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Abstract

The present work deals with the laminar flow of a uniform stream past two circular rotating cylinders.

The principal feature of interest is that the rotation of the cylinders leads to a zero drag force on the

cylinders. This case corresponds to self-propelled motion of cylinders as a coupled body. The case

of equal contra-rotating cylinders is considered, with the stream normal to the plane containing the

axes of the cylinders. The components of the resultant force on the cylinders are determined by the

numerical solution of the incompressible two-dimensional Navier-Stokes equations in the cylindrical

bipolar coordinate system. Both self-motion and towed regimes of fluid flow are considered.
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The problem of flow past two rotating circular

cylinders in a viscous fluid has long attracted

mathematicians and engineers. This flow shows

some analytical peculiarities regarding the

implementation of near-field and far-field

boundary conditions. It might be for this reason

that the flow has attracted much interest from

theoretical fluid dynamicists. It is impossible,

in general, to obtain solutions of Stokes’

equations of slow viscous steady flow in which

the fluid velocity vanishes at infinity (Jeffery,

1922). If the cylinders are outside one another,

Jeffery found that it is impossible, in general, to

make the fluid velocity vanish at infinity.

He illustrated this by a detailed treatment of the

case of equal cylinders, rotating with equal

speeds in an opposite sense. This is the Jeffery

paradox.  To resolve this paradox, Smith (1991)

obtained an asymptotic solution of the Stokes

equations for the stream function which is valid

at large distances from the cylinders. This

asymptotic expansion involves many unknown

coefficients of the Fourier series and there was

no obvious way as to how these may be obtained.

Elliott et al. (1995) established the boundary

element method by using the asymptotic

expansions given by Smith and showed numeri-

cally that the combined bodies have no overall

force or torque acting upon them. Watson (1995)

pointed out that the pressure field given by

Smithûs asymptotic form is not single-valued and

proposed that an additional term to Jefferyûs
Fourier series is necessary. However, he did not

derive the force, since the outer flow which is
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governed by the Navier-Stokes equations was

not obtained.

The problem of flow past rotating cylinders

was considered by Sennitskii (1973). The

problem was studied using a boundary layer

approach for the case of a large distance between

the center of cylinders. In the work of Sennitskii

(1975a) the first terms of an asymptotic

expansion by inverse degree of the Reynolds

number were obtained. Using symptotic

expansion by degree of the small parameter

which is the ratio of the cylinder radius to

the distance between the axes of cylinders, the

problem of stationary flow past rotating

cylinders was solved approximately by

Sennitskii (1975b). It was ascertained that,

in the approximation considered, the pair of

rotating cylinders is a self-propelled body. In

connection with the problem of decreasing the

energy required for a body to move in a liquid,

the motion of a pair of rotating cylinders in a

liquid was also investigated experimentally

(Sennitskii, 1980, 1981).

In pure motion by self-propulsion the

total net force and torque, external to the system

body-fluid, acting on the body are zero. The

forward force (thrust) that makes the body move

is generated by the body itself and the motion is

due to the interaction of the bodyûs external

surface and the fluid in which it is immersed.

The hydrodynamic mechanism of self-propulsion

is different for macroscopic and microscopic

bodies. Large objects which propel themselves

make use of inertia in the surrounding fluid.

Their thrust can be produced by muscular

action and change of shape, as in animal

locomotion, or can be provided by mechanical

propulsion systems, as in an airplane, rocket or

submarine (Milne-Thomson, 1952).

Though the problem of a self-propelled

body has a natural origin and though it is of

practical importance, the number of works

concerning it is very limited. Before explaining

the objectives and results of this paper, let us

briefly refer to the literature on the mathematical

analysis and numerical simulations of motion

by self-propulsion of a rigid body in an

infinite Navier-Stokes fluid. In Finn (1965)

and Pukhnachev (1989, 1990) the asymptotic

properties of steady flow past a self-propelled

body moving with purely translational velocity

are investigated. The existence of such solutions

was first established for very particular shapes,

like balls and cylinders in Sennitskii (1978, 1984,

1990) and for a symmetric body around an axis

in Galdi (1997). Considering the general form

of a rigid body motion, with the rotation of the

body taken into account, Galdi (1999) proved

the existence of steady self-propelled solutions

for a body with arbitrary geometry, with a

detailed study of the cases of zero and nonzero

Reynolds numbers. In Silvestre (2002a, 2002b)

the existence of a weak solution to the general

unsteady nonlinear problem and the attainability

of steady purely translational self-propelled

motion for a symmetric body was proved. In

Sennitskii (1978, 1984, 1990), by methods

consistent with asymptotic decomposition for a

low Reynolds number, the  flow past a circular

cylinder with a moving boundary and of flow

past a ball with a liquid-permeable boundary was

investigated. The asymptotic formulas for the

velocity at great distance from the body were

obtained. More rapid decay of velocity

perturbation at a larger distance from a self-

moving body than a towed one were noted.

