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Abstract

Rheological constitutive equations with operators of fractional integration or differentiation play an
increasing role at the phenomenological description of polymeric materials. The wormlike micelles
system is formed by mixing Cetyltrimethylammonium bromide (CTAB) and sodium nitrate (NaNO3).
Two wormlike micelle systems belonging to the low and high salt regime are prepared. The effects of
copolymer on the rheological behavior of the two worm like micelles system are investigated by rheological
measurements. A fractional rheological description is obtained by replacing the first order time
derivatives with fractional derivatives of order q and µµµµµ. The Friedrich-Braun model relating stress to
strain is used to fit the experimental results on these wormlike micelle systems. The comparison between
the experimental results and theoretical predictions showed good agreement.

Introduction

Viscoelastic materials are of great interest
in a variety of applications. Viscoelastic
surfactant solutions have been studied over many
years, both theoretically and experimentally
(Binks et al., 2003). These solutions contain
long flexible or semiflexible micelles, described
as worm- thread- or rodlike, that become
entangled at high concentrations. Under
certain conditions of concentration, salinity,
temperature, presence of centurions, etc.,
the micelles present in aqueous solutions of
surfactants tend to grow. In some systems, long
wormlike micelles form at higher surfactant
concentrations and/or upon addition of a salt
(Hartman and Cressely, 1998). Also, in some
systems, cosurfactants play an essential role for
high viscoelasticity to appear (Cappelaere and
Cressely, 1998).

Rheological equations with fractional derivatives
have become popular to describe the properties
of polymers since the end of 1960s. Specifically,
the various relaxation equations are of main
interests. In general, these equations are derived
from known models by substituting time
ordinary derivatives of stress and strain by
derivatives of fractional orders. Bagely and
Torvik (1983) showed that fractional calculus
models of viscoelastic material were consistent
with the molecular theory and obtained the
fractional differential equation of order 1

2

(Bagely and Torvik, 1983). Schiessel and
Blumen (1993) showed that the fractional
differential or integral equations arise naturally
when expressing the rheological behavior of
fractal model not as a mathematical artifact
(Schiessel and Blumen, 1993).
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Previously, viscoelastic materials have
been characterized primarily by Kelvin-Voigt
model for constitutive relationship (Eldred et al.,
1996). This type of materials posses a
characteristic which can be descriptively referred
to as a memory effect. The material response is
not only determined by the current state of stress,
but is also determined by all past states of stress,
and in general sense, the material has a memory
for all past state of stress. A similar situation exist
if one considers the deformation as being
specified, and thus, the current stress depends
upon the entire past history of deformation
(Christensen, 1982). One of the important
problem areas associated with viscoelastic
constitutive relations and analysis is the
phenomenological curve fitting of actual creep
and/or relaxation data by least square or other
methods. Attempts were made to fit the
properties of the fluid with conventional models
of viscoelasticity. It was not possible to achieve
satisfactory fit of the experimental data over the
entire range of frequencies (Palade et al., 1999).
In this work a fractional rheological description
is obtained by replacing the first order time
derivatives with fractional derivatives of order
q and µ. The Friedrich-Braun model relating
stress to strain is used to describe the experimental
results on the wormlike micelle systems. The
comparison between the experimental results
and theoretical predictions are represented.

Experimental

The effects of copolymer on the rheological
behavior of two wormlike micelles belonging
to the low and high salt regime have been studied
by our group (Siong et al., 2001). The wormlike
micelles system is formed by mixing
Cetyltrimethylammonium bromide (CTAB)
and sodium nitrate (NaNO3) in air tight glass
tube. The two solutions correspond to the
following compositions (A) CTAB (0.3 M),
NaNO3 (0.41 M) and (B) CTAB (0.3 M), NaNO3

(1.79 M) were prepared. The rheological
properties of the wormlike micelles as a function
of copolymer concentration in water, for both
compositions, are investigated. The (CTAB,
99%) and (NaNO3, 98%) were purchased from

Fluka and BDH chemical respectively. The
copolymer is a commercially available
symmetrical triblock copolymer with trade
name synperonics F68 obtained from Fluka.
Doubly distilled and deionised water having
resistivity of 18.2 MΩ was used throughout the
sample preparation. The final solutions were left
standing for at least two days to achieve the
equilibrium. The rheological properties of the
copolymer doped wormlike micelles were
measured using a Haake Rheo-Stress 150
rheometer with cone and plate geometry.

