to have no proxy volunteers.
It is also assumed that no delivery interruptions
such as proxy failure occur in the simulation.
Lastly, no clients quit the system during the
simulation to maintain the workload of the
network.

Performance Metrics

This simulation collects 4 main
performance metrics as listed below:
ë Average Client Receiving Rate: This refers

to the number of packets received by each
client in a second. It is measured as the Total
Packets Received (TPR) divided by the Total
Connection Time (TCT) of each client. The
Client Receiving Rate (CRR), is given as
CRR = TPR / TCT. The average client
receiving rate can be obtained by
accumulating each client receiving rate,
divided by the total client size (x), i.e.
∑ (CRRi) / x.

ë Network Throughput: This refers to the
maximum amount of bandwidth allocated to
either the proxy or 2-tier client at a specific
time. The throughput here is measured as the
data rate of 1.5 Mbps divided by the Total
Number of Connections (TNC), for the
duration of the simulation. The Network

Throughput (NTP) is given as NTP = 1.5
Mbps / TNC.

ë Number of WAN Connections: This refers to
the number of WAN connections made from
the client to the server. It consists of both the
3-tier and 2-tier connections.

ë Server Utilisation: This refers to the
percentage of the resources used for handling
client requests. It is based on the number of
server threads created to serve the client
requests. It is measured as the Number of
Threads (NT) times the Unit of resource
consumed (U), divided by the Total Resource
(TR) for the duration of the simulation. In
short, the Server Utilisation (SU) is given as
SU = ((NT * U) / TR) * 100%.

Results and Discussions

General Analysis

Table 2 summarises the performance
results of both the conservative and greedy
algorithms running with different user-awareness
settings and selection thresholds (Shaded
columns are identified for further studies). The
table also shows the effect of selection threshold,
n, from 1 to 4. The threshold of zero is not
considered because the probability of getting
a voluntary machine that satisfies such
requirement is rather impossible, given the
distributions listed in earlier sections. The
numbers next to the name of the algorithm denote
the resource utilisation level, e.g. UC-75 refers
to the conservative algorithm running in user-
unaware mode, which utilises 75% of the
computing resources.

When the selection threshold is 1 (n = 1),
the proxy selection became highly restrictive,
i.e. only machines with capacity level of 1 could
be chosen. In the case of AC algorithm, there
were only 2 proxies (out of 101) allocated to
serve 227 clients. Hence, the total WAN
connections made were over 100, where 90%
were of 2-tiers. Although it is expected that
clients served by the most capable proxy
machine should gain much favorable
performance, the large number of 2-tier
connections had quickly degraded the overall

269Suranaree J. Sci. Technol. Vol. 11 No. 4; October-December 2004

content delivery performance. As a result, no
clients received at 320 pps. The same explanation
applies to the other algorithms as well. With the
selection threshold of 1, the receiving rates
achieved by all algorithms were below 60 pps.

The proxy selection scope becomes wider
as n is set above 2. As the number of proxy
increases (with higher n values), the total of
WAN connections established is further reduced
as shown in Table 2. The number of WAN
connections has been reduced from more than
100 down to 11-14 (n = 2), 13-22 (n = 3) and
12-26 (n = 4).

Both the user-aware and user-unaware
(with 100% resource utilisation) approaches
achieved comparable results when n is 2.
However, when the n becomes larger, the
performance difference of both approaches
becomes more significant. This is because apart
from being able to make full resource utilisation,
the user-unaware approach has higher machine
availability (as all machines are assumed to be
transparently usable). However, as explained
earlier, exploiting full resources of client
machine transparently is practically infeasible;
hence, the results of user-unaware with 100%
resource utilisation serve merely for comparison
purposes, and are not included for detailed study.

From Table 2, it can be concluded that
setting the selection threshold to 2 yields the
most optimal performance, i.e. allowing 81% of
the total clients to receive at 320 pps, in the case
of the AC algorithm. It is also noticed that in
general, the AC algorithm performed slight better
than the AG algorithm. This could be due to the
simplicity of AC algorithm in serving requests,
unlike the AG that involves some overheads in
status monitoring, and conducting proxy
handover.