Lugovtsov (1971) examples of flat potential

viscous flow past a self-moving "body" are

studied. Its boundary consists of two symm-

etrical coupled components. On each the

normal velocity components are equal to zero

and the tangential components are constant.

A numerical solution to the problem of

momentumless flow past an extended ellipsoid

of rotation was obtained by Izteleulov (1985). A

propelling model is a self-consistent distribution

of volume force located in a small region

behind the body. Simulation of the problem of

conductive incompressible viscous flow past the

body in an electromagnetic field was considered

in Shatrov and Yakovlev (1985) and Khonichev

and Yakovlev (1978). In papers of Moshkin

et al. (1989) and Moshkin (1991) two particular

cases of self-motion were considered by numerical

solution of the Navier-Stokes equations. In one

of them there is a surface behind (downstream)

the ball. The liquid flows through this surface

and gets there by an additional momentum.
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In the other case the ball surface is permeable.

On one of its parts, between two cones with the

divergence semi-angles Θ1 and Θ2  and a

mutual axis Θ = π , the liquid is sucked in, and

on the other part, ʻcut' by a cone Θ Θ3 ≤ ≤ π ,

the same quantity of the liquid is returned to the

flow. In the paper of Nakanishi and Kida (1999)

the vortex method was applied to a low Reynolds

number unsteady flow generated by two

circular cylinders of equal radii set rotating

abruptly with equal angular velocities in a flow

initially at rest. Elliot  et al. (1995) developed

the boundary element method by using the

asymptotic expansions and showed numerically

that the combined bodies (two cylinders) have

no overall force or torque acting upon them.

According authors knowledge there are no

detail study of problem of  flow past two rotating

circular cylinders for moderate Reynolds numbers.

Particularly, there are no comparisons between

self-propelled and towed regime of motion, there

are no consistent set of data for the drag and lift

forces for moderate Reynolds numbers and

moderate rate of cylinder's rotation

In this paper, we shall be interested in the

self-propulsion of a rigid body. The shape of the

body is constant during the motion, and the thrust

is produced  because the body boundary moves.

The motion of the body is therefore completely

determined by its geometry and by the distribution

of the velocity on its boundary. In fact, the

combined body which consists of two rotating

circular cylinders is an example where self-

propelled motion is due to a non-zero velocity

of the boundary. We shall study not only self-

motion of rotating cylinders but also flow past

towed cylinders. Different rotation of cylinders

can be considered as a propulsion device for

controlling the motion of the body. The plan of

the paper is the following. In Section 2 we

introduce the mathematical formulation for the

self-propelled motion problem in general and for

the particular case of two rotating cylinders. In

Section 3 we introduce the numerical scheme

used for the approximate solution of the Navier-

Stokes equation with boundary conditions. In

Section 4 we present the data for validation of

our numerical algorithm by comparison with

available solutions and experimental data.

Section 5 is dedicated to the main results of

numerical simulation and is concerned with the

self-propelled motion as well as fluid flow past

two towed  rotating circular cylinders in a

uniform stream.

Mathematical Formulation

General Case of Arbitrary Rigid Body

To better explain our results, let us first

give a mathematical formulation of the problem

in the general case. We represent a rigid body

by a compact set   B  that is moving in a viscous

fluid   L  which occupies the region    D = R B3 /
exterior to the body. The motion of  {  B ,  L} is

described by the following coupled system of

equations and boundary conditions

  
ρ
dv

dt
T v p T= ×div in( ( , )), ( , )D 0 (1)

    div inv T= ×0 0, ( , )D (2)

  v v T= ×∑*, ( , )at 0 (3)

 lim ( , ) , ( , ),
x

v x t t T
→∞

= ∈0 0for (4)

m
d

dt
T v p n d T

ς
σ= − ⋅

∑∫ ( , ) , ( , ),in 0 (5)

I
d

dt
x T v p n d T

ω
σ= − × ⋅

∑∫ [ ( , )] , ( , ),in 0 (6)

  
v x v x x( , ) ( ),0 0= ∈ D (7)

    ς ς ω ω( ) , ( ) .0 00 0= = (8)

The quantities v v x t= ( , )  and p p x t= ( , )
represent the velocity and pressure associated

with each particle of 
  
L, ( , )T v p  is the stress

tensor, defined by

T v p
v

x

v

x
pij

i

j

j

i
ij( , ) ,=

∂
∂

+
∂

∂

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−µ δ

i j, , ,= 1 2 3, (9)
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where µ  is the coefficient of dynamic viscosity.

