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Abstract

In this study, a theoretical foundation on the Discrete-Time Feedback Error Learning (DTFEL) method

is established. This is analogous to the original continuous-time version Feedback Error Learning (FEL)

method which is proposed as a control model of cerebellum in the field of computational neuroscience.

The FEL is an adaptive control method for two-degree-of-freedom control schemes. In this control

scheme the adaptive controller must become an inverse system of the plant. DTFEL is proposed

because now the controller is computer-based, which means that the digital control scheme is used

instead of the analog one. Many control algorithms are also computed in discrete-time format. Furthermore,

some systems are themselves inherently discrete and, certainly for these systems, it is useful to have

results available in discrete version for controlling. The ready-to-use controller is the key target of this

study.
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Introduction

Recently, as a control method for the case where
the plant is unknown, many schemes on
adaptive control have been studied. Adaptive
control is a fascinating field of study and
research. It is also of increasing practical
importance since adaptive techniques are being
used more and more in industrial control
systems. However, there are still many unsolved
theoretical and practical issues.

This study presents a formulation and formal
stability analysis of the Discrete-Time Feedback
Error Learning (DTFEL) method. It is developed
from the continuous-time feedback error
learning (FEL) method (Gomi and Kawato,
1993). This research is to study and design the
controller for a class of discrete-time systems

from a viewpoint of the adaptive control theory.
Originally, FEL method was proposed from a
biological perspective to establish a computational
model of the cerebellum for learning motor
control with internal models in the central
nervous system (CNS) (Kawato et al., 1987). The
research presented here is inspired by the insight
of the close relationship between FEL method
and adaptive control algorithms which is gained
during our recent development of a new adaptive
control framework with advanced statistical
learning. From a control theoretic viewpoint,
FEL method can be conceived of as an adaptive
control technique (Miyamura and Kimura,
2002). Stability analysis of FEL for a class of
linear systems and a two-link planar robot arm
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in a horizontal plane are presented by Miyamura
and Kimura (Miyamura and Kimura, 2002) and
Ushida and Kimura (Ushida and Kimura, 2002),
respectively. However, the considered plant
dynamics are confined to a restricted class of
continuous-time linear systems. Nowadays, the
controller is computer-based which is usually not
suitable to apply the theoretical knowledge of
the FEL method directly. That means, to apply
to real applications, the algorithm of the original
FEL method must be discretized and
programmed digitally beforehand. This may lead
to a serious situation because the stability
properties, analyzed in continuous-time case, are
not guaranteed for the discretized system.
Furthermore, in some systems, they are
originally be discrete systems. It might be better
if we control those systems by discrete-time
controller. This study is aimed to establish a
theoretical foundation on the DTFEL method
which can be applied to the systems directly with
discrete-time nature.

This paper is organized as follows: First,
all mathematical and control theories, required
to analyze the stability of DTFEL system, are
summarized. There are some new proved
knowledge presented in this section. Second, the
structure of the control system are presented.
Then, the stability properties of DTFEL are
discussed. A Lyapunov stability analysis of
DTFEL is also provided. Next, the numerical
simulated examples to illustrate the theoretical
stability properties of DTFEL is presented. Last,
the conclusion of this study is drawn.

Notation:

Throughout this study, a fairly standard notation
is used. The overview is as follow.

the smallest
eigenvalue of P.

the Frobenius
norm.

(A, B, C, D) = D+C(zI-A)-1B a minimal
realization

p.r. positive real
s.p.r. strictly positive real
PE persistently exciting

Mathematical Preliminaries

In this section, the mathematical requirements
to analyze the DTFEL method in the next
section are discussed. The main and most
important area is to study the strictly positive
real system. Also, there are some new theorems
proved in this section.

Definition 1 (Tao and Ioannou, 1990) A square
matrix H(z) of real rational functions is a
positive real (p.r.) matrix if

(d1) H(z) has elements analytic in |z| > 1.
(d2) HT(z*)+H(z) is positive, semidefinite

and Hermitian for |z| > 1.
Condition (d2) can be replaced by

(d3) The poles of the elements of H(z)

on |z| = 1 are simple and the associated
residue matrices of H(z) at these
poles are 0.

