
Introduction

The key idea of Semantic Web (Berners-Lee,

2000; Hendler, 2001) is to have resources on the

Web defined and linked in such a way that they

are not only interpretable by humans but also by

software agents.  A major approach towards the

realization of this idea is to annotate Web

resources with metadata using Resource

Description Framework (RDF) (Decker et al.,
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2000) with embedded XML. Such annotations,

however, will be of limited value unless they

employ a common vocabulary that a group of

agents agrees upon beforehand and that has

well-defined semantics.

The concept of an ontology was introduced

in the area of knowledge engineering and infor-

mation integration as a formal, explicit specifi-

cation of shared conceptualizations (i.e., meta-

information) that describe the semantics of data

1 Information Technology Program, Sirindhorn International Institute of Technology, Thammasat University,

P.O. Box 22, Thammasat-Rangsit Post Office, Pathumthani 12121, Thailand, E-mail: {unphon,ekawit}

@siit.tu.ac.th
2 Computer Science Program, Shinawatra University, Pathumthani Campus, 99 Moo 10, Bangtoey, Samkok,

athumthani 12160, Thailand, E-mail: photchanan@shinawatra.ac.th
* Corresponding author



Rule-Based Chaining with Ontological Constraint Checking2

(Uschold and Gruninger, 1996; Fensel, 2001;

Staab and Studer, 2004). As such, an ontology

provides a source of shared and precisely

defined terms. In its computational form, an

ontology typically comprises definitions of

concepts organized in a partially ordered

generalization taxonomy along with a set of

relationships that hold among them.  These

constructs collectively impose a structure on the

domain being represented and constrain possible

interpretations of terms.

Recognition of the need for ontologies in

Semantic Web brought about several proposals

of Web ontology languages, among which OWL

Web Ontology Language (Antoniou and van

Harmelen, 2004) has emerged as a de facto

standard notation. OWL exploits existing Web

standard markup languages, i.e. XML and RDF

(Decker et al., 2000), as its underlying syntax,

and Description Logics (DL) (Baader et al.,

2002) as the formal underpinnings of its

semantics. The connection to DL enables

formalization of an OWL ontology together with

Web resource annotations as a DL knowledge

base <T, A>, where the terminology part (TBox)

T corresponds to the ontology and the assertion

part (ABox) A represents the annotations.

Consequently, currently existing implemented

DL systems, e.g. FaCT (Horrocks, 1998), DLP

(Patel-Schneider and Horrocks, 1999) and

RACER (Haarslev and Moller, 2001), readily

lend their deduction services (Donini et al., 1996;

Baader et al., 2002) as reasoning supports to

OWL applications (e.g. for determination of

semantic relationships between syntactically

different terms in an application domain).

Notwithstanding several advantages,

formalization of Semantic Web contents as a DL

knowledge base imposes certain limitations on

representational expressiveness. While DL is

suitable for describing the schema of an

application domain, its expressive power in

representing rules involving relations between

individuals is inherently restricted.  The restriction

is due in large part to the necessity of preserving

the tree model property (Vardi, 1997), without

which the decidability of DL may be lost

(Calvanese et al., 2001).  This requirement

..

severely constrains the way variables and

quantifiers can be used, e.g. it is impossible to

describe classes whose instances are related to

anonymous individuals via different property

paths.  Accordingly, some rules that can be

 simply represented in the Horn fragment of the

first-order logic cannot be asserted in DL; e.g.

one cannot assert that individuals who live and

work at the same location are "home workers",

whereas this assertion can be given by using a

simple Horn rule

∀w,x,y,z: homeWorker(x) <  work(x,y),

live(x,z), locate(y,w), locate(z,w).

While not all Horn rules can be represented

in DL, it has been shown in Grosof et al. (2003)

that unrestricted use of basic DL class constructors

(i.e., disjunction, universal restriction, existential

restriction, and negation) can also result in DL

statements that cannot be expressed by Horn

rules. DL and Horn rules are thus different

fragments of the first-order logic, and, as

depicted in Figure 1, neither of them includes

each other. This motivates an attempt to extend

one fragment with features supported by the

other fragment, with expectation of a more

expressive representation formalism.