The field V x t t t x( , ) ( ) ( )= + ×ς ω  represents the

velocity of 
  
B, ( )ς t  and ω( )t  are velocity of

center mass and vector of angular velocity of

the body, respectively. In Eqns. (5) and (6)  the

positive constant m  is the mass of   B  and I  is

its inertia tensor. Recall that

I x x x x dxij BB ij i j= −∫ ρ δ( )( )
2

,

and I is a symmetric and positive definite

(Danielson 1997). Here ρB  is the mass density

of the body   B . The distribution of velocity v
*

on ∑  represents the thrust, responsible for the

motion of the body. The two Eqns. (5) and (6)

are consequences of Newton's laws of

conservation of linear and angular momentum,

respectively, for the body   B . Let us consider

three possible cases.

a) If  {  B ,   L} performs a steady motion

then the left hand side of  Eqns. (5), (6) are equal

to zero. This is the case of self-propelled

motion. One of the basic equations for this type

of problem is the following one: in which way

can we choose the field v
*

 in order that   B

moves with a (constant) rigid motion velocity

V x= − − ×ξ ω ,  where ς ≠ 0. Eqns. (5) and (6)

with zero left hand side express the fact that the

total external force and torque on   B  are

identically zero, that   B  is a self-propelled body.

In this case suitable distributions of velocity field

v
*
 at ∑  are additional unknown quantities.

b) In the case of a towed body, the motion

of   B  is due to external forces. The field

V x t t t x( , ) ( ) ( )= + ×ς ω  is a known function of

( , )x t  and the velocity v
*

 on ∑  is also a given

function. In this case we use integrals in the right

hand side of Eqns. (5) and (6) to find the

external drag force and torque on   B . In the

simplest case, where V x t conts( , ) = −ς  and

v
*

= 0  on ∑  the problem is fluid flow past the

towed body. The direction of stream flow

coincides with the direction of the vector  V .

c) In the more general case Eqns. (1) - (9)

represent the problem of rigid body motion

in a viscous incompressible fluid due to the

distribution velocity v
*

 on the boundary that

furnishes the "thrust".

Representation of the Navier-Stokes

Equations in Cylindrical Bipolar Coordinate

System

It is natural to study the fluid flow in a

boundary fitted curvilinear coordinate system.

In order to study fluid flow past two circular

cylinders, the reasonable coordinate system is

the cylindrical bipolar coordinate system. The

cylindrical bipolar coordinate system can be

defined by the following equations

x
a

=
−

sinh

cosh cos

η
η ξ

,

  
y

a
=

sin

cosh cos
=

ξ
η ξ−

, z z,      (10)

where   ξ π η∈ ∈ −∞ ∞ ∈ −∞ ∞[ , ), ( , ), ( , ),0 2 z a
is a characteristic length in the cylindrical bipolar

coordinate system which is positive. The following

identities show that curves of constant  ξ  and

η are circles in  xy - space

x y a a2 -+ =( cot ) csc ,ξ ξ2 2 2

( coth ) csc .x a y a- hη η2 22 2+ =     (11)

The coordinate surface η = const  cor-

responds to a family of nonintersecting

cylinders whose centers lie along the x − axis.

The value η = 0 is a cylinder of infinite radius

and is equivalent to the entire plane x = 0
Figure 1 shows two cylinders that are chosen

to be η η= 1  (with η1 0> ) and η η= 2  
(with

η2 0> ). The cylinders’ radii r1 and r2  and the

distances of their centers from the origin d1  and

d2 are given by

r a d a ii i i i= = =csch | |, coth | |, , .η η 1 2  (12)

The center to center distance between the

cylinders equals  d d d= +1 2. If  r r1 2,  and d

are given, one can find a,η1 and η2  from

relations (10) - (12) as follows:

<

const
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2
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2

2
2
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2

2 2
1, ln ,=

+ −⎛

⎝
⎜

⎞

⎠
⎟ ±

+ −⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

d r r

dr

d r r

dr

a
d d r r r r

d
=

− + + −4 2
1
2

2
2

1
2

2
2 2

2

2

4

( ) ( )
(13)

The Navier-Stokes equations in the

cylindrical bipolar coordinate system   ( , )ξ η z
are

 

  