(d4) H(ejθ)+H(e-jθ) is a positive semidefinite

Hermitian matrix for all real θ for
which H(ejθ) exists.

Definition 2 (Tao and Ioannou, 1990) A
rational transfer matrix H(z) is a strictly positive
real (s.p.r.) matrix if H(ρz) is p.r. for some
0 < ρ < 1.

Given Definition 2, a necessary and
sufficient condition in the frequency domain for
s.p.r. transfer matrices in the class ℵcan be
defined as following.

Definition 3 (Tao and Ioannou, 1990) An nxn

rational matrix H(z) is said to belong to class ℵ
if H(z) + HT(z-1) has rank n almost everywhere
in the complex z-plane.
Theorem 1 (Tao and Ioannou, 1990) Consider
the nxn rational matrix H(z)∈ℵgiven in
Definition 3. Then, H(z) is a s.p.r. matrix if and
only if
(a) All elements of H(z) are analytic in |z| ≥ 1,

(b) H(ejθ)+HT(e-jθ)>0,∀θ∈[0,2π]
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Theorem 2 A difference equation

            (3)

is asymptotically stable for any time-varying
vector (k) which satisfies the PE condition, if
L(z) is s.p.r..
Proof

To prove this theorem, consider the
following discrete-time state-space equation of
a scalar pulse-transfer function

By using this state-space equation form, the
difference equation in Eqn. (3) can then be
represented as

Assume that L(z) is s.p.r.. The theorem can
then be proved by using Lyapunov stability
analysis.

Consider a Lyapunov function

 (7)

From Eqn.(4)-(6) and Lemma 1,

  (1)

(4)

(5)

(6)

Lemma 1 (Discrete-time version of Kalman-

Yakubovich-Popov) (Tao and Ioannou, 1990)
Assume that the rational transfer matrix H(z)

has poles that lie in |z| < γ, where 0 < γ < 1 and

(A, B, C, D) is a minimal realization of H(z).

Then, H(γ z)is s.p.r., if and only if real matrices

P = PT,>0, , andexist such that

Remark

If L(z) is a stable transfer function, there exists

sufficiently large K such that 
  

a

k
L z K

1( ) +( )− is s.p.r.

Consider the linear discrete-time varying

system given by

with A(k), B(k), C(k) being appropriately

dimensioned matrices.

Lemma 2 (Jagannathan, 1996) Define ψ(k
1
, k

0
)

as the state-transition matrix corresponding to

A(k) for the system (1), i.e., ψ(k
1
, k

0
)= 

A(k). Then, if  the sys-
tem (1) is exponentially stable.
Lemma 3 (Jagannathan, 1996) If A(k) = I-αφ(k)
φT(k) in (1), where 0 < α < 2 and φ(k) is a regressor
vector of past inputs and outputs, then

 is guaranteed if there is an L > 0

such that  for all k. Then,

Lemma 2 guarantees the exponential stability of
the system (1).

Definition 4 (Jagannathan, 1996) An input
sequence x(k) is said to be persistently exciting
(PE) if γ > 0 and an integer k

1 
≥ 1 such that

                    (2)

Note:PE is exactly the stability condition needed
in Lemma 3.
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Similarly,

From Eqns. (7) and (8), x(k) and
 converge to 0. From this result and

Eqns. (4)-(6), for sufficiently large k,

  (9)

Since L(z) is s.p.r., d > 0. From the

assumption,  satisfies the PE condition (2).

Hence, due to Lemma 1, the system described
by (9) is asymptotically stable which implies that
z(k)  converges to 0. Hence, Theorem 2 has been
proved.

Note that a special case of Theorem 2,
where L(z) = 1, corresponds to Eqns (3).

The requirement in Eqns (8) can be
translated as "the direct input-output transmission
gain d is positive and sufficiently large". This
clarifies the essential differences between
continuous-time and discrete-time cases. This is
a special feature of discrete-time systems which
makes the requirement relatively complicated.