To improve the representational adequacy

and deductive power of knowledge representation

formalisms for Semantic Web, a hybrid system

consisting of a DL-based structural subsystem

and a rule-based relational subsystem is

proposed.  Its architectural overview is shown

in Figure 2. Deduction process in this hybrid sys-

tem is driven by an extended backward-chaining

algorithm embedded in the relational subsystem.

As its distinctive feature, in addition to computing

answers to a given query using a traditional

goal-directed method based on the resolution

inference rule, the extended algorithm

collectively constructs lists of terminological

constraints (concept-assertion constraints),

which are then used for verification of the

computed answers with respect to the ontology

defined in the structural part.  An interaction

between the two subsystems takes place through

the knowledge base unsatisfiability checking.

The RACER system (Haarslev and Moller, 2001)

is used as the inference engine of the structural

subsystem.

..
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   The paper is organized as follows. The

second†section describes a structural subsystem

and a relational subsystem in terms of the

representation languages they provide, and

presents the extended backward-chaining

algorithm and a hybrid reasoning method. The

third section presents some experimental results.

The fourth section discusses related works, and

finally the fifth section draws the conclusions.

Methods

Representation languages of the two subsystems

will be presented first, and then an extended

backward-chaining algorithm will be described.

To simplify the presentation, a simple concept

language in the DL family, called ALCQ (Attributive

Language with Full Complement and Number

Qualification), is used as a basis in the

structural part.

Knowledge Representation in a Structural

Subsystem

A structural subsystem represents an

ontology together with RDF annotations of Web

contents. As will be elaborated below, it can be

formulated as a DL knowledge base, consisting

of a terminology part (TBox) and an assertion

part (ABox), where the former is a set of

inclusion statements, and the latter is a set of

membership statements. To define the syntax of

statements of the two kinds, assume that CN is a

set of concept names (class names), RN  a set of

role names, and O a set of individual names, and

that CN  and RN  are disjoint. Concept

expressions are constructed using the syntax

rules in Figure 3, where C and D are concept

expressions, A is a concept name in CN, and R is

a role name in RN.

An inclusion statement is an expression

of the form C ⊆ D, where C and D are concept

expressions; it is intended to mean "the

extension of C (the set of all instances of C) is

always a subset of the extension of D (the set of

all instances of D)". A pair of inclusion

statements C ⊆ D and D ⊆ C will be denoted by

C≡ D, which is intended to mean "the extension

of C is always identical to that of D". A membership

statement is an expression of the form a:C or of

the form <a,b>:R, where a and b are individual

names in O, C is a concept expression, and R is

a role name in RN.  A membership statement of

the first form, which is also called a concept

assertion, is intended to mean "an individual a

is an instance of C", while that of the second

form, which is also called a role assertion, is

intended to mean "an individual a is related to

an individual b by a role R".3

Having its formal semantics defined based

on DL, an OWL ontology can be translated into

a set of inclusion statements.  Table†1 illustrates

translation of some of the OWL class constructors

into the DL concept constructors, and Table 2

illustrates that of OWL axioms into DL

inclusion statements. Accordingly, the OWL

assertion in Figure 4(a), for example, which

specifies "not being taken by any underclassman"

as a necessary condition for being an AdvCourse

(advanced course), will be translated into the

TBox statement

AdvCourse ⊆ Course ∩ ∃takenBy.

Underclassman.

An RDF annotation will be translated into

one or more ABox membership statements.  For

example, the RDF statement in Figure 4(b) will

be translated into the concept assertion John:

Prof, along with the role assertion <John, PhD>:
highest Degree.

Figure 5 provides an example of a

structural part encoded in DL. Consider the TBox

in the figure. The first and the second statements

altogether specify that the concept Person

subsumes the concept FM (faculty member),

which in turn subsumes the concept Prof

(professor).  The third statement defines the

concept DFM (doctoral faculty member) as the

set of faculty members whose highest degrees

are doctoral degrees. The fourth statement

provides a necessary condition for AdvCourse.

The fifth statement specifies that Underclassman

3 The formal meanings of concept expressions, inclusion statements and membership statements are

normally defined based on Tarski style model theoretic semantics. The reader is referred to Baader et al.

