
107Suranaree J. Sci. Technol. Vol. 11 No. 2; April-June 2004

1 Faculty of Computer Science and Information Technology University Putra Malaysia 43400 UPM Serdang,
Selangor E-mail : abumoad99@hotmail.com

* Corresponding author
Suranaree J. Sci. Technol. 11:107-114

CODE SLICING TO IMPROVE CASE CLASSIFICATION
ACCURACY

Omar Abdalgani Shiba1*, Mohamed Nasir Sulaiman1, Fatimah Ahmad1 and
Ali Mamat1

Received: May 30, 2003; Revised: Mar 1, 2004; Accepted: Apr 4, 2004

Abstract

Finding a good classification algorithm is an important component of many data mining projects. Data
mining researchers often use classifiers to identify important classes of objects within a data repository.
The goal of this paper is to improve the case classification accuracy in data mining. The paper achieves
this goal by introducing a new approach of similarity-based retrieval based on program slicing
techniques and is called Case Slicing Technique (CST). The proposed approach helps identify the
subset of features used to compute the similarity measures needed by the classification algorithms. The
idea is based on slicing cases with respect to the slicing criterion. Likewise, the paper presents the
experimental results of the CST using five real-world datasets which are; Australian Credit Application
(AUS), Cleveland Heart Disease (CLEV), Breast Cancer (BCO), German Credit Card (GERM) and
Hepatitis Domain (HEPA). The paper compares CST with other selected approaches. The results
obtained showed that the classification accuracy can be improved when we use CST.

Keywords: Data mining, case-slicing technique, classification accuracy, case classification

Introduction

One of the problems addressed by machine
learning is that of data classification. Since the
1960ís, many algorithms for data classification
have been proposed (Thamar and Olac, 2001).
The problem of classification is defined as
follows: The input data is referred to as the
training set, which contains a plurality of records,
each of which contains multiple attributes or
features. Each example in the training set is
tagged with a class label. The class label may
either be categorical or quantitative. The problem
of classification in the context of a quantitative
class label is referred to as the regression-
modeling problem. The training set is used in
order to build a model of the classification

attribute based upon the other attributes. This
model is used in order to predict the value of the
class label for the test set. Some well-known
techniques for classification include the
following: K-Nearest Neighbor (K-NN)
(Wettschereck and Aha, 1995; Xiaoli, 1999),
Bayesian Learners such as Naive Bayes (NB)
(Michell, 1997) and Base Learning Algorithm
(C4.5) (Quinlan, 1986,1993; Thamar and Olac,
2002). This paper introduces a new classification
approach based on the program slicing
techniques which help identify the subset of
features used to compute the similarity measures
(needed by the classification algorithm). The
slicing technique was proposed for procedural

..

108 Code Slicing to Improve Case Classification Accuracy

programming languages (Weiser, 1984). Slicing
is a method used by experienced computer
programmers for restricting, the behaviour of a
program to some specified subset of interest.
Several slicing algorithms for imperative
languages have been developed. The slicing of
the programs is performed with respect to some
criteria; Weiser proposes as a criterion the
number i of a command line and a subset V of
program variables. According to this criterion, a
program is analyzed and its commands are
checked for their relevance to the command line
i and those variables in V. However, other authors
have defined different criterion (Tip, 1995;
Vasconcelons, 2000).

This paper investigates the possibility of
using the slicing technique successfully with
classification problem and the comparison
between the slicing technique as a classification
approach and K-NN, Naive Bayes and C4.5 is
presented.

The rest of the paper is organized as
follows: the next section presents some related
work. Section 3 describes the case slicing
technique. Section 4 presents the experimental
results that compare the performance of the
proposed approach and other selected
algorithms. Finally the conclusion is presented
in section 5.

Related Work

In this section, three selected classification
algorithms related to the proposed approach are
briefly described.

K-Nearest Neighbor (K-NN)

The basic idea of the K-Nearest Neighbor
algorithm (K-NN) is to compare every attribute
of every case in the set of similar cases with every
corresponding attribute of the input case. A
numeric function is used to decide the value of
comparison. Then the K-NN algorithm selects a
case with the highest comparison value and
retrieves it (Xiaoli, 1999).