(8)

Then,
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Similar requirements frequently occur in literature
relating to some discrete-time control systems
(Kongprawechnon and Kimura, 1998; de la Sen,
2000).

Analysis of the Discrete-Time

Feedback Error Learning

Feedforward Adaptive Control Method With-

out Feedback Element

The discussion of the feedback error
learning method (henceforth, it is simply referred
as the Kawato scheme) from the viewpoint of
adaptive control is the main objective of this
section. Figure 1 illustrates the block diagram
of the Kawato scheme.

To briefly explain the key concept of
DTFEL, consider its architecture shown in
Figure 1. The objective of control is to minimize
the error e(k) between the command signal r(k)

and the plant output y(k). The input u(k) to the
plant P is composed of the output u

ff
(k) of

feedforward controller K
2
 and u

fb
(k) of the

feedback controller K
1
. If P is known and P-1

exists and is stable, choosing K
2
=P-1 makes the

tracking perfect. Indeed, from the relations
u

ff
,=P-1r, u

fb
=K

1
(r-y)  and y=P(u

ff
+u

fb
), it is

easily to see that y=r. However, in most systems,
P is unknown, so some adaptive schemes for K

2

are employed so that K
2
 converges to P-1. Thus,

the novelty of the DTFEL method lies in its way
to learn the inverse model of P. That is the
parameters be adapted so that K

2
=P-1.

Throughout this section, the following
assumptions are applied:

Assumptions

(A1) The plant P is stable and has stable inverse
P-1.

(A2) The upper bound of the order of P is known.
(A3) is assumed to be positive.
(A4) Input signal is bounded and satisfies the

PE condition.
The assumption (A1) is rather restrictive

in the context of control system design. This may
be relaxed without significant difficulty, but in
this study, this assumption is kept in order to
focus on the intrinsic nature of the Kawato
scheme. In the context of motor control, this
assumption is not restrictive because the plant
is always a neuro-muscular system with low
order. This lets the computed torque method,
which is essentially equivalent to constructing
an inverse model, to be applicable.

If lo 
is negative in (A3), the subsequent

results are valid by taking -P(z) instead of P(z).
Hence, (A3) is relaxed to the assumption that
the sign of lo is known. For the sake of the
simplicity of exposition, however, (A3) is retained.
From the assumption (A4), it is obvious that  also
ξ(k) satisfies the PE condition.

Parameterization of Unknown Systems

To handle adaptation, it is important to
decide how to parameterize the adaptive system.
Throughout this study, the following parameter-
ization of the unknown system k

2
 is utilized:

Figure 1. Discrete-time feedback error learning scheme

K
2

K
1

P(z)
+

-

r(k) e(k)

u
ff
(k)

u(k) y(k)

u
fb
(k)
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where F is any stable matrix and g is any vector
with {F,g} being controllable. The block diagram
of this parameterization is shown in Figure 2.
In Eqns. (10)-(12), c(k), d(k) and l(k) are
unknown parameters to be estimated. u(k) and
r(k) are the output and the desired output of this
system, respectively. It is easy to see that
appropriate selection of parameters c(k)=c

0
,

l(k)=l
0 

and  can yield an arbitrary transfer
function from r(k) to u(k).

To see this, let the matrix  and vector  be
in a controllable canonical form:

(13)

From Eqns. (10) - (13), the transfer function from
to  is given by

(10)

(11)

(12)

Figure 2. Parameterization of

(14)

Therefore, any transfer function of degree
less than or equal to n can be constructed by
selecting parameters c

0
, d

0
 and l

0
 appropriately.

The advantage of the parameterization (10) - (12)
is that the unknown parameters enter linearly in
the system description. The continuous version
of this parameterization was firstly used in
adaptive observer (Narendra and Valavani,
1989).

Adaptation Law

The same parameterization of the
adaptive feedforward controller K

2
 as in Eqns.

(10) - (12) is taken.