Performance Comparisons

After excluding the infeasible approaches,
and approaches that produce unfavorable results,
only 4 algorithms are left for further studies
(shaded columns in Table 2), i.e. the user-aware,
and user-unaware approach running with 75%
resource utilisation. These remaining algorithms
are further investigated in terms of the average
client receiving rates, bandwidth utilisation of
the WAN and the performance of proxy. The
effect of proxy on the server workload is
discussed in details in section 4.3 under the study
of different network topology. The following
comparison study is based on the results of
setting the selection threshold to 2. Thresholds
of 3 and 4 are excluded because they allow only

AC AG UC-100 UC-75 UC-50 UG-100 UG-75 UG-50

n = 1

Total WAN links 101 101 102 128 131 101 128 131
> = 320 pps 0% 0% 0% 0% 0% 0% 0% 0%
Average Client Receiving Rate 57 56 55 48 47 57 48 48

n = 2

Total WAN links 11 12 11 12 15 11 14 18
> = 320 pps 81% 71% 75% 76% 17% 69% 67% 6%
Average Client Receiving Rate 404 357 394 380 267 257 349 257

n = 3

Total WAN links 14 17 13 17 22 19 19 22
> = 320 pps 52% 50% 59% 28% 19% 32% 48% 20%
Average Client Receiving Rate 313 325 326 299 271 298 331 275

n = 4

Total WAN links 14 19 12 17 26 18 21 26
> = 320 pps 47% 39% 72% 36% 5% 44% 34% 11%
Average Client Receiving Rate 316 315 363 322 238 328 294 249

Table 2. Performance of algorithms.

270 Proxy Selection and Performance Analysis of a Dynamic Proxy Framework

about 50% of the total clients to receive at
320 pps (Table 2).

Average Client Receiving Rate

Figure 2 depicts the Cumulative Density
Function (CDF) of these 4 algorithms with
Table 3 detailing the respective actual
performance figures. It shows that the AC
algorithm outperformed the others significantly,
achieved nearly 80% CDF at 320 pps. AC further
allows 19% (which is 10% more than the others)
of CDF to receive at 450 pps. The next most
capable algorithm is also the conservative
algorithm running in user-unaware approach,
UC. As higher video bandwidth requirements
(450 pps) are imposed, most algorithms (except
AC) achieved similar performance, which is
less than 10% of CDF.

The greedy algorithms seem to contribute
little effort although it has a property of always
ensuring that the best machine is selected to host
proxy. The two most likely reasons of such
observation are as follows. Firstly, there are some
overheads in evaluating and monitoring the

machine capability upon the arrival of a new
client. The cost could also come from the time
spent on performing proxy handover. Secondly,
the client size may be too small to justify the
merits of the greedy nature of the algorithm.
Thus, we shall further investigate the behaviors
of both conservative and greedy algorithms with
a larger client size in the later section.

Table 3 shows that the AC utilised only
11 backbone connections (n = 2), which is the
lowest among the 4 algorithms. Consequently,
it enables more clients (19%) to receive at higher
rates, at an average of 404 pps.

Based on the simulation results, it is
concluded that the AC algorithm serves the most
optimal performance in terms of client receiving
rate and on selecting proxy candidates,
considering the settings of user-awareness,
resource utilisation, and selection threshold as
highlighted earlier.

Bandwidth Utilisation of WAN

Figure 3 shows the effect of the number
of connections and the related throughput on the
network backbone when dynamic proxy is
employed. In general, the throughput increases
as the number of connections drops. During the
first 80 simulation time, the network throughput
highly fluctuated due to the initial direct
connections that each client established to the
central server. As more proxies were allocated,
the network throughput gradually stabilised
(beyond simulation time 90). The average
throughput was then sustained at about 560 pps.

Performance of Proxy

This section evaluates the performance of
the proxy, based on observations of the proxy

Table 3. Performance of selected algorithms
with selection threshold 2.

n = 2 AC AG UC-75 UG-75

2-tier links 0 0 0 0

3-tier links 11 12 12 14

Total links 11 12 12 14

> = 320 pps 81% 71% 76% 67%

> = 450 pps 19% 8% 10% 11%

Client Avg. 404 357 380 349

receiving rate

Figure 2. CDF of the selected algorithms with
selection ceshold 2.