∂

∂
+

∂

∂
+

∂

∂

⎛

⎝
⎜

⎞

⎠
⎟ +

∂

∂

v

t h
v

v
v

v
v

vξ
ξ

ξ
η

ξ ξ

ξ η
1

z z

− −( ) = −
∂
∂

1 1 12

a
v v v

h

p
sinh ( ) sin ( )η ξ

ρ ξξ η η

  

+
∂

∂
+

∂

∂
+
∂

∂

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪
v

v v

h h

v v2

2

2

2

2

2
1ξ ξ ξ

ξ ηz
(14)

−
∂

∂
−

∂

∂

⎛

⎝
⎜

⎞

⎠
⎟

2

a
sinh sinη

ξ
ξ

η
η ηv v

−
+⎛

⎝
⎜

⎞
⎠
⎟

⎫
⎬
⎭

cosh cos
,

η ξ
ξa
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∂

∂
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∂

∂
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∂

∂

⎛

⎝
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⎠
⎟ +

∂

∂
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h
v

v
v

v
v

vη
ξ

η
η

η η

ξ ηt

1
z z

+ −( ) = −
∂
∂

1 1 12

a
v v v

h

p
sinh ( ) sin ( )η ξ

ρ ηξ ξ η

  

+
∂

∂
+

∂

∂
+
∂

∂

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪
v

v v

h h

v v2

2

2

2

2

2
1η η η

ξ ηz

+
∂

∂
−

∂

∂

⎛

⎝
⎜

⎞

⎠
⎟ −

+⎛
⎝
⎜

⎞
⎠
⎟

⎫
⎬
⎪

⎭⎪

2

a

v v

a
vsinh sin

cosh cos ,η
ξ

ξ
η

η ξξ ξ
η

(15)

  

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟ +

∂
∂

=
v

t h
v

v
v

v
v

vz z z
z

z

z
1

ξ ηξ η

(16)

  

−
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟ +

∂

∂

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1 1
2 2

2

2

2

2

2

ρ ξ η
ξp

v
h

v v v

z z
z z ,

  

1
02h

hv hv v∂

∂
+
∂

∂

⎡

⎣
⎢

⎤

⎦
⎥ +

∂
∂

=
( ) ( )

,ξ η

ξ η
z

z
(17)

where v vξ η,  and    vz  are the physical components

of velocity vector  
  
v v v v p= ( , , ),ξ η z  is the

pressure, v =
µ
ρ

 is the coefficient of

kinematic viscosity and h
a

=
(cosh - cos )η ξ

 .

In the present situation the boundary

conditions are a no-slip requirement on

cylinders

v r v ii i iξ ηω η η ξ π= = = ∈ [ ) =, , , , , , ,0 0 2 1 2on

(18)

where ω i i, ,= 1 2  are rotational velocities of the

cylinder walls. Positive values of ω i i, ,= 1 2
correspond to counterclockwise rotation.

Upstream and downstream boundary conditions

at infinity are

v v U as r x yx y= = = + →∞∞0 2 2 2, , , (19)

where vx  and vy  are components of the velocity

vector in x  and y  directions respectively. Self

motion requires that the resultant fluid force and

torque on the combined system of the two

cylinders are zero. The net force exerted by fluid

on an immersed body with surface ∑  is

F dS M r dS= = ×[ ]
∑ ∑∫ ∫τ τ, ,

Figure 1. Geometrical sketch of the flow scheme
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where τ = ⋅T v p n( , )  is the stress vector. The

force per unit area exerted across a rigid boundary

element with outward normal n  in an

incompressible fluid is defined by

τ µ ω= − − ×pn n( )

where p  is pressure and ω  is vorticity defined

as  ω = curl v.  If  Fxi  and F iyi
, , ,= 1 2  are the

lift and drag on the cylinders, the lift and drag

coefficients are defined by

C
F

U D
C

F

U D
iL

x
D

y

i

i

i

i= = =
∞ ∞ρ ρ

, , ,1 2 ,

And each consists of components due to the

friction forces and the pressure. Hence

C C C C C CL L L D D Df p f p
= + = +, ,

Where

C
U D

n i dSL xf
= − × ⋅

∞
∑∫

1

ρ
µ ω( ) ,

C
U D

n i dSD yf
= − × ⋅

∞
∑∫

1

ρ
µ ω( ) ,

C
U D

pn i dSL xp
= − ⋅

∞
∑∫

1

ρ
,

C
U D

pn i dSD yp
= − ⋅

∞
∑∫

1

ρ
.

Here i ix y,  are unit vectors in x  and y  axes

directions.