Friedrich-Braun’s Model

Even though fractional calculus dates back to
last century, and some authors such as Gement
and Scott Blair suggest using fractional
derivatives to describe the behavior of
viscoelastic materials, it is only in recent times
that this mathematical technique has found an
increasing application in the description of
different physical phenomena including
rheological behaviors. A fractional derivative is
an operator that generalizes the differentiation
order, allowing fractional values. The Riemann-
Liouville (RL) fractional integral operator
0Dt 

 (Oldham, 1974; Samko et al., 1993;
Podlubny, 1999; Schiessel et al., 2000) order
is given by
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where Γ is the gamma function. Next, the
fractional derivative of order q is defined through
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The first fractional viscoelastic models
(Bagely and Torvik, 1983) can be reduce to the
form

τ γ λ γα α( ) ( ) [ ( )]t G t G D t= +0 1  (3)

where, to the first term typical of an elastic solid
a second term is added, containing fractional
derivative of the deformation, which represents
a viscoelastic behavior intermediate between that
canonical of a Newtonian liquid (α = 1) and that

- q
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of an elastic solid (α = 0). Among all successive
models that proposed by Friedrich and Braun
appears to be one of the most promising, in
particular for the description of mechanical
spectra (Friedrich, 1992; Friedrich et al., 1995).
Indeed, the application of thermodynamics
consistency criteria do not result in a reduction
of the number of the adjustable model parameter;
accordingly, the expressions which are derived
for G’(ω) and G”(ω) from this model are, beside
very simple, also high flexible and apt to the
description of quiet different behaviors. In its
differential form, the model is given by

τ + λq Dq [τ] = G∞ {D0[γ] + λq Dq [γ]} + ∆Gλµ Dµ [γ]    (4)

where τ and γ are the stress and deformation
tensors, respectively, λ is a characteristic time,
Ge is the equilibrium modulus, ∆G quantifies the
differences between Ge and the plateau modulus
G∞ (ω → ∞), and q and µ are the are the derivation
orders. The relevant expression for G’(ω) and
G”(ω) are
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for q = 0, the model degenerate into equation
(2).

Results and Discussion

Empirical data for wormlike micelle solutions
with different copolymer concentration are used
to illustrate how this model is able to describe
the dynamic behavior in the fractional term.

A mechanical model for a viscoelastic
fluid consists of an elastic spring with the Hookean
constant G

0
 and a dashpot with viscosity η

0

(Maxwell-model). If this combination is abruptly
extended the resulting stress relaxes
exponentially with a time constant which is
given by λ = η

0
/G

0
. The zero-shear viscosity is

thus a parameter that depends on both the
structure of the system, because G0 is determined
by the entanglement points v, (G0 

= vkT), and

the dynamic behavior of the system through λ
both quantities are usually determined by
oscillating rheological measurements. From the
different equations for the viscosity fluid,
the equations for the storage Gû and the loss
modulus Gûû are given by:

G G©( )ω
ω λ
ω λ

=
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Many rheological results of viscoelastic
surfactant solutions can be represented over a
large frequency range with a single structural
relaxation time and a single shear modulus G0.
Fluids with such a simple rheological behavior
are called Maxwell fluids. Figure 1 shows the
variation of storage and loss modulus as a
function of frequency for wormlike micelles with
two different copolymer concentration. It also
shows, the comparison between the experimental
values and the curves predicted by equation (7)
and (8) (solid lines) for the composition A with
two copolymer concentrations. The fitting
parameters are given in Table 1.

The dynamic moduli were fitted in
fractional term by using equation (5) and (6) for
storage and loss modulus respectively. The
results are given in Table 2. The basic fractional
model parameters are q and µ, which are
restricted to the range 0 < q, µ ≤ 1 and q < µ.
Figure 2 and 3 shows the comparison between
the experimental values and the curves predicted
by equations (5) and (6) (solid lines). There are
good agreements between the theoretical
predictions and experimental data.