The K-NN assumes that each case
X= {x1, x2...xn, xc} is defined by a set of
n (numeric or symbolic) features, where xc is x's
class value. Given a query q and a case library

..

L, K-NN retrieves the set k of q's k most similar
(i.e., the least distant) cases in L and predicts
their weighted majority class as the class of q
(Wettschereck and Aha, 1995). Distance in
K-NN is defined as in equation (1).

distance (x,q) = wf
f =1

n

 * (,)difference xf qf 2

∑ (1)

where wf is the parameterized weight value
assigned to feature f as in equation (2).

w P C if a= () (2)

That is, the weight for feature a for a class
c is the conditional probability that a case is a
member of c given the value to a where P(C|ia)
is defined in equation (3); and the difference
between x and q can be calculated as in
equation (4).

P C i
instances containing i class = C

instances containing ia
a

a

() = (3)

difference x q

x q if feature f is numric

if feature f is symbolic x q

otherwise

f f

f f

f f

, &() =
−

=










0

1

(4)
In equation (2) K-NN assigns equal weights to
all features (i.e. ∀f {wf = 1}).

Naive Bayes Classifier (NB)

The estimates of the probability masses
are used as an input for the Naive Bayes
classifier. This classifier simply computes the
conditional probabilities of the different classes
giving the values of attributes and then selects
the class with the highest conditional probability.
If an instance is described with n attributes
ai (i=1...n), then the class of that instance is
classified to a class v from a set of possible
classes V according to a Maximum A Priori
criterion (MAP), the Naive Bayes classifier can
be defined as in equation (5).

v p v p a v
v V

i i
i

n

j

=
∈ =

∏argmax () ()
1

(5)

The conditional probabilities in the above
formula are obtained from the estimates of the
probability mass function using the training data.
This Bayes classifier minimizes the probability
of a classification error under the assumption that

..

..

..

109Suranaree J. Sci. Technol. Vol. 11 No. 2; April-June 2004

the sequence of points is independent (Michell,
1997; Thamar and Olac, 2001).

The Base Learning Algorithm (C4.5)

C4.5 is an extension to the decision-tree
learning algorithm ID3 (Quinlan, 1986,1993;
Thamar and Olac, 2002). Only a brief description
of the method is given here and more information
can be found in (Quinlan, 1993). The algorithm
consists of the following steps:
1. Build the decision tree from the training

set (conventional ID3).
2. Convert the resulting tree into an

equivalent set of rules. The number of
rules is equivalent to the number of
possible paths from the root to a leaf node.

3. Prune each rule by removing any
preconditions that result in improving its
accuracy, according to a validation set.

4. Sort the pruned rules in descending order
according to their accuracy, and consider
them in this sequence when classifying
subsequent instances.

Description of the Proposed
Approach

In this section the proposed classification
approach and some related terms are discussed.

Program Slicing Technique

A slice is constructed by deleting those
parts of the program that are irrelevant to the
values stored in the chosen set of variables at
the chosen point. The point of interest is usually
identified by annotating the program with line
numbers which identify each primitive statement
and each branch node (Weiser, 1984; Horwitz
and Reps, 1990). Program slicing is useful for
program understanding, maintenance,
debugging, testing, differencing, specialization,
reuse, optimization, parallelization, and anomaly
detection (Gallagher and Lyle, 1991). Program
slicing has been widely studied in the context of
imperative programs. Several slicing algorithms
for imperative languages have been developed
(Tip, 1995). Slicing of programs is performed
with respect to some criteria. Weiser (1984)
proposes as a criterion the number i of a
command line and a subset V of program

variables. According to this criterion, a program
is analyzed and its commands are checked for
their relevance to command line i and those
variables in V. However, other authors have
defined different criteria (Tip, 1995;
Vasconcelons, 2000). Program slicing can be
summarized as follows:

Program Slice ≡
- The statements (and predicates) that

might affect the value of a set of
variables at a particular statement.

- A slice is taken with respect to a set of
variables at a particular statement, the
slicing criterion.

- A slice and the actual program behavior
are identical.

Executable (Slice) ≡ a slice that can be compiled
and executed.