Figure 3. Bandwidth utilisation of WAN.

C
D

F
 (

%
)

Client receiving rate

90

80

70

60

50

40

30

20

10

0

68
8

48
3

45
7

44
3

43
3

42
3

41
5

41
0

40
3

40
0

39
6

38
9

38
6

37
7

36
9

35
9

34
9

34
5

33
8

33
5

32
5

AG

UG-75%

AC

UC-75%

18

16

14

12

10

8

6

4

2

0

N
um

be
r

of
 c

on
ne

ct
io

ns

T
hr

ou
gh

pu
t

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

Time

1 7 13 18 25 31 37 43 49 55 61 67 73 78 85 91 97 10
3

10
9

11
5

Connecting Size
Throughput

271Suranaree J. Sci. Technol. Vol. 11 No. 4; October-December 2004

machine capacity, client heterogeneity, and
availability of local proxy. Table 4 shows the
detailed performance figures of the AC algorithm
(highlighted rows are quoted examples for
discussions). As indicated in Table 4, there were
only 7 clusters that have proxy volunteers.
Hence, it is expected that some proxies may need
to serve non-local clients originated from the
remaining 3 clusters.

In general, the performance of proxy is not
directly affected by the load incurred as the
result of serving more clients. However, this is
true only if the client size is under a certain
threshold, i.e. based on the serving capacity of
the proxy. The last 3 rows of Table 4 imply
such observations, where the first proxy
(proxyID = 0) is capable of achieving slightly
higher receiving rate than the less loaded
proxyID = 7 although it served twice or more
clients. However, the heterogeneity of client
machine does affect the overall receiving rate.
As an example, there is a difference of 152.5
(494.8 - 342.3) pps, in terms of receiving rate
between the first proxy (proxyID = 0) and the
second proxy (proxyID = 1), although both are
in the same cluster.

Performance figures of cluster 6 (first
row of Table 4) reveal the performance impact
of serving clients from non-local clusters.
Although nearly 42% of its client machines were
of capacity levels 1 and 2, the receiving rate of
the proxy (proxyID = 3) in cluster 6 is lower

than the first proxy (proxyID = 0) in cluster 0.
This is due to the fact that about 32% of the total
clients in cluster 6 originated from the neighbor
clusters with no local proxies.

Nevertheless, from the statistical
perspective, the early proxy allocation does help
clients to achieve higher average receiving rate.
As an example, the first proxy (proxyID = 0)
allocated in cluster 0, achieves the highest rate
among all proxies, whereas the later proxies
(such as proxyID = 3, 4 and 7) achieved slightly
lower receiving rate. The most capable proxy
machine (proxyID = 4) achieved 63.6 pps
(494.8 - 431.2) lower than the first proxy
(proxyID = 0) because the first proxy started at
the time when the number of WAN and LAN
connections were insignificant.

Every network object has a performance
limit. As more clients join the network, the
delivery bottleneck is expected to shift from the
proxy machine to the backbone, reflecting again
the problems of the 2-tier scenario, i.e. too many
proxies forming direct connections to the central
server. Hence, it is important to derive a better
scheme to scale CPF further, as will be explained
in the next section.

Effect of Network Topology

As explained earlier, allocating proxies as
more clients arrived is only a temporary solution.
For better scalability, efforts must be made on
arranging proxies into some structures,

Cluster ID Proxy ID Receive Client Distribution of client machine types
rate size 0 1 2 3 4

6 3 394.6 34 0 2 12 11 9
5 6 458.2 6 0 1 1 3 1
4 5 423.4 7 0 0 1 3 3
3 9 446.5 5 0 0 3 2 0
2 4 431.2 10 0 0 6 1 3
1 2 349.6 40 0 0 2 16 22
1 11 429.5 3 0 0 0 1 2
0 0 494.8 40 0 0 2 37 1
0 1 342.3 40 0 0 0 5 35
0 7 421.2 15 0 0 6 3 6

Table 4. Performance figures of the AC algorithm.