The problem of self-motion is to find

solution of the Navier-Stokes Eqns. (14) - (17)

with boundary conditions (18) - (19) and

additional constraints

F M= = 0                          (20)

Eqn. (20) establishes the basic distinction

between stationary flow over self-propelled and

towed bodies. The numerical simulation of the

flow past self-moving bodies becomes more

complicated as a result of the nonlocality of

constraints like (20). For such flows, the results

depend not only on the Reynolds number Re but

also on the non-dimensional gap spacing

between the two cylinders, g , and on

parameters, α i  representing the ratios of the

rotational velocities of the cylinder walls to the

oncoming flow velocity

Re = = =∞ ∞U D v D U ii i, , , ,α ω 2 1 2

and g
d r r

D
=

− −1 2 ,

where ω i  are constant angular velocities of the

cylinders' rotation, U∞  is the oncoming free

stream velocity and v is the kinematic viscosity

of the fluid.

Numerical Algorithm

The algorithm of the problem solution is based

on the concept of projection methods (Chorin,

1968). Let us only recall that intermediate

velocity components ˜ , ˜v vξ η  are computed in a

first step by solving a finite difference

approximation of the momentum equations

r r r r r˜ ( )
Re

v v v v vn n n n= − ⋅∇ −
⎛

⎝
⎜

⎞

⎠
⎟τ

1
∆ (21)

−∇ =( );κ κpn 0 1or

and intermediate velocity vector (which is not

solenoidal) is then decomposed into divergence

free and rotational free vector fields by solving

the Poisson equation with homogeneous

Neumann  boundary  conditions

  

r r r˜ , .v v vn n= + ∇ =+ +1 1 0τ Φ div (22)

∆Φ

Φ

=

∂
∂

=

⎧

⎨
⎪

⎩
⎪

1

0

τ
div

r˜,

.

v

n

(23)

The final approximation of the 
  

r

v  and p

at time t n tn+ = +1 1( )∆  can be found as follows:

  

r r

v v p pn n n+ += − ∇ + =1 1˜ ,τ κΦ Φ or

Φ + =
+ +

κ p
p pn
n n 1

2
.

The staggered arrangement of the different

variables is used. The velocity components are

located at the center of the cell edges and are

normal to them. Scalar functions such as

pressure and divergence are located at the cell

centers. For the purpose of determining an
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intermediate velocity an explicit approximation

of Eqn. (21) is employed. The scheme of

stabilizing correction (Yanenko, 1971), also

called the second Douglas scheme (Douglas and

Rachford, 1956), is utilized to find an approximate

solution of (22). The steady-state computed

solution is defined by

                            
θ θ

θ
ε

n n

nt

+

+

−
<

1

1∆
, (24)

where θ ξ η= ( , , , );v v C C tD L ∆  is the time step

and  θ n  refers to the numerical approximation at

time n t∆ , ε  is sufficiently small positive

number (ε  have been chosen such that variation

of CD  and CL  on the large time interval less

than 0.1%). Figure 2 shows the grid construction

and the location of unknown functions. The

boundary conditions (19) corresponding to

r→∞ = = = =, ( , ; , )η ξ η ξ π0 0 0 2  were trans-

lated to boundaries which are sufficiently far

from the cylinders in physical space. These

boundaries are shown in Figure 2  by bold solid

lines. The inflow and outflow boundaries have

a Dirichlet boundary condition ( , ).v vx y= =0 1

The no-slip condition is imposed on the

cylinders' surface and the periodic boundary

condition Ψ Ψ( , ) ( , )0 2η π η=  is used on the

boundaries ξ = 0  and  ξ π= 2  (here Ψ denotes

one of the unknown functions v v pξ η, ,  and Φ)

All the numerical simulations are continued

until the flow reaches a fully developed state,

where all the flow characteristics are analyzed.

Validation of Numerical Algorithm

It is well known that for large gap spacing

between the two surfaces of the cylinders the

mutual influence between cylinders disappears,

leading to separate flow over single cylinders.

To validate the present numerical algorithm, the

uniform flow past fixed and rotating circular

cylinders with 0 40 0 2 51 2≤ ≤ ≤ = ≤Re , ( ) .α α
and with a large gap between cylinder surfaces

g = 14  have been calculated and the results

Figure 2. Transformation between physical domain and computational domain
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compared with experimental and simulation data

for flow past a single cylinder. All the simulations

have been performed in a large domain so as to

reduce the influence of the outer boundary.

A sequence of uniform grids is used. Because

the cylinder wake is stable to perturbations

in the flow regime below Re ,≤ ±46 1  the flow

will reach a steady state for Re ≤ 40 . The

calculated nondimensional steady-state wake

length LW (the distance from the cylinder

trailing edge to the reattachment point) and the

drag coefficient C C CD D Dp f
= +  are compared

with previously established results. The current

results of wake length and drag coefficient are

compared to the numerical simulations and

experimental data in Table 1. In this table CDp

and CD f
 denote the pressure and friction drag

coefficients, respectively. The spatial resolution

of the mesh is shown in curly brackets. The

comparisons show that the present results are in

good agreement with previous results.