Closure (Slice) ≡ an informational presentation
of a slice that might lack semantics.

Basic Types:
- Static vs. Dynamic
- Type of feedback: executable, closure
- Approach: graph reachability, dataflow

equations using the control flow.

Extending Program Slicing to Case Slicing

The case slicing technique described in this
paper addresses the problem of classification.
The case slicing technique is an extension of
program slicing technique. When we slice a case,
we are interested in automatically obtaining that
portion ‘features’ of the case responsible for
specific parts of the solution of the case at hand.
Some basic definitions of the case slicing term
are:
A Case Slicing is a process for automatically

obtaining subparts (features) of a case with
a collective meaning.

A Slicing Criterion denotes the conditions of the
slice computation, with respect to which
and for which case a slice is required.

Sliced Case contains all features that could have
direct relations with the features of interest
at new case.

The Basic Idea

Conceptually, the proposed method is a

110 Code Slicing to Improve Case Classification Accuracy

variation of the Nearest Neighbor Algorithms
(Wettschereck and Aha, 1995; Wettschereck and
Thomas, 1995; Xiaoli, 1999) and is called Case
Slicing Technique (CST). It compares new cases
with the training cases in the data file. Likewise,
it computes the similarity between the new cases
and the training cases to classify the new cases.
The proposed method is a classification
technique based on slicing. Slice case means we
are interested in automatically obtaining that
portion “features” of the case responsible for
specific parts of the solution of the case at hand.
By slicing the case with respect to the important
features, we can obtain a new case with a small
number of features or with only the important
features. The proposed approach consists of a
database with three calculation modules as
follows:

Features Weighting Module

This module is used to measure the
importance of each attribute in classification. The
weight of each attribute has been calculated to
classify the new case by using simple conditional
probabilities. High weight values were assigning
to features that are highly correlated with the
given class using equations (2, 3) above. Where
the weight for feature a for a class c is the
conditional probability that a case is a member
of c given the value to a

Discretization Computing Module

Discretization as used in this paper, and
in the machine learning literature in general, is
a process of transforming a continuous attribute
values into a finite number of intervals and
associating with each interval a discrete,
numerical value. The usual approach for learning
tasks that use the mixed-mode (continuous and
discrete) data is to perform discretization prior
to the learning process (Catlett, 1991; Fayyad
and Irani, 1992; Dougherty et al., 1995;
Pfahringer, 1995).

The discretization process finds the
number of discrete intervals, and then the width,
or the boundaries for the intervals, given the
range of values of a continuous attribute. Very
often the user must specify the number of
intervals, or provide some heuristic rules to be
used (Ching et al., 1995). A variety of discretization

methods have been developed in recent years.
Some models that have used the Value
Difference Metrics (VDM) or variants of it (Cost
and Salzberg, 1993; Rachlin et al., 1994; Mohri
and Tanaka, 1994) have discretized continuous
attributes into a somewhat arbitrary number of
discrete ranges, and then treated these values as
nominal (discrete unordered) values.

When using the slicing approach,
continuous values are discretized into s equal-
width intervals (though the continuous values
are also retained for later use), where s is an
integer supplied by the user. Unfortunately, there
is currently little guidance on what value of s to
use. Current research is examining more
sophisticated techniques for determining good
values of s, such as cross-validation, or other
statistical methods (Wilson and Martinez, 1996).
The width wa of a discretized interval for attribute
a is given by equation (6).

w sa
a a=
− max min

 (6)

where maxa and mina are the maximum and
minimum value, respectively, occurring in the
training set for attribute a.

The discretized value v of a continuous
value x for attribute a is an integer from 1 to s,
and is given by equation (7).

v disc x

x

w if attribute a is continuous

x if attribute a is
a

a

a= =

− 







()

()min

discrete

(7)

Distance Computation Module

There are many learning systems that
store some or all available training examples
during learning. During generalization, a new
input vector is presented to the system for
classification and a distance function is used to
determine how far each stored instance is from
the new input vector. The stored instance or
instances which are closest to the new vector
are used to classify it. A variety of distance
functions are available for such uses, including
the Minkowsky (Batchelor, 1978), Mahalanobis
(Nadler and Eric, 1993), Camberra, Chebychev,
Quadratic, Correlation, and Chi-square distance
metrics (Edwin, 1974; Michalski et al.,1981),
the Context-Similarity measure (Biberman,

111Suranaree J. Sci. Technol. Vol. 11 No. 2; April-June 2004

Figure 1. Case classification algorithm based slicing.