(2002) for details.
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occurring in Head(r) must occur in Body(r). This

assumption ensures that from a relational part

consisting of a finite set of rules and facts, the

set of all derivable conclusions will always be

finite.

An example of a relational part is given in

Figure 6 (variables are written in italics). It

represents a goal and part of the knowledge base

of an agent. Rule R1 specifies the goal of

finding persons who are experts in a topic of

interest of the agent. Rules R2, R3 and R4

altogether state that an individual A is regarded

as an expert in a topic T if at least one of the

following conditions holds: (1) A is a doctoral

faculty member who is an author of a

publication with a keyword T; (2) A is a

doctoral faculty member who has T as one of

his/her research interests and supervises some

graduate students; (3) A is a lecturer of an

advanced course that covers the topic T. Facts

F1 and F2 state, respectively, that the agent is

interested in DL and IR.  It is assumed that Facts

F3-F7 represent the information related to

publications and courses that the agent has

gathered so far.  Facts are typically collected

from RDF statements; for example, F3 and F4

may be obtained from the RDF statement in

Figure 7.

An Extended Backward-Chaining Algorithm

Backward chaining (Russell and Norvig,

2003) is a well-known form of goal-directed

reasoning with conventional Horn rules.  To deal

with constraints in extended Horn rules, an

extended backward-chaining algorithm is

devised. Basically, in addition to the construction

of a proof tree for finding the set of all substitutions

that make a given query satisfied, the extended

algorithm collects all constraints that are

imposed upon by the rules involved in the

construction. Collection of such constraints

demands modification of the parameter-passing

and answer-returning structure of a conventional

backward-chaining algorithm.

4 Notice that a fact is a special form of a rule.
5 The notion of a safe rule is adopted from Datalog (Ullman, 1989).

is a subclass of Undergrad. The sixth and the

seventh statements altogether assert that

Undergrad and Grad (graduate) are disjoint

subclasses of Person. It is noteworthy that the

use of negation in the definition of AdvCourse

excludes the possibility of defining this concept

in Horn logic; furthermore, the constraint that

the extensions of two concepts are not overlapping,

as specified by the seventh statement, cannot be

represented using Horn rules. The ABox in

Figure 5 partially populates concepts and

partially relates individuals by roles; e.g.

it asserts that PhD and DEng are doctoral

degrees, and the highest degree of John is PhD.

Knowledge Representation in a Relational

Subsystem

A relational subsystem describes the

relationships between individuals using a set of

extended Horn rules and ground facts. Rules and

facts used in this subsystem are defined as

follows. Let PN be a set of predicate symbols,

and assume that PN, CN, and RN are pairwise

disjoint. An atom is an expression of the form

p(t
1
, ..., t

k
), where p is a predicate symbol in PN,

k ≥ 0, and each of the t
i
 is either a constant or a

variable. A constraint is an expression of the

form a:C, where a is either an individual name

in O or a variable, and C is a concept expression

constructed out of concept names in CN and role

names in RN.

An extended Horn rule (or rule, for short)

r takes the form

h <   b1, b2, ..., bm, con1, con2, ..., conn,

where m, n ≥ 0, h and the bi are atoms, and the

conj are constraints. The atom h is called the head

of r, denoted by Head(r); the list [b1, b2, ..., bm]

is called the body of r, denoted by Body(r); and

the list [con1, con2, ..., conn] is called the

constraint part of r, denoted by Constr(r).  When

Body(r) and Constr(r) are both empty, r will be

called a unit clause and the symbol <    will often

be omitted. A fact is a ground (variable-free) unit

clause.4 It is assumed in this paper that each rule

is safe,5 i.e. for each rule r, each variable
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The extended backward-chaining

algorithm, called EXTENDED-BC, is presented in

Figure 8 (the symbol '||' denotes list concatenation).