To the authors' knowledge, there are very

few published data of drag and lift coefficients

at Re ≤ 40  and angular speed even for flow past

single cylinders. Table 2 lists the calculated lift

and drag coefficients and makes a comparison with

Badr et al. (1989), Ingham and Tang (1990) and

Chung (2006). It can be seen that the differences

are acceptable for CD  and CL . For the case of a

large gap between cylinders the streamline patterns

are similar to those in the flow behind a single

cylinder, (Batchelor, 2000 and Chung, 2006).

The steady-state streamline patterns in Figure 3 (a)

shows the recirculation region behind the

cylinder (left) at Re , , .= = =20 0 14α g  For

Re ,= 20  the flow induced by several angular

speeds in interval 0 2 5≤ ≤α i .  have been

computed. Figures 3(b) and 3(c) show the

Table 1. Validation of the numerical algorithm; comparison study for flow over two side-

by-side circular cylinders at g = 14 with flow over a single cylinder

Re Contribution CD CDp
CD f

L Dw

Present ( )20 20× 3.748 1.883 1.865

5 Present ( )40 40× 4.050 2.099 1.960

Ingham and Tang (1990) (one cylinder) 3.997 2.104 1.843

Batchelor (2000) (one cylinder) 3.995 --- ---

Present ( )20 20× 2.022 1.193 0.829

Present ( )40 40× 2.069 1.229 0.840

Present ( )80 80× 2.120 1.270 0.850 0.890

20 Relf (1913) (one cylinder) 2.160 --- ---

Tritton (1959) (one cylinder) 2.080 --- ---

Chung (2006) (one cylinder) 2.050 --- --- 0.960

Ingham and Tang (1990) (one cylinder) 1.995 1.201 0.794

Batchelor (2000) (one cylinder) 2.001 --- --- 0.900

Present  ( )40 40× 1.539 1.002 0.537 2.160

Relf (1913) (one cylinder) 1.620 --- ---

40 Tritton (1959) (one cylinder) 1.590 --- ---

Chung (2006) (one cylinder) 1.540 --- --- 2.300

Batchelor (2000) (one cylinder) 1.538 --- --- 2.150
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predicted steady-state streamline patterns

for α = 0 1.  and α = 1 0. , respectively. Due to

symmetry we only represent the streamline

patterns around one cylinder (left) in Figure 3.

The accuracy and grid independence of

the numerical results is checked by computations

on various grids. The simulation was carried

out on three grids with hξ1 0 16535= . ,

h h hη ξ η1 2 20 17436 0 080554 0 086078= = =. , . , . ,

h hξ η3 30 039767 0 042759= =. , . .  The time step

size ∆t = 0 001. . Some data on comparisons of

the calculation results are represented in Table 3.

In the case of  Re = 40  and g = 1 the

computed drag coefficients for both cylinders

are nearly the same and the lift coefficients are

in the opposite directions. There is about

5 ~ 7%  difference in CD  between the present

calculations and the result reported by Kang

(2003) at Re = 40 , g = 1. Figure 4 shows

steady-state streamline patterns behind the

cylinders at Re = 40 , α = 0 and g = 1. Wake

patterns are similar to those in Kang (2003). The

comparisons made in Tables 1 and 2 and in

Figures 3 and 4 indicate the appropriateness of the

numerical method and mesh used in this study.

Results and Discussion

After verifying the numerical method, we have

conducted numerical simulations of flow past

constantly rotating circular cylinders of equal

radii in a side-by-side arrangement at Reynolds

numbers Re = 10, 20 and 40, rate of rotation

0 5 2 5. .≤ ≤α  and nondimensional gap spacing

Table 2. Hydrodynamic parameters of flow over a rotating circular cylinder at Re = 20

with g = 14

Re Contribution
CD CL

α α α α α = 0.1= 0.1= 0.1= 0.1= 0.1 α α α α α = 1.0= 1.0= 1.0= 1.0= 1.0 α α α α α = 2.0= 2.0= 2.0= 2.0= 2.0  α α α α α = 0.1= 0.1= 0.1= 0.1= 0.1 α α α α α = 1.0= 1.0= 1.0= 1.0= 1.0 α α α α α = 2.0= 2.0= 2.0= 2.0= 2.0