Algorithm: Algorithm for case Classification
Input: User’s Input Problem Specification
Output: Classified Case
Begin
While true do

Discrete_continuous_values ()
{ To convert continues values into discrete values}
Assign_Weight_Cases()
{ To assign weights to each feature in the each acse}
Slicing_Cases_w.r.t.Slicing_Criterion ()
{ To slice the cases with respect to important features }
Calculate_Distance ()
{To find the distance between each two feature in a
case}
Closer_Case_Searching ()
{ To find closest case to the case at hand}
Return_Classified_Case ()
{ To assign class label to the new case }

Enddo
End.

1994), the Contrast Model (Tversky, 1977),
hyperrectangle distance functions (Salzberg,
1991; Domingos, 1995) and others.

Although there are many distance
functions being proposed, by far the most
commonly used is the Euclidean distance
function, which is defined in equation (8).

E x y x ya a
r

a

m

(,) (,)=
=
∑

1

(8)

Where x and y are two input vectors (one
typically being from a stored instance, and the
other an input vector to be classified) and m is
the number of input variables (attributes) in the
application.The square root is not often
computed in practice because the closest
instance(s) will still be the closest, regardless of
whether the square root is taken or not.

An alternative function, the City-block or
Manhattan distance function, requires less
computation and is defined in equation (9).

M x y x ya a

r

a

m

(,) = −
=
∑

1

(9)

The Euclidean and Manhattan distance
functions are equivalent to the Minkowskian
r-distance function (Batchelor, 1978) with r = 2
and 1, respectively.

Slicing Technique

The objective of the slicing technique is
to optimize the similarity matching to achieve
the best classification results. The proposed
approach is adapting the slicing techniques that
have been used in programming languages,
to slice the cases by removing subset of
features which are irrelevant to case label
with respect to the selected slicing criterion. The
case classification algorithm is shown in
Figure 1.

A Formal Description of Case Slicing
Technique

Below is a formal description of a basic
Case Slicing Technique in order to have a
detailed investigation of the approach.
Let
S = {C1 , C2 , C3 , ..., Cn} set of cases in Case Base

∀S ∃ Ci S ≠ φ
Ci = {f1 , f2 , f3 , ..., fn} where n is the number of

features in Ci

λ = [{Cs|Cs is a set of sliced cases}] or
λ = {all cases that contains one or more

important feature(s)}
I = {if1, if2, ..., ifn} where n is the number of

important features in I
I Ci S
I Cs λ

⊃
⊃

⊃
⊃

112 Code Slicing to Improve Case Classification Accuracy

Experimental Results

The classification algorithms intend to classify
objects better both in terms of accuracy and
speed. In most of the cases, accuracy is more
important, as the aim of this paper we are
focusing on the accuracy task, optimizations are
carried out over the existing classification
algorithms.

In this section the results of several
practical experiments are presented to
examine the performance of the proposed
approach and other selected classification
algorithms on five real-world problems.

Selected Datasets

In this paper, five real-world datasets
which are widely used in the machine-learning
field for evaluation of case slicing technique have
been used. The five datasets: Australian Credit
Card Approval (AUS), Cleveland Heart Disease
(CLEV), Breast Cancer (BCO), German Credit
Card (GERM) and Hepatitis Domain (HEPA)
were chosen from the UCI: Machine Learning
Repositories and Domain Theories (Murphy,
1996). Table 1 presents the main characteristics
of these datasets, where B, C and D in the table
mean Boolean, continuous and discrete attributes
respectively.