The algorithm takes a set KBR of extended Horn

rules, a list qlist of atoms (queries), a list clist of

constraints, and a substitution θ as inputs, and

produces as its output a set of substitution-con-

straints pairs, each of which takes the form <σ,

cl>, where σ is a substitution and cl is a list of

constraints. The lists qlist and clist can be thought

of, respectively, as a stack of queries (waiting to

be proved) and a queue of accumulated

constraints.  The algorithm works by taking the

first queryq in qlist and then finding every rule in

the knowledge base KBR whose head is unifiable

with q. Each of such a rule creates a new recursive

call in which the (instantiated) body of the rule

is added to the query stack and the (instantiated)

constraint part of the rule is added to the

constraint queue. When a query unifies a fact

(i.e. a rule with empty body), no new query is

added to the stack and the query is solved. The

algorithm uses four other algorithms, i.e. FIRST,
REST, UNIFY, and COMPOSE, where for any

non-empty list l, FIRST(l), and REST(l) return the

first element  and the tail of l, respectively; for

any atoms a1 and a2, UNIFY(a1, a2) returns the most

general unifier of a1 and a2 (if they are

unifiable); and for any substitutions θ1 and θ2,

COMPOSE(θ1, θ2) returns the composition of θ1 and

θ2.

Assume that a structural knowledge base

KBS, consisting of a TBox and an ABox, a

relational knowledge base KBR, consisting of

extended Horn rules, and a queryq are given.  By

invoking EXTENDED-BC with the singleton list [q],
the empty list, and the identity substitution (the

empty set of bindings) as the initial query stack,

the initial constraint queue, and the initial

substitution, respectively, one obtains a set

answers of substitution-constraints pairs such

that for each <θ, cl> ∈ answers, qθ can be proved

using KBR solely (provided that the constraint parts

of the rules in KBR have not yet been taken into

account). The constraints in answers will then be

verified with respect to KBs, and some answer

substitutions may be discarded. The verification

consists of two steps. First, collect all substitu-

tion-constraints pairs <σ1, cl1>, <σ2, cl2>, ..., <σm,

clm> in answers such that qσ1 = qσ2 = ... = qσm

and each qσi is a ground atom (1< i < m).  Then,

check whether KBS entails at least one of cl1, cl2,

..., clm.  Based on the theoretical foundation given

in Baader et al. (1990), this entailment checking

can be reduced into a knowledge base

unsatisfiability problem; that is, the entailment

is satisfied if and only if for any combination of

assertions a1: C1, a2: C2, ..., am: Cm such that for

each i (1<i<m), ai: Ci is a constraint in cli, KBS is

unsatisfiable when its ABox is augmented with

the set {a1: C1, a2: C2, ...,  am: Cm}. Supposing

that each cli contains at most k constraints, there

will be at most km combinations of assertions,

and, consequently, one can check the entailment

by performing at most km unsatisfiability

checks.  The soundness and completeness of this

query answering method follows from its

correspondence with a proof by constrained

resolution-based refutation (Donini et al., 1998).

An Example

Let KBS be the structural part in Figure 5

and KBR the relational part in Figure 6. Consider

the query find(X,Y), which, according to the rule

R1 in KBR, is intended to mean "find every pair of

X and Y such that X is an expert in a topic Y and Y
is a topic of interest of the agent in question".

By calling EXTENDED-BC(KBR, [find(X,Y)], [],∅), the

following substitution-constraints pairs are

obtained:

P1. <{X/Mary, Y/IR}, [Mary: Person, Mary: DFM,
jacm48p885: Publication]>.

P2. <{X/John, Y/DL}, [John: Person, John: DFM
∩∃supervise.Grad]>.

P3. <{X/John, Y/DL}, [John: Person, ITS413:
AdvCourse]>.

The collected constraints are verified with

respect to KBS as follows.  First, the three substi-

tution-constraints pairs are partitioned into two

collections: {P1} and {P2, P3}. From the first

collection, unsatisfiability of three augmented

knowledge bases, i.e.

KBS ∪ {Mary: Person},
KBS ∪ {Mary: DFM},
KBS ∪ {jacm48p885: Publication},

are checked.  By the ABox statements Mary: FM
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and <Mary, DEng>: highestDegree and the definition

of DFM, KBS entails Mary: DFM.  Obviously KBS also

entails Mary: Person and jacm48p885: Publication.  As

a result, the three augmented knowledge bases

are all unsatisfiable, and the substitution {X/Mary,
Y/IR} is taken as an answer. Next, from the second

collection, four augmented knowledge bases, i.e.