Present ( )80 80×  2.119 1.887 1.363 0.291 2.797 5.866

20 Badr et al. (1989)  1.990 2.000 --- 0.276  2.740 ---

Ingham and Tang (1990)  1.995 1.925 1.627  0.254 2.617 5.719

Chung (2006)  2.043 1.888 1.361  0.258 2.629 5.507

Figure 3.Streamline patterns of flow over two circular cylinders at Re = 20,  g = 14 and

αα = 0.0, 0.1, 1.0
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g = 1.  Both cylinders are placed in a stream

(from down to up) of uniform speed U∞  at

infinity. The left cylinder is rotating with

constant clockwise angular velocity. The right

cylinder is rotating with the same constant

anti-clockwise angular velocity. The sketch of

the present  problem is shown in Figure 1.

The influence of the rotation rate

α α α ω= = = ∞1 2 2i D U  is demonstrated in

Table 4 and Figure 5. Table 4 gives the values of

drag and lift coefficients in cases  Re = 10, 20

and g = 1 for 0 5 2 5. .≤ ≤α  Indexes 1 and 2

correspond to the right and left cylinders,

respectively. The fluid forces are distributed over

the two cylinders such that lift forces in

x-direction on the combined system are in

equilibrium,  C CL L1 2
0+ ≡ . However, the fluid

forces acting upon an individual cylinder

demand that some additional external forces are

applied to it in order for its position to remain

fixed. There is a repulsive force acting on the

cylinders, C CL L1 2
0 0> >, .  The absolute

values of  lift coefficients increase with

increasing α, as shown in the sixth column of

Table 4. The lift forces acting on cylinders mostly

result from the pressure force, as can be seen in

the two last columns of Table 4. The pressure

contribution in CL increases with increasing  Re,

which is the same behavior as observed in the

study of Stojkovic et al. (2002) for the case of a

single rotating cylinder. The drag coefficients

decrease with increasing α, (see third column

of Table 4). For α ≈ =1 65 10. (Re )  and

α ≈ =1 74 20. (Re )  the drag force becomes zero.

Table 3. Sequence of grid; drag and lift coefficient at  Re = 20, g = 14 and α α α α α = 0.1

grid  CD  CDp
 CDf

 CL  CLp  CLf
( )40 40× 1.858 1.033 0.825 2.740 2.393 0.347

( )80 80× 1.887 1.061 0.826 2.797 2.437 0.360

 ( )160 160× 1.901 1.074 0.827 2.802 2.440 0.362

Table 4. Drag and lift coefficient of flow over two rotating circular cylinders at Re = 10 and

20 with g = 1

ααααα Re  CD  CDp
 CDf

 CL1,2  CLp1,2  CLf 1,2

0.5
10 1.942 1.219 0.723  ± 2.181  ± 1.623  ± 0.558

20 1.485 0.919 0.566  ± 1.721  ± 1.382  ± 0.339

1.0
10 1.094 0.824 0.270  ± 3.028  ± 2.355  ± 0.673

20 0.862 0.530 0.332 ± 2.774  ± 2.300  ± 0.474

1.5
10 0.247 0.440 -0.193  ± 3.544  ± 2.811  ± 0.733

20 0.260 0.151 0.109  ± 3.645  ± 3.065  ± 0.580

1.65 10 0.004 0.335 -0.331  ± 3.633  ± 2.894  ± 0.739

1.74 20 -0.001 -0.004 0.003  ± 3.958  ± 3.345 ± 0.613

2.0
10 -0.516 0.134 -0.650  ± 3.713  ± 2.983  ± 0.730

20 -0.265 -0.152 -0.113  ± 4.196  ± 3.563  ± 0.633

2.5
10 -1.199 -0.076 -1.123  ± 3.415  ± 2.767  ± 0.648

20 -0.685 -0.330 -0.355  ± 4.214  ± 3.608  ± 0.606
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This case corresponds to the self-propelled

motion of cylinders as a coupled body. It is

interesting that both CDp
 and CD f

 decrease with

increasing α, (see columns 4 and 5 in Table 4),

resulting in negative values of  CDp
 and CD f

for higher rotational velocities.  This is opposite

to the case of flow past a single rotating cylinder,

where CD f
 increases and CDp

 decreases with

increasing α (Stojkovic et al., 2002). Additionally,

for α ≥ 2 0.  the total drag force is negative

because CD f
 dominates over CDp

.  In the case

of flow around a single rotating cylinder the

effect is quite different. It has to be pointed out

that the self-propelled regime happened due to

different reasons at Re = 10 and at Re = 20. In

the case of  Re = 10 the drag CD ≈ 0  is due to

Figure 4. Streamline patterns of flow over two

circular cylinders at Re = 40,  g = 1

and αα = 0.0

Figure 5. Drag and lift coefficients at Re = 10(a) - (b), 20(c) - (d) and g = 1, α α α α α ∈ [0.5, 2.5]∈ [0.5, 2.5]∈ [0.5, 2.5]∈ [0.5, 2.5]∈ [0.5, 2.5]
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C CD Dp f
≈ − ≈ 0 33. .  In the case of  Re = 20 the