(15)

  ξ1 k 1+( )

  ξ2 k 1+( )
  ξ2 k( )

  ξ1 k( )

l

cTZ-1g
r(k) u(k)

F

g Z-1 dT

F
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(16)

(17)

(18)

where F is stable and {F, g} is controllable and
e(k) is the error signal defined as

In the ideal situation, K
2
 is identical to P-1.

In that case, e(k)=0, u(k)=u
ff
(k)=u

0
(k)=P-1(z)r(k).

The true values c
0
, d

0 
and l

0 
of c(k), d(k) and l(k),

respectively, satisfy

as given in Eqns  (14).
The cost function for adaptation is defined as

 (20)

The unknown parameters c(k), d(k) and l(k) must
be updated so that the error signal e(k) decreases.
ξ(k)is defined as

 (21)

The usual gradient method gives rise to
the updating rule. Then, the adaptation law of
parameters is obtained as

Note: This is adapted from the continuous-time
adaptation algorithm by using the gradient
method presented by Miyamura (2000).

By using such the above parameterization
algorithm and adaptation law, together with some
control theorems proved previously, the
convergence of DTFEL system can be proved
easily.

(19)

Convergence Proof

The error signal can be rewritten as

           Hence,

Then, the adaptive controller is written as

 (24)

Assume that the true system is written as

Then,

Here, the following asymptotic relations are used

The relation (31) is written as

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(22)

(23)
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Combining (34) and (36),

which is the same form as (3), i.e.

where  is equal to

According to Theorem 2, the difference
equation (38) is asymptotically stable, if L

0
(z)

givdÃ by (39) is s.p.r., K
1
 is chosen such that

G(z)+K
1
 is s.p.r. Such K

1
 always exists from

Definition 2 of s.p.r. (See Remark following
Lemma 1). If G(z)+K

1
 is s.p.r., so is L

0
(z). Thus,

the following fundamental result has been
established:
Theorem 3 Under the assumptions (A1)-(A4),

the feedback error learning method (24)-(27) is

converging, i.e., the controller K
2
 converges to

P-1(z).

where

 (32)

From the relations

which results in

On the other hand, from (32),

It should be noted that the relation (19) implies
that

(33)

(34)

(35)

(36)

(38)

Figure 3. The result of the DTFEL system
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Results

In this section, the simulation results are to
demonstrate the effectiveness of the theoretical
results obtained in this study. The pulse-transfer
function of the plant is

Note that this plant has a stable inverse.
In Figure 3, the tracking performance between
the input signal r(k) and the output signal y(k) is
shown. The error e(k)=y(k)-r(k) shown in
Figure 4. These Figures show rhe convergence
of the signal and the comparison of the tracking
performance of the system before adaptation,
from 0 sec to about 5.7 sec, and after
adaptation, from 5.7 sec to 10 sec. It should be
noted that the error pulses between 7 and 8 sec
can be considered as the unusual performance of
the input. It is interesting that the system can still
be stable. Note also that the learning rate is set
to be very low to show the result clearly. In fact,
the adaptation rate is very fast.

Conclusion

In this study, the "Discrete-Time Feedback

Figure 4. The error of the DTFEL system

Error Learning" (DTFEL) method is demonstrated.
The results are direct analogues to those

in continuous-time systems. However, these
extensions are by no means straightforward, and
clarified the essential difference between
continuous-time and discrete-time cases. The
extensions are far from trivial. These
discrete-time versions turn out to be more
complicated than their continuous counterparts.
The mathematical requirements to analyze the
stability of the DTFEL method, where the plant
has stable inverse, are studied and proved. Then
the simulation results using MATLAB® are
shown. Although the system with DTFEL seems
to be welled control, the requirement of this
method is very restricted in the real applications
where most plants are not stable or invertedly
stable. So, the extension of DTFEL method,
especially for controlling unstable or invertedly
unstable plants, should be one of the possible
further research in this area. Furthermore, the
stability analysis of DTFEL system with time-
delay should be studied.
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