KBS ∪ {John: Person},
KBS ∪ {John: Person, ITS413: AdvCourse},
KBS ∪ {John: (DFM ∩ ∃supervise.Grad), John:

Person},
KBS ∪ {John: (DFM ∩ ∃supervise.Grad),

ITS413: AdvCourse},
are considered. By the ABox statements <ITS413,
Bob>: takenBy and Bob: Underclassman and the

necessary condition for membership of AdvCourse,
every model of KBS requires ITS413 not to be an

instance of AdvCourse. Furthermore, no assertion

of KBS prevents the possibility of constructing a

model in which John does not supervise any

students.6 The fourth augmented knowledge base

is thus not unsatisfiable.  Accordingly, the

substitution {X/John, Y/DL} is discarded.

Results

Two experiments were conducted. The objective

of the first experiment is to investigate the

feasibility of the approach in terms of the

performance of EXTENDED-BC.  The second

experiment aims to compare the performance of

RACER for constraint checking in the structural

subsystem with that of traditional backward

chaining. The experiments were all performed

on a standard PC with Pentium IV processor (1.7

GHz, 512 MB RAM), running Windows-2000

operating system. Both EXTENDED-BC.  and

traditional backward chaining were implemented

in the COMMONLISP language. RACER

version 1.7 for Windows was used in the second

experiment.

In the first experiment, two groups of tests

(Groups-A1, and -A2) were conducted. Each

group consists of 16 relational knowledge bases,

with varying sizes of rule sets (from 10 to 85

rules). A rule in each set contains 3 body atoms

and 4 distinct related variables. Rules in the same

set are interrelated and are all employed for

derivation of answers to tested queries (i.e.

removal of any single rule would result in

reduction of the number of answers). The

number of ground facts that match each body

atom of a rule involved in the lowest level of a

proof tree is 2 for Group-A1 and 10 for Group-

A2. Figure 9 shows the amount of time required

by EXTENDED-BC. for collecting constraints for all

possible answers to a query involving 2 unknown

variables in the two groups. The figure indicates

that the algorithm scales, in terms of size of the

rule sets, and has a polynomial-bounded time

complexity of order n5, where n is the number

of rules.

DL statements of some forms can be

translated equivalently into Horn rules. The

translation is illustrated in Figure 10, where C,

C1, C2, and D are concept names, and R is a role

name. In the second experiment, comparison

between the performance of RACER with that

of traditional backward chaining was made when

a structural subsystem is restricted to contain

only DL statements of these forms. Four groups

of tests (Groups-B1, -B2, -B3, and -B4) were

conducted. A DL inclusion statement in each

group has the form

D ⊆ C1 ∩ C2 ∩ ∀R.C3,

which can be translated, according to Figure 10,

into the three Horn rules

   C1(x) ← D(x), C2(x) ← D(x), C3(y) ← D(x)

^R(x,y).

A structural subsystem employed by each

test is characterized by four parameters, NI1,

NI2, NR, and Depth, where, as depicted by

Figure 11, NI1 denotes the number of instances

of the highest-level concept, NI2 denotes the

number of individuals that are explicitly declared

as instances of any other concept, NR denotes

the number of role fillers that are used for

constructing relationships among individuals

involving the highest-level concept, and Depth

denotes the number of concept-dependency

levels. The parameters of the structural sub-

system used in each group are given in Table 3.

6 The last statement in the ABox in Figure 5 only asserts that every person supervised by John is a graduate

student.
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Each group in the second experiment

consists of two tests with different number of

concept-dependency levels. Two constraint-

checking queries were performed in each test.