Empirical Results

We evaluated the performance of the case slicing
technique by comparing it with the K-NN,
C4.5 and Naive Bayes classifiers on a variety of
datasets. The datasets we have selected
are a very good choice to test and evaluate the
slicing technique because the datasets are
from different domains and there is a good
mixture of continoues, discrete and Boolean
features. In all the experiments reported here we
used the evaluation technique 10-fold
cross-validation (Kohavi, 1995), which consists
of randomly dividing the data into 10 equally,
sized subgroups and performing ten
different experiments. We separated one group
along with their original labels as the validation
set; the other groups were considered as the
starting training set; the remainder of the data
were considered the test set. Each experiment
consists of ten runs of the procedure described
above, and the overall average has been reported
here. The criterion of choosing the best
classification approach is based on the highest
percentage of classification. The results, given
in Table 2, list the classification accuracies
achieved by each approach for each of the
datasets, and the differences in accuracy are
shown in Figure 2.

Table 2. The classification accuracy achieved by the different classification algorithms.

Datasets K-NN C4.5 Naive bayes CST

AUS 81.90 84.50 84.90 99.30

CLEV 71.20 77.20 83.40 96.00

BCO 97.10 74.70 96.40 99.30

GERM 69.40 98.50 70.30 98.00

HEPA 92.90 80.80 86.30 97.00

Methods (%)

Table 1. Characteristics of the selected datasets.

Datasets No. of data Type & no. of attributes No. of classes

AUS 690 9D, 6C (15) 2
CLEV 303 9D, 6C (15) 2
BCO 699 13B, 6C (19) 2
GERM 1,000 7C, 13D (21) 2
HEPA 155 13B, 6C (19) 2

..

..

113Suranaree J. Sci. Technol. Vol. 11 No. 2; April-June 2004

Conclusion

The paper has presented and discussed the Case
Slicing Technique (CST) as a new classification
method to improve the case classification
accuracy in data mining. The paper examines
the technique on five real-world datasets. The
results obtained showed that the classification
accuracy can be improved when we use CST.
The performance of the technique is compared
with some other techniques and has possessed a
competitive result and it gives a very high
percentage of classification accuracy over other
approaches.

References

Batchelor, B. (1978). Pattern recognition: ideas
in practice. Plenum Press, New York,
p. 71-72.

Biberman, Y. (1994). A Context similarity
measure. Proceedings of the European
Conference on Machine Learning
(ECML-94); April 6-8, 1994. Catalina,
Italy. Springer Verlag, p. 49-63.

Ching, J.Y., Wong, A.K., and Chan, K.C. (1995).
Class-dependent discretization for
inductive learning from continuous and
mixed mode data. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
17(7):641-651.

Cost, S., and Salzberg, S. (1993). A weighted
nearest neighbor algorithm for learning
with symbolic features. Machine

Figure 2. Comparison of the 10-fold
cross-validated classification
accuracies of the selected
classification techniques.

Learning, 10:57-78.
Domingos, P. (1995). Rule induction and

instance-based learning: a unified
approach. Proceedings of the International
Joint Conference on Artificial
Intelligence (IJCAI-95); August 20-11,
1995. Montreal, Canada; Morgan
Kaufmann, p. 1,226-1,232.

Dougherty, J., Kohavi, R., and Sahami, M.
(1995). Supervised and unsupervised
discretization of continuous features.
Proceedings of the 12th International
Conference on Machine Learning;
July 9-12, 1995. San Francisco, Tahoe
City; CA: Morgan Kaufmann, p. 194-202.

Edwin, D. (1974). Recent progress in distance
and similarity measures in pattern
recognition. Proceedings of 2nd

International Joint Conference on Pattern
Recognition; July 4, 1974. Tokyo,
p. 534-539.

Fayyad, U.M., and Irani, K.B. (1992). On the
handling of continuous-valued attributes
in decision tree generation. Machine
Learning, p. 8:87-102.

Gallagher, K., and Lyle, J. (1991). Using
program slicing in software maintenance.
IEEE Transaction on Software
Engineering, 17(8):751-761.

Horwitz, S., Reps, T., and Binkley, D. (1990).
Interprocedural slicing using dependence
graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):35-46.

Kohavi, R. (1995). A Study of cross-validation
and bootstrap for accuracy estimation and
model selection. Proceedings of 14th

International Joint Conference on
Artificial Intelligence (IJCAI).
San Mateo CA: Morgan Kaufmann,
p. 1,137-1,145.