It is generally accepted that increasing in
salt concentration will increase the curvature
energy of hemispherical end cap relatives to the
cylindrical part of the elongated micelle. This
lead to an increase in micellar length and hence
in the zero shear viscosity. The relaxation time
decrease as one incorporate more copolymer into
wormlike micelle systems. The copolymer will
adsorb onto the wormlike micelles surface and
decorating the surface with polymer brushes, as
the copolymer concentration increases, steric
interaction between the copolymer will cause a

ø π
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thinning in the micelle monolayer and as further
increase the concentration, the steric interaction
is much stronger than the surfactant attraction
forces between the surfactant molecules on the
micellar monolayers thus breaking the micelles
to for shorter wormlike micelles. The end cap
energy will be stabilized by copolymer anchoring
onto the end cap. The decreasing in the relaxation
time can be explained by a decrease in the mean
size of the wormlike micelles (Cappelaere and
Cressely, 1998). Olsson suggested that the effects
of ionic strength on micelle length and stiffness

dominate the rheological behavior of a micellar
system. They postulated that at the beginning,
the effect of increasing the salt concentration was
to lengthen the chains and thereby increase their
flexibility as a result of the lower surface charge
density (Hartman and Cressely, 1998). This
increase in length and flexibility stops when the
concentration binding exceeds 100% and the
surface charge can change sign. Further addition
of salt increases the surface charge density, which
stiffens the micelle and promotes a change in
morphology from wormlike.

Table 1. The fitting parameters for Maxwell fluid.
Parameter Composition A Composition A  Composition B Composition B

C = 2% C = 4%  C = 2% C = 4%
G0 [Pa] 180 165 185.5 175.5
λ [s] 0.04 0.02 0.08 0.05

Figure 1. The storage modulus G’ (a) and the loss modulus G” (b) as a function of frequency for
composition A for two different copolymer concentrations using Maxwellian type fluids.

Table 2. The fitting parameters Friedrich-Braun’s model.
Parameter Composition A Composition A  Composition B Composition B

C = 2% C = 4%  C = 2% C = 4%
G’ G” G’ G” G’ G” G’ G”

Ge [Pa] 76 76 78 78 51 51 54 54
∆G [Pa] 260 260 265 265 255 255 255 255
λ [s] 0.03 0.01 0.03 0.01 0.05 0.03 0.05 0.03

q 0.85 0.89 0.89 0.87 0.88 0.89 0.87 0.88
µ 0.98 0.93 0.97 0.92 1 0.93 1 0.93
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to spherical. Drye and Cates investigated
theoretically the formation of cross links between
wormlike micelles (Herb and Prud’homme,
1994). They concluded that the free energy cost
for the formation of crosslinks is much higher
than that for forming end caps. Also, the
formation of smaller cylindrical micelles is easier
than the formation of multi-connected network.

Conclusions

The fractional constitutive relationship model is
more useful than the conventional model for
describing the properties of viscoelastic fluids.
Fractional derivatives provide an excellent

instrument for the description of memory and
hereditary properties of various materials and
processes. This is the main advantage of
fractional derivatives in comparison with
classical integer-order models, in which such
effects are in fact neglected. The advantage of
fractional derivatives become apparent in the
description of rheological properties of materials
as well as in the modelling mechanical and
electrical properties of materials, and in many
other fields. All fractional derivative models
posses memory kernels of the form t-q, where
0 < q < 1, see equation (1). Under some
restrictions, 0 < q, µ ≤ 1 and q < µ, a good fit
was achieved. The Friedrich-Braun model is

Figure 3. The storage modulus G’ (a) and the loss modulus G” (b) as a function of frequency for
composition B for two different copolymer concentrations.

Figure 2. The storage modulus G’ (a) and the loss modulus G” (b) as a function of frequency for
composition A for two different copolymer concentrations.
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appropriate to describe the behaviors for
wormlike micelles systems in the presence of
triblock copolymer. The evaluation of rheological
parameter is correlated to the growing size of
micelles. Physically, the longer the micelles, the
easier their alignment in the shear flow (Herb
and Prud’homme, 1994). The rheological results
presented in this work are in agreement with the
simple hypothesis that excess salt content brakes
the micelle network junctions and so reduces the
micelle length. The reduce in micelle length
results in decreasing the relaxation time.
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