Referring to Figure 11, the first query (Q1)

checks whether an instance of the highest-level

concept (e.g. the individual j01) belongs to the

leftmost concept at the lowest level (e.g. the

concept An1). The second query (Q2) checks

whether an instance that is least-directly related

to an instance at the highest-level concept (e.g.,

the individual jn1 in the figure) belongs to the

rightmost deepest concept (not shown in the

figure). The tests were first performed using

RACER, where instance checking is reduced

into knowledge base unsatisfiability checking,

i.e., checking whether an individual a is an

instance of a concept C with respect to a given

knowledge base is equivalent to checking

whether addition of the assertion a: C makes

the knowledge base unsatisfiable.  In each test,

RACER (Version 1.7) answered each query

within less than 0.30 second. The same tests were

next performed using a traditional backward

chaining algorithm, and the results are shown in

Table 4 (the last two columns show execution

time). This experiment shows that RACER is

more efficient than the traditional backward

chaining algorithm for constraint-checking tasks.

It thus supports the proposed hybrid reasoning

approach based on an integration of RACER

with the backward chaining through EXTENDED-BC,
and also, more generally, an integration of an

available optimized specialized reasoner with a

general purpose one.

Discussion

In Nantajeewarawat and Wuwongse (2001) and

Wuwongse and Nantajeewarawat (2002), the

effect of implicit implication caused by a

generalization taxonomy of concepts upon the

semantics of Horn-clause-style declarative

programs and the interaction between deduction

and inheritance were investigated. A structural

component considered therein, however, deals

only with primitive concepts, i.e. a concept can

only be described in terms of its (explicit)

extension and its generalization relationship with

other concepts, and there is no mechanism for

defining a new concept by providing sufficient

and necessary conditions for its membership.  In

such a structural part, one can assert, for

example, that DFM is more specific than FM,

but not that ìholding a doctoral degreeî is a

sufficient and necessary condition for an

individual of FM to be an instance of DFM. By

using DL as its underlying formalism, a

structural component discussed in this paper is

far more expressive than that considered in

Nantajeewarawat and Wuwongse (2001) and

Wuwongse and Nantajeewarawat (2002), and

terminological reasoning mechanisms on this

component are also more sophisticated.

In most implementations of DL, all

reasoning tasks are reduced into the task of

determining knowledge base (un)satisfiability,

e.g. a concept assertion is inferred if and only if

a given knowledge base is not satisfiable when

its ABox is augmented with the negation of that

concept assertion. This technique, however,

cannot be used directly to infer a role assertion,

since most DL systems do not support the role

negation. As a result, the traditional DL systems

are rather weak in answering queries involving

relationships among individuals.7  This problem

is sidestepped in this paper by augmenting a DL

knowledge base with a rule-based relational

component, and pushing (part of) representation

of relations and reasoning in the level of

individuals to the relational component. A

different approach was taken in Horrocks and

Tessaris (2000) and Tessaris (2001) based on a

method of evaluating boolean conjunctive

queries. A query of this type is a conjunction of

concept assertions and/or role assertions

extended by an incorporation of variables for

imposition of equality constraints and for repre-

sentation of anonymous individuals. A technique,

called rolling up a query, was proposed for

converting role assertions into concept

assertions, which can then be evaluated through

7 Even conjunctive queries-the least expressive query languages usually considered in the database

literature-are often not supported (Borgida, 1996).
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usual reduction to a knowledge base (un)

satisfiability problem. Although this technique

is useful for determining the truth value of a

boolean conjunctive query, it does not yield any

variable substitution as an answer. Consequently,

retrieving individuals that make a boolean query

true can only be achieved by a repeated application

of boolean queries with all possible individual

names substituted for variables. Obviously, such

a retrieval tends to be prohibitively expensive.

In Grosof et al. (2003), the expressiveness

intersection of DL and Horn logic programs was

investigated, and an intermediate knowledge

representation framework, called Description

Logic Program (DLP), which is contained within

the intersection, is defined. A bi-directional

translation from the DLP fragment of DL to logic

programs, and vice versa from the DLP fragment

of logic programs to DL was demonstrated. This

translation enables one to "build rules on top of

ontologies", i.e. it enables a rule-based

representation to have access to DL ontological

definitions for vocabulary primitives used by

rules. Conversely, it enables one to "build

ontologies on top of rules", i.e. it enables

ontological definitions to be supplemented by

rules, or imported into DL from rules. Since DLP

is contained in the intersection of DL and Horn

logic programs, the approach presented in Grosof

et al. (2003) extends neither the expressive

power of DL nor that of Horn logic. There exist

DL statements as well as Horn rules that are

inherently outside the intersection of the two

formalisms, and are thus not included by DLP.8

In comparison, the hybrid system considered in

this paper utilizes the full power of DL (in its

structural subsystem), and extends the

expressive power of Horn rules by incorporation

of DL-based membership constraints.

