
211Suranaree J. Sci. Technol. Vol. 11 No. 3; July-September 2004

A NEW PIVOT SELECTION SCHEME FOR QUICKSORT
ALGORITHM

Aminu Mohammed1 and Mohamed Othman2*

Received: Jul 9, 2004; Revised: Apr 26, 2004; Accepted: Apr 28, 2004

Abstract

Data sorting is one of the most intensively studied problems in computing science for both its theoretical
importance and its use in many applications. Quicksort which depends on an appropriate pivot selection
technique for its performance is widely considered to be one of the most efficient sorting techniques.
Brest et al. (2000) has implemented a parallel quicksort algorithm on PC-cluster using a Median5 function
as a pivot selection scheme. In this paper, a sequential quicksort was implemented using Median5 function
as a pivot selection scheme and subsequently a new pivot selection scheme for minimizing the execution
time of quicksort algorithm sequentially is proposed. The two schemes were tested together using integer
and double array data types. From the results obtained, the execution time of quicksort algorithm was
reduced by about 23-28% for integer array and 17-22% for double array when compared with Median5
function (median-of-five with random index selection scheme).

Keywords: Data sorting, partitioning, pivot selection scheme, sequential quicksort algorithm

Introduction

1 Department of Mathematics, Faculty of Science Usmanu Danfoduyo University, P.M.B. 2346 Sokoto, Sokoto-
State. Nigeria. Tel: 234-060-230867 E-mail: mamunuus@yahoo.com

2 Department of Communication Technology and Network, Faculty of Computer Science and Information
Technology, University Putra Malaysia 43400 UPM Serdang, Selangor D.E., Malaysia Tel: 603-8946-6565
Fax: 603-8946-6577, 603-8948-3745 E-mail: mothman@fsktm.upm.edu.my

* Corresponding author
Suranaree J. Sci. Technol. 11:211-215

Sorting data is one of the most intensively
studied problems in computing science and it
continues to be an interesting theoretical and
difficult practical problem. Many sorting
algorithms have been proposed (Scowen, 1965;
Motzkin, 1983; Roger, 1985; Moh et al.,
1999).
 Although there is no internal sorting
algorithm that is best for every situation, the
Quicksort algorithm introduced by Hoare (1961;
1962) is widely accepted as the most efficient
internal sorting technique. Quicksort sorts a list
of keys A[1], A[2], . . . , A[n] recursively by

choosing a key “m” in the list as a pivot key
around to rearrange the other keys in the list.
Ideally, the pivot key is near the median key
value in the list, so that it is preceded by about
half of the keys and followed by the other half.
The keys of the list are rearranged such that for
some j, A[1], A[2], . . . , A[j] contain all the keys
with values less than m, and A[j+1], A[j+2], . . . ,
A[n] contain all the keys with values greater than
or equal to m. The elements A[1], A[2], . . . ,
A[j] are called the left sub list, and the elements
A[j+1], A[j+2], . . . , A[n] are the right sub list.
Thus, the original list is partitioned into two sub

212 A New Pivot Selection Scheme for Quicksort Algorithm

lists where all the keys of the left sub list precede
all the keys of the right sub list. After partitioning,
the original problem of sorting the entire list is
now reduced to the problem of sorting the left
and right sub lists independently. Quicksort is
then applied recursively to each of these sub lists
until the sub list consists of just a single item.
Not only is this algorithm simpler than many
other sorting algorithms, but empirical (van
Emden, 1970; Sedgewick, 1977) and analytical
(Knuth, 1998) studies show that quicksort can
be expected to be up to twice as fast as its nearest
competitors, with expected time complexity of
O(n log n) and a worst case of O(n2).

There is a continual demand for greater
computational speed from a computer system
than currently possible (Moh et al., 1999). Areas
requiring great computational speed include
numerical modeling and simulation of scientific
and engineering problems. Such problems often
need huge repetitive calculation on a large
amount of data to give valid result. Thus, it is
appropriate to study how the performance of
quicksort algorithm can be improved.

The rest of the paper is organized as
follows. In section 2, an overview of the pivot
selection techniques is given while in section 3
the proposed pivot selection scheme is described.
Experimental results of the implemented pivot
selection scheme on a qucksort algorithm are
presented in section 4 and concluding remarks
are given in section 5.

Pivot Selection Techniques

There are several ways to make the worst case
for a quicksort algorithm very unlikely in
practical situations (Sedgewick, 1978). Instead
of using the first element in the list as the
partitioning element, one may use some other
fixed elements, like the middle element. This
helps some, but simple anomalies can still occur.
Using a random partitioning element will
virtually prevent the anomalous cases from
happening in practical sorting situations, but
random number generation can be relatively
expensive and does not reduce the average
running time of the rest of the algorithm
(Singleton, 1969; Roger, 1985).