272 Proxy Selection and Performance Analysis of a Dynamic Proxy Framework

e.g. a hierarchical organisation. Incorporating the
combination of both the Regional and Neighbor
clustering algorithms serve this purpose, i.e. by
allocating proxies at the ISP network to serve
all the campus- or enterprise-level proxies in a
cascaded manner. This section investigates both
the AC and AG algorithms (with selection
threshold of 2) in such a context with a larger
client size than earlier studies. Out of 600 total
clients, 30 were allocated in the ISP network
region while the remaining scattered among the
lower network hierarchy. Both algorithms are
compared in terms of the client receiving rate.
The algorithm that achieves more significant
results shall further be studied in terms of the
network throughput and server workloads.

 Figure 4 shows the CDF of client
receiving rate of both the AC and AG algorithms,
running with the combined clustering policy. By
allocating proxies to function in a cascaded
manner, both algorithms are capable of allowing
an extremely high receiving rate. This is because
only the proxies at the ISP network are permitted
to form direct connections to the server. It could
be seen that the AG algorithm slightly
outperforms the AC algorithm, with an average
difference of 5.9%. It is also noted that the
combined clustering policy has enhanced the
receiving rate by more than 100%, over the
performance generated by the Neighbor
clustering policy (Figure 2).

In the next section, the AG algorithm is
analysed to study the performance difference in
terms of network throughput and server
workload, before and after the use of the
combined clustering policy. From Figure 5, it is
noticed that enforcing the combined clustering

policy yields significant network performance
differences, from time 78 onwards. The
throughput oscillates centered at the maximum
throughput of 6,144 pps. The frequent but brief
flops of throughput from time 78 onwards are
caused by the setup connections of new clients
to the central server. It is also noticed that the
throughput gets stabilised towards the last 20
simulation time. Overall, the network throughput
has increased by 35% by adopting the combined
clustering policy than without, at an average of
3,419.56 pps.

The combined clustering policy also incurs
substantial impacts on the server workload as
depicted in Figure 6. The workload here is
measured by the number of server threads
allocated to serve the client requests. Workloads
were gradually accumulated on the first half of
the simulation run. However, they were actively
distributed in the second half of the simulation
run, as shown by the presence of brief workload
spikes. The workload difference on the second
half simulation period, before and after the use
of the combined clustering policy is about
11.38%.

Figure 5. Effects of the combined clustering
policy on network throughput.

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

N
et

w
or

k
th

ro
ug

hp
ut

Before

After

Time

2 10 18 20 34 42 50 58 60 74 82 90 98 10
8

11
4

12
2

13
0

13
6

14
8

Figure 6. Effects of the combined clustering
policy on effects on server workloads.

30

25

20

15

10

5

0

S
er

ve
r

w
or

kl
oa

d

Before

After

Time

2 10 18 20 34 42 50 58 66 74 82 90 98 10
8

11
4

12
2

13
0

13
6

14
8

Figure 4. CDF of client receiving rate of
the AC and AG algorithms.

100

90

80

70

60

50

40

30

20

10

0

C
D

F
 o

f r
ec

ei
vi

ng
 r

at
es

 (
%

)

3,
52

2

1,
67

1

1,
63

0

1,
60

2

1,
56

9

1,
53

5

1,
48

7

1,
43

1

1,
37

8

1,
32

2

1,
26

0

1,
21

1

1,
16

4

1,
12

3

1,
08

1

1,
03

0

94
5

89
1

83
8

76
9

70
0

Consenvalive

Greedy

Client Receiving Rate

273Suranaree J. Sci. Technol. Vol. 11 No. 4; October-December 2004

Conclusion

This paper has studied the overall performance
of the CPF system formulated under the context
of proxy selection. The study focuses on three
main areas: the client receiving rate, network
utilisation, and server workload. Two contrasting
selection algorithms, namely the conservative
and greedy algorithms, have been proposed.
These algorithms are augmented with various
settings such as the user-awareness, selection
threshold and resource utilisation threshold, to
further benchmark the effect of dynamic proxy
allocation.

In general, the simulations show that the
conservative algorithm works well at low request
loads while the greedy algorithm operates better
at higher request loads. Further, running the
algorithm in a user-aware manner gains more
favorable results than the opposite case, besides
being practically more acceptable. While
deploying dynamic proxies at the enterprise
network level improves the overall networking
performance, introducing them at the higher ISP
network level to work in a cooperative manner
further scales the overall performance. As
examples, the average client receiving rate has
been enhanced by at least 100%, the network
throughput has increased by 35% and the server
workload has been reduced by 11.38%.