Conclusions

It has long been realized that the Web could

benefit from having its content understandable

in a machine processable form, and it is widely

agreed that ontologies will play a key role in

providing much enabling infrastructure to

achieve this goal. While  DL is well suited for

representation of ontologies and reasoning in the

level of concepts, its capabilities of reasoning

with instances are rather limited. This area is a

stronghold of rules, which offer extensive

facilities for instance reasoning. It is therefore

interesting to explore the possibility of combining

DL with the rule paradigm in order to support

expressive instance queries with respect to

terminological knowledge bases. A hybrid

system comprising a DL-based structural

subsystem and a rule-based relational subsystem

is discussed. Whereas it inherits appealing

computational characteristics from conventional

backward chaining with Horn rules, the presented

system can easily be adapted to most existing

(and future) DL implementations.

8 Among others, in DLP, neither disjunction (DL ∪) nor existential restriction (DL ∃) may occur in the right-

hand side of an inclusion statement, no universal restriction (DL ∀) may occur in its left-hand side, and DL

negation is completely not allowed.

Figure 1. Expressiveness overlap of DL and Horn rules

Description
Logics

First-Order
Logic

Horn
Rules
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Figure 2. An overview of the proposed hybrid  system

C, D → A (primitive concept)

| top (most general concept)

| bottom (absurd concept)

| C ∩ D (conjunction)

| C ∪ D (disjunction)

| C (negation)

| ∀R.C (universal quantification)

| ∃R.C     (existential quantification)

| ≥n R.C (at-least restriction)

| <n R.C (at-most restriction)

Figure 3. Syntax of basic concept expressions

                               <owl:Class rdf:about="kb1.owl#AdvCourse">
                                 <rdfs:label>Advanced Course</rdfs:label>
                                 <rdfs:subClassOf>
                                   <owl:Class>
                                     <owl:intersectionOf>
                                       <owl:Class rdf:about="kb1.owl#Course"/>
                                       <owl:ComplementOf>
                                         <owl:Restriction>
                                            <owl:onProperty rdf:resource="kb1.owl#takenBy"/>
                                            <owl:someValuesFrom>
                                               <owl:Class rdf:about="kb1.owl#Underclassman"/>
                                            </owl:someValuesFrom>
                                         </owl:Restriction>
                                       </owl:ComplementOf>
                                     </owl:intersectionOf>
                                   </owl:Class>
                                 </rdfs:subClassOf>
                               </owl:Class>

(a)  An OWL statement

                                 <rdf:Description rdf:about="kb1.owl#John">
                                   <rdfs:label>John</rdfs:label>
                                   <rdf:type>
                                      <owl:Class rdf:about="kb1.owl#Prof"/>
                                   </rdf:type>
                                   <highestDegree rdf:resource="kb1.owl#PhD"/>
                                 </rdf:Description>

  (b)  An RDF statement

Figure 4. An OWL DL axiom and an RDF annotation
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Figure 5. A structural part

R1.   find(A,T)     myInterest(T), expert(A, T), A: Person.

R2.   expert(A,T)     keyword(P, T), author(P, A), A: DFM, P: Publication.

R3.   expert(A,T)     researchInterest(A, T), A: DFM ∩ ∃supervise.Grad.

R4.   expert(A,T)     cover(C, T), teach(A, C), C: AdvCourse.

F1.    myInterest(DL).

F2.    myInterest(IR).

F3.    author(jacm48p885, Mary).

F4.    keyword(jacm48p885, IR).

F5.    cover(ITS413, DL).

F6.    researchInterest(John, DL).

F7.    teach(John, ITS413).