Michalski, R., Robert, E., and Edwin, D. (1981).
A Recent advance in data analysis:
clustering objects into classes
characterized by conjunctive concepts.
Progress in Pattern Recognition, 1, Kanal,
L.N., and Rosenfeld, A. (eds.). North-
Holland, New York, p. 33-56.

Mitchell, T.M. (1997). Machine learning.
McGraw-Hill, New York.

AUS

C
la

ss
if

ic
at

io
n

A
cc

or
ac

y
(%

)

CLEV BCO GERM HEPA

Datasets

120%

100%

80%

60%

40%

20%

0%

NB

CST

C4.5
K-NN

114 Code Slicing to Improve Case Classification Accuracy

Mohri, T., and Tanaka, H. (1994). An optimal-
weighting criterion of case indexing for
both numeric and symbolic attributes.
David, W.A (ed.), Case-Based
Reasoning: Papers from the 1994
Workshop (Report No. WS-94-01). Menlo
Park, CA: AIII Press, p.123-127.

Murphy, P.M. (2001). UCI Repositories of
Machine Learning and Domain Theories.
University of California, Irvine UCI.
Available from:http://www.isc.uci.edu/
~mlearn/MLRepository.html. Accessed
November 12, 2001.

Nadler, M., and Eric, P. (1993). Pattern recognition
engineering. Wiley, New York.
p. 293-294.

Pfahringer, B. (1995). Compression-based
discretization of continuous attributes.
Proceedings of the 12th International
Conference on Machine Learning. US,
Lake Tahoe, p. 456-463.

Quinlan, J.R. (1993). C4.5: programs for
machine learning. CA: Morgan Kaufmann
Publishers, Inc.

Quinlan, J.R. (1986). Induction of decision trees.
Machine Learning, 1(1):81-106.

Rachlin, J., Simon, K., Salzberg, S., and David,
W. (1994). Towards a better understanding
of memory-based and bayesian classifiers.
Proceedings of the Eleventh International
Machine Learning Conference.
New Brunswick, NJ: Morgan Kaufmann,
p. 242-250.

Salzberg, S. (1991). A nearest hyperrectangle
learning method. Machine Learning,
6:277-309.

Tapia, R., and Thompson, J. (1978).
Nonparametric probability density
estimation, Baltimore. MD: The Johns
Hopkins University Press.

Thamar, S., and Olac, F. (2001). Improving

classifier accuracy using unlabeled data.
Proceedings of the IASTED International
Conference on Artificial Intelligence
and Applications (AIA2001). Marbella,
Spain.

Thamar, S., and Olac, F. (2002). Improving
classification accuracy of large test sets
using the ordered classification algorithm.
Proceedings of IBERAMIA-02, Lecture
Notes in Computer Science, Sevilla Spain,
Springer-Verlag Heidelberg, p. 70-79.

Tip, F. (1995). A Survey of program slicing
techniques. Journal of Programming
Languages, 3:121-189.

Tversky, A. (1977). Features of similarity.
Psychological Review, 84(4):327-352.

Vasconcelos, W.W. (2000). Slicing knowledge-
based systems techniques and applications.
Knowledge-Based Systems Journal,
13:177-198.

Weiser, M. (1984). Program slicing. IEEE Trans.
Software Engineering, 10(4):352-357.

Wettschereck, D., and Aha, D.W. (1995).
Weighting features. Proceedings of the
1st. International Conference on CBR
(ICCBR-95). Sesimbra, Portugal.
Springer-Verlag, p. 347-358.

Wettschereck, D., and Thomas, G.D. (1995).
An experimental comparison of nearest
neighbor and nearest-hyperrectangle
algorithms. Machine Learning, 19(1):
5-28.

Wilson, D.R., and Martinez, T.R. (1996). Value
difference metrics for continuously valued
attributes. Proceedings of the International
Conference on Artificial Intelligence,
Expert Systems and Neural Networks,
p. 11-14.

Xiaoli, Q.A. (1999). Case-based reasoning
system for bearing design, [MSc. thesis].
Faculty of Computer Science, Drexel
University, Philadelphia, PA.