Improvements on the proxy selection
algorithm could be achieved by deriving an
adaptive algorithm that uses either the
conservative or greedy algorithms in a selective
manner according to the client size. In addition,
a scheme is also required to define the selection
threshold of proxy-hosting candidatures
dynamically based on the distribution of client
machine capacity coupled with the voluntary
momentum in a given network segment.

References

Bestavros, A., and Cunha, C. (1996). Server-
initiated document dissemination for the
WWW. IEEE Data Engineering Bulletin,
19(3):8.

Choong, K.N., Mohd, A.B., Prakash, V., Tee,
E.R., and Yee, Y.C. (2003). The framework

of a dynamic proxy system. Suranaree
Journal of Science and Technology,
10(1):7-18.

Chu, Y., Rao, S., and Zhang, H. (2000).
A case for endsystem multicast.
Proceedings of ACM Sigmetrics; June,
2000; Santa Clara, CA, USA, 12 p.

CiteSeer. (2004). Versatile primitives for
application-level multicasting. CiteSeer.
Available from: www. citeseer.ist.psu.edu/
526529.html. Accessed Feb 14, 2004.

Coulouris, G., Dollimore, J., and Kindberg, T.
(2001). Distributed systems: concepts and
design. 3rd edition, Addison-Wesley,
USA, 772 p.

CS Department. (2003). Web Server Traces.
University of Wisconsin, Madison: CS
Department. Available from: www.cs.
wisc.edu/~cao/ icache/ t race.html .
Accessed Oct 14, 2003.

Erilsson, H. (1994). MBone: The multicast
backbone. Communications of ACM,
37(8):6.

IPAM. (2004). Active measurements on the
AT&T IP Backbone. University of
California, LA: IPAM. Available from:
www.ipam.ucla.edu/publ icat ions/
cntop2002/cntop2002_gramachandran.
ppt. Accessed Aug 10, 2004.

Knutsson, B., and Peterson, L. (2001).
Transparent proxy signaling. Journal of
Communications and Networks, Korean
Institute of Communication Sciences,
3(2):10.

Krishnamurthy, B., and Wang, J. (2000).
On network-aware clustering of web
clients. Proceedings of ACM SIGCOMM;
Aug, 2000; Stockholm, Sweden, 14 p.

Krishnan, P., Raz, D., and Shavitt, Y. (2000). The
cache location problem. IEEE/ACM
Transactions on Networking, 8(5):14.

Liu, E., Cuthbert, L.G., Schormans, J.A.,
and Stoneley, G. (2000). Neural network
in fast simulation modeling. IEEE_
INNS_ENNS Proceedings of International
Joint Conference on Neural Networks
(IJCNN); July 24-27, 2000; Como, Italy, 5 p.

Moore, A.W. (2002). Measurement-based
management of network resources.

274 Proxy Selection and Performance Analysis of a Dynamic Proxy Framework

Computer Laboratory (UCAM-CL-TR-
528), University of Cambridge. Technical
Report No. 528. 273 p.

NTT PF Labs. (2003). Yallcast Architecture
Overview. Japan: NTT PF Labs. Available
from www.yallcast.com. Accessed Oct 27,
2003.

Pendarakis, D., Shi, S., Verma, D., and
Waldvogel, M. (2001). ALMI: An
application level multicast infrastructure.
Proceedings of the 3rd Usenix Symposium
on Internet Technologies & Systems
(USITS); March 26-28, 2001;

San Francisco, CA, USA, 17 p.
Sarmenta, L.F.G., and Hirano, S. (1999).

Bayanihan: Building and studying web-
based volunteer computing systems
using Java. Future Generation Computer
Systems Special Issues on Metacom-
puting, Elsevier Publication, 15(5/6):11.

Technology College Software. (2003). Real
Audio/Video - Test Page. Technology
University of North Carolina, Wilmington:
Technology College Software. Available
from: www.uncwil.edu/tc/real. Accessed
Sept 20, 2003.