Median-of-Three Method

The best choice of pivot would be the
median of the array; unfortunately this is hard
to calculate and would slow down quicksort
considerably. The median of three modifications
(Hoare, 1962) will actually improve the average
performance of the algorithm while at the same
time making the worst case unlikely to occur in
practice (Weiss, 1999).

In this method, a sample of size three is
used at each particular stage. Primarily, this
sampling method ensures that the partitioning
elements do not consistently fall near the ends
of the sub lists. To make the worst case unlikely
the method uses the first, middle, and the last
elements as the samples and the median of those
three as the partitioning element. Using this
method clearly eliminates the bad case for sorted
input and actually reduces the running time of
quicksort by about 5% (Hoare, 1962; Singleton,
1969).

Median-of-Five Method

As a larger sample size gives better
estimates of the median, many researchers try
to improve on the running time of quicksort by
proposing different pivot selection techniques.
Thus, the median-of-five method was used (Brest
et al., 2000; Cerin, 2002). The method uses a
sample size of five elements, i.e. the first, middle,
last, and two other elements randomly picked
through a random number generation function
between the first and the last elements. This
technique gives a better load balancing and
reduces the execution time of quicksort by more
than 5%, but there is an overhead associated with
random number generation. A snapshot of this
method is presented in Figure 1.

Proposed Method

In this section we propose a new pivot
selection scheme for quicksort algorithm, which
does not involve any use of random index
selection. This method also uses a sample size
of five elements as in the median-of-five
method with random index selection scheme.
The five elements are selected as follows: first,
middle, last, and other two are at positions
() / * () / ,low high low high+[] +[]4 3 4 and where

213Suranaree J. Sci. Technol. Vol. 11 No. 3; July-September 2004

Figure 1. A snapshot of median5 function scheme.

Median5 Scheme (int A[], int low, int high)
{
int V[5] ;
V[0] = low;
V[1] = high;
V[2] = (low + high)/2 ;
V[3] = (int)(low - high) * ((double)(rand () / (double) (RANDMAX + 1)) ;
V[4] = (int)(low - high) * ((double)(rand () / (double) (RANDMAX + 1)) ;

for(int i=0; i< 5; i++)
for(int j=0; i< 4; i++)
 if(A[V[j]] > A[V[j+1]])
 {
 int temp = V[j] ;
 V[j] = V[j+1] ;
 V[j+1] = temp ;
 }
 return V[2] ;
}

Figure 2. A snapshot of the proposed scheme.

Proposed Scheme (int A[], int low, int high)
{
int V[5] ;
V[0] = low;
V[1] = high;
V[2] = (low + high)/2 ;
V[3] = (low + high)/4 ;
V[4] = 3((low + high)/4) ;

for(int i=0; i< 5; i++)
for(int j=0; i< 4; i++)
 if(A[V[j]] > A[V[j+1]])
 {
 int temp = V[j] ;
 V[j] = V[j+1] ;
 V[j+1] = temp ;
 }
 return V[2] ;
}

low and high are indexes of the first and last
elements in the original array. Thus, it forms
a new array of five elements, which will be used
by the algorithm. It then returns the middle
element after sorting the new array. The returned
middle element is the median of those five
elements and is used as the partitioning element.
Thus, it eliminates the use of random index
selection.
 The snapshot of the new pivot selection
scheme is presented in Figure 2. All of the five

elements are selected explicitly as shown in the
snapshot. It therefore shows the idea of our
scheme. First, the five elements are picked from
the unsorted array. Then the elements are sorted
using a sample sort. Finally, the median of the
five elements i.e. V [2] is returned, which will
be used as the pivot element.

Results and Discussion

In this section, the experimental results of the

214 A New Pivot Selection Scheme for Quicksort Algorithm

implemented sequential quicksort algorithm
using our scheme and the Median5 function
(median-of-five with random index selection)
as pivot selection techniques are presented.
The algorithm was implemented in C++
programming language on a PC-cluster machine.
Our implementation was sequential and thus the
parallel capability of the PC-cluster was not
utilized. The purpose of using a PC-cluster as
a normal PC was to utilize its larger array size
capability. The maximum array size that could
be declared on the PC-cluster was two million
elements. In the experiment, integer and double
array data types were used. The data were
randomly generated and 40 independent
measurements were performed in each case.
Thus, we operated on average values. The
obtained results are shown in Tables 1 and 2.

The graphs on Figures 1 and 2 show the
execution time of the two methods when sorting
integer and double array types. Based on the
results, the proposed scheme i.e. the median-of-
five method without random index selection was
faster than Median5 scheme (median-of-five
with random index selection). Thus, the proposed
scheme was faster and therefore minimized
the execution time of quicksort algorithm
sequentially by about 23-28% and 17-22%
for integer and double array data types
respectively.