<<<<<
<<<<<
<<<<<
<<<<<

TBox

FM  ⊆  Person

Prof  ⊆  FM

DFM  ≡  FM ∩ ∃highestDegree.DoctoralDegree

AdvCourse  ⊆  Course ∩ ∃takenBy.Underclassman

Underclassman  ⊆  Undergrad

Undergrad ∪ Grad  ⊆  Person

Undergrad ∩ Grad  ⊆  bottom

ABox

PhD: DoctoralDegree, DEng: DoctoralDegree,

John: Prof, Mary: FM,

jacm48p885: Publication,

ITS413: Course,

Bob: Underclassman,

<John, PhD>: highestDegree, <Mary, DEng>: highestDegree,

<ITS413, Bob>: takenBy,

John: ∀supervise.Grad

Figure 6. A relational part

<rdf:Description rdf:about="papers.owl#jacm48p885">

<author rdf:resource="persons.owl#Mary"/>

<keyword rdf:resource="subjects.owl#IR"/>

</rdf:Description>

Figure 7. An RDF document
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procedure EXTENDED-BC(KBR, qlist, clist, θ)

input a set KBR of extended Horn rules; a list qlist of atoms;

         a list clist of constraints; a substitution θ
output a set of substitution-constraints pairs

local variable

an atom q; a list nextql of atoms; a list nextcl of constraints;

          a set ans and a set answers of substitution-constraints pairs

begin

1. answers := ∅
2. if qlist is empty then return {<θ, clist>}
3. q := FIRST(qlist)

4. for each rule r in KBR such that q and Head(r) are unifiable

5.    do begin

6.       s := UNIFY(q, Head(r))

7.       nextql := Body(r)σ  || REST(qlist)σ

8.       nextcl := clistσ || Constr(r)σ

9.       ans := EXTENDED-BC(KBR, nextql, nextcl, COMPOSE(θ,σ))

10.     answers := answers ∪ ans

11.    end

12. return answers

end

Figure 8.  The extended backward-chaining algorithm

Figure 9. Performance of EXTENDED-BC
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DL Horn rule

C ⊆ D D(x) ← C(x)

a: C C(a)

<a,b>: RR(a,b)

C ≡ D
D(x) ← C(x)

C(x) ← D(x)

C1 ∩ C2 ⊆ D D(x) ← C1(x) ^ C2(x)

D ⊆ C1 ∩ C2
C1(x) ← D(x)

C2(x) ← D(x)

C1 ∪ C2 ⊆ D D(x) ← C1(x)

D(x) ← C2(x)

C ⊆ ∀R.D D(y) ← C(x) ^ R(x,y)

∃R.C ⊆ D D(x) ← R(x,y) ^ C(y)

Figure 10. Mapping from DL statements to Horn rules

  Figure 10. Mapping from DL statements to Horn rules

Constructor DL Syntax Example

intersectionOf C1 ∩ ... ∩ Cn Human ∩ Male

unionOf C1 ∪ ... ∪ Cn Doctor ∪ Lawyer

complementOf C Male

allValuesFrom ∀R.C ∀hasChild.Lawyer

someValuesFrom ∃R.C ∃hasChild.Doctor

minCardinality ≥n R.C ≥2 hasChild.Male

maxCardinality <n R.C <1 hasChild.Female

Table 1. OWL class constructors
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Axiom DL Syntax Example

rdfs:subClassOf C1 ⊆ C2 Human ⊆ Animal ∩ Biped

owl:equivalentClass C1 ≡ C2 Man ≡ Human ∩ Male

owl:disjointWith C1 ⊆ ¬C2 Male ⊆¬Female

Table 2. OWL axioms

Parameter       Group

B1 B2 B3 B4

NI1 3 3 3 3

NI2 0 3 0 3

NR 1 1 3 3

Depth 4,5 4,5 4,5  4,5

Group Depth #Concept #Instance #Property Q1 Q2

(sec.) (sec.)

B1
4 40 3 12 0.046 0.343

5 121 3 15 0.140 2.781

B2
4 40 120 12 0.046 0.453

5 121 363 15 0.140 3.234

B3
4 40 3 36 0.031 0.906

5 121 3 45 0.140 8.312

B4
4 40 120 36 0.046 1.109

5 121 363 45 0.203 8.500

Table 3. Parameters used in the second experiment

Table 4. Results of using traditional backward chaining
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