self-propelled regime corresponds to CD ≈ 0
due to C CD Dp f

≈ − ≈ 0. Figure 5 demonstrates

the dependence of lift and drag coefficient on

rate of rotation. Figures 5(a) - 5(b) correspond

to Re = 10 and g = 1.  Figures 5(c) - 5(d)

correspond to Re = 20 and g = 1. At Re = 10

drag coefficient decreases almost linearly with

increasing α. Both coefficients CDp
 and CD f

also decrease linearly with increasing α and it is

easy to see that CD f
 decreases faster than CDp

.

At Re = 20, CDp
 decreases faster than CD f

up to α α= .

 Figures 6 and 7 show the streamline

patterns corresponding to the case Re = 10(20),

g = 1.0 and α = 0.5, 1.0(1.5), 1.65*(1.74*), 2.0.

All are symmetrical about the  y - axis. There

are regions of closed streamlines near the

cylinders for all values of  α. These streamlines

only exist very close to the cylinders for small

values of α. However, as α  increases they

exist in larger and larger regions as illustrated in

Figures 6 and 7. For small α  the space between

regions of closed streamlines is sufficiently large

that fluid can go through the gap between the

cylinders, (Figures 6(a) and 7(a)). As α increases

the stagnation points rotate in the direction

opposite to the direction of the cylinders'

rotation and depart from the surfaces of  the

cylinders and approach the y - axis at the

smallest spacing between the cylinders. Finally,

the space between the cylinders' surfaces

becomes narrower further increasing the closed

streamlines' regions.  At α  between ~1.0 and ~1.5

these regions touch each other along the y - axis.

The stagnation points are now located on the

y - axis, both upstream and downstream, as

illustrated in Figures 6(b) - 6(d) and 7(b) - 7(d).

Further increases in angular velocity of

the cylinders is a reason of increasing of

closed contour regions around the cylinders,

(Figures 6(c) - 6(d) and 7(c) - 7(d)). The

stagnation points on the y - axis move upstream

and downstream of the cylinders. The

downstream stagnation point moves far away

from the line between the center of the

cylinders. The streamline patterns of the

self-propelled regime are represented by Figures

6(c) and 7(c) for Re = 10 and Re = 20,

respectively.

Conclusion

In this paper, we have represented a numerical
study of steady two-dimensional viscose fluid
flow past the two circular cylinders of equal
radii which rotate with opposite angular
velocity. Validation of the numerical algorithm
has been performed by comparison of the present
results of uniform flow past two fixed and
rotating circular cylinders with experimental and
numerical data for flow past a single cylinder.

Simulations were performed for flows
with 5 40≤ ≤Re  in the range 0 2 5≤ ≤α .  and
gap spacing,  g = 1  The rotation of the circular
cylinders in a viscous uniform flow significantly
modified flow patterns and reduced drag and lift
forces acting on each cylinder compared  with
the case of uniform flow over cylinders with
α = 0.

Results showed that two separate regions
of closed streamlines near cylinders exist at low
rotation speed. A further increase in angular
velocity of the cylinders generates the region of
fluid which encloses both the right and left
cylinders. This region consists of two subregions
of closed streamlines which connected along the
y - axis. Two stagnation points exist on the
y - axis. The drag coefficient vanishes at  α = α∗.
The critical rotation speed α∗ depends on the
Reynolds number, for example α∗ ≈ 1 65.  and
1.74 for Re = 10 and 20, respectively. The value
of α∗ corresponds to the self-propelled motion
of two cylinders as a coupled body. The lift force
acting on each cylinder increases with increasing
α. The lift force mostly results from the
pressure contribution. The drag force decreases
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Figure 6. Streamline patterns of flow over two circular cylinders at Re = 10, g = 1 and α  α  α  α  α  = 0.5, 1.0,
1.65, 2.0

Figure 7. Streamline patterns of flow over two circular cylinders at Re = 20, g = 1 and α α α α α = 0.5, 1.5,
1.74, 2.0



232 Numerical Simulation of Steady Viscous Flow Past Two Rotating Circular Cylinders

with increasing α, in particular both CDp
 and

CD f
 decrease with increasing α.
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