Table 1. Execution time of the two schemes
using integer array type.

n Proposed scheme Median5 scheme

(sec) (sec)

100K 0.16 0.21

200K 0.34 0.47

300K 0.53 0.72

400K 0.72 0.10

500K 0.91 1.26

Table 2. Execution time of the two schemes
using double array type.

n Proposed scheme Median5 scheme

(sec) (sec)

100K 0.27 0.32

200K 0.58 0.68

300K 0.89 1.06

400K 1.22 1.46

500K 1.46 1.83
Figure 4. Average time against array size of

the two schemes-using double array.

Figure 3. Average time against array size of
the two schemes-using integer array.

Proposed scheme
Median5 scheme

1.4

1.2

1.0

0.8

T
im

e
(s

ec
)

0.6

0.4

0.2

0

100 200 300

Array size (K)

400 500

Proposed scheme
Median5 scheme

2.0

1.8

1.6

1.4

1.2

T
im

e
(s

ec
)

1.0

0.8

0.6

0.4

0.2

0

100 200 300

Array size (K)

400 500

215Suranaree J. Sci. Technol. Vol. 11 No. 3; July-September 2004

Conclusion

In this paper, the pivot selection methods in
sequential quicksort algorithm and experimental
study of their performance were presented.
Tables 1 and 2 show that the median-of-five
method without random index selection
(proposed scheme) was faster than Median5
scheme (median-of-five with random index
selection) for both integer and double array type.
This has been graphically shown in Figures 3
and 4. Thus, the execution time of sequential
quicksort algorithm was minimized by about
23-28% and 17-22% for an integer and double
array types respectively.

The work is constrained by our inability
to generate larger array size that could be in tens
or hundreds of million in sizes. Likewise, the
proposed scheme needs to be implemented using
parallel quicksort in order to ascertain its
performance in that direction.

References

Brest, J., Vreze, A., and Zumer, V. (2000).
A Sorting algorithm on PC cluster.
Proceedings of the ACM Symposium on
Applied Computing; March 19-21, 2000;
Como, Italy. ACM Press, New York, NY,
USA, p. 710-715.

Cerin, C. (2002). An out-of-core sorting
algorithm clusters with processors at
different speed. IEEE Proceedings of the
Int. Parallel and Distributed Processing
Symposium; April 15-19, 2002; Fort
Lauderdale, Florida, USA. IEEE
Computer Society, Washington, DC, USA,
p. 681-686.

Hoare, C.A.R. (1961). Algorithm 64; Quicksort.
Comm. ACM. 4(7):321.

Hoare, C.A.R. (1962). Quicksort. Computer
Journal, 5:10-15.

Knuth, D.E. (1998). The Art of Computer
Programming. 2nd ed. Addison Wesley,
Boston, USA, 3:73-80.

Loeser, R. (1974). Some performance test of
quicksort and descendents. Commun.
ACM., 17(3):143-152.

Moh, S., Kim, S., Lee, M., Yu, C., and Han, D.
(1999). A new parallel quicksort with
efficient processor allocation and minimal
communication. SIG on Parallel
Processing System Conference;
September 10-11, 1999; Korea
Information Science Society, Seoul,
Korea, p. 83-90.

Motzkin, D. (1983). Meansort. Comm. ACM.,
26(4):250-251.

Roger, L.W. (1985). A class of sorting algorithms
based on quicksort. Commun. ACM.,
28(4):396-402.

Scowen, R.S. (1965). Algorithm 271;
Quickersort. Comm. ACM. 8, 11:669-670.

Sedgewick, R. (1975). Quicksort. [PhD. thesis].
Stanford Comptr. Sci. Rep. STAN-CS-75-
492, Stanford U., Stanford, California,
p. 25-251.

Sedgewick, R. (1977). Quicksort with equal
keys. Siam Journal on Comput., 6(2):
240-267.

Sedgewick, R. (1978). Implementing quicksort
program. Commun. ACM., 21(10):847-857.

Singleton, R.C. (1969). Algorithm 347; An
efficient algorithm for sorting with
minimal storage. Comm. ACM.,
12(3):185-187.

van Emden, M.H. (1970). Increasing the
efficiency of quicksort. Comm. ACM.,
13(9):563-567.

Weiss, M.A. (1999). Data Structure and
Algorithm Analysis in C++. 2nd ed.
Addisson-Wesley Publishing Inc, Boston,
USA, p. 250-467.

Youran, L., and Magdi, A.M. (1992). Parallel
quicksort in hypercube. ACM/SIGAPP
Symposium on Applied Computing;
March 1-3, 1992; Kansas City, Missouri,
United States. ACM Press, New York, NY,
USA, p. 740-746.

Zumer, V., Ojstersek, M., Vreze, A., and Brest,
J. (1999). Sorting on heterogeneous
computing System. Proceeding of
MIPRO’99: 10th International Conference
on Computers in Intelligent Systems; May
17-21, 1999; Opatia, Croatia, p. 1-4.

