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Abstract 

This work introduces a modified meta-heuristic algorithm for solving Location- Routing Problems   
(LRP). It presents the most relevant steps towards the implementation of LRP, involving servicing a  
set of customers from a set of specific capacitated depots by using a set of identical vehicles. The   
objective of LRP is to minimize the total location and distribution costs. Since LRP is non-  
deterministic polynomial-time (NP) hard combinatorial problem, the heuristic is an appropriate   
approach to solve this problem. In this study, a heuristic based on the Max-Min Ant System   
(MMAS) is proposed and a 2–opt/ Move-Swap algorithm is applied. This approach aims to integrate   
2 levels of decision making (location-routing) in a computationally efficient manner. Simulations are   
performed using problem instances available from literature. The results show that the modified   
MMAS performs efficiently in solving LRP. 
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Introduction 
The concept of integrated logistics systems   
has given rise to a new management philosophy   
which aims to increase distribution efficiency.   
Such a concept recognizes the interdependence   
among the location of the facilities, the allocation   
of suppliers and customers to the facilities,   
and the vehicle route structure around the   
depots. The design of logistics systems requires   
a number of different types of strategic decisions.   
One of the higher level decisions that must be   
addressed involves the location of the facilities   
from which the activity of the system will be   
managed. Facilities must be located so as to  

minimize the operating costs of the system, so   
it is necessary to consider the facility location   
and distribution decision simultaneously. The   
combined location-routing model solved the   
joint problem of determining the optimal set   
of vehicle schedules and locations. Each   
location has a fixed operating cost and a capacity,   
and the traveling costs between any 2 points.   
The goal is to determine the number and   
locations of the facilities to be opened and   
design multiple routes from each selected   
location in such a way that each customer   
belongs to exactly 1 route, capacity constraints   
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on the facilities are satisfied, and the total costs   
are minimized. There are a number of related   
papers involving combinations of LRP. Several   
different types of solution methods have been   
used for solving LRP.  
 These are exact algorithms and heuristics.   
Laporte and Norbert (1981), and Laporte et al   
(1983; 1986) developed a branch and bound   
algorithm that solves related sub-problems,   
adds upper bounds on variables, and branches   
on non-integer variables. They are able to  
solve some randomly generated symmetric   
instances of the Multi-Depot Vehicle Routing   
Problems (MDVRP) with as many as 25   
problem nodes (including depots nodes).   
Laporte et al. (1988) solved some asymmetric   
MDVRP by performing a graph extension and   
then creating constrained assignment problems   
which they were able to solve through the   
branch and bound method. Using this method   
they solved problem instances with up 80   
nodes, so long as the number of depots was   
small (2-3 depots), since location-allocation   
problems and the Vehicle Routing Problems   
(VRP) are NP-hard combinatorial problems   
which are difficult to solve by exact 
algorithms.  
 Clarke and Wright (1964), originated the   
saving and insertion heuristics to solve vehicle   
routing. These heuristics are efficient for   
forming good clusters for the customer nodes   
and depot nodes.  
 Chien (1993), proposed an approximate   
approach for the Multi-Depot Location Routing   
Problem (MDLRP), in which route length   
estimators are used in constructing vehicle   
routes. 
 Nagy and Salhi (1996) adopted the   
concept of the nested method to treat the routing   
element as a sub-problem within the larger   
problem of location. While still few in number,   
more papers have been written concerning   
heuristic approaches to the MDLRP. Gillet   
and  
 Johnson (1976) proposed an assignment   
sweep approach which is an extension of the   
sweep heuristic, and solved the MDLRP in 2   
states: customers were first assigned to depots   
to compact and disjointed clusters and then   

independent single-depot VRP were solved   
using the sweep heuristic.  
 Raft (1982) presented a 2-phase heuristic   
that starts with a route assignment phase.   
After having estimated the number of vehicles   
needed, the algorithm constructs clusters of   
customers, each assigned to 1 vehicle. These   
clusters are not assigned any depot and are   
constructed to provide a small-expected   
length. In the next phase, each route is   
assigned to a depot, and then a 2-Opt exchange   
procedure is applied to each route. 
 Chao et al. (1993) provided a review of   
the previous heuristics in the operations   
research literature, and also introduced a new   
heuristic. The most important element in this   
new heuristic is the improvement procedure,   
which allows total distance to increase with   
the hope that a solution with an overall decrease   
may be found further along in the improvement   
process. The authors applied their new heuristic   
on data sets taken from the literature and   
found that the new heuristic yielded better   
solutions than were previously known. 
 Renaud et al. (1996) and Pathumnakul   
(1996) applied a Tabu Search (TS) heuristic to   
MDVRP. The algorithm contains 2 parts:   
construction of an initial solution by assigning   
customers to its nearest depots and then using   
a heuristic to find the best route selection and   
using a TS to improve the solution.  
 Ha (1998) presented a hybrid genetic   
approach for the MDVRP, that applied a   
genetic algorithm to cluster the MDVRP into   
VRP and then used a hybrid 2-Opt/Or Opt   
heuristic to solve single-depot VRP. 
 Madsen (1983) applied the TS, Tuzun   
and Burke (1999) presented a 2-phase TS for   
the MDLRP and compared the 2-phase   
algorithm with other heuristics, and Wu et al.   
(2002) applied simulated annealing, and   
threshold accepting and simulated annealing.  
 Sodsoon and Sindhuchao (2007) the   
MMAS and the Swap-Move/*2-Opt algorithm   
to solve the MMAS. The heuristic starts with   
customers assigned to each depot and vehicle   
routes constructed simultaneously using   
MMAS. After an ant colony has constructed   
all the routes completely the Swap-Move/  
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*2-Opt is applied to each route.  
 This paper focuses on the study of   
MMAS and solution improvement procedures   
(2–opt/ Move-Swap algorithm) for solving the   
LRP with multiple depots, multiple routes,   
homogeneous fleet (only one type of vehicles)   
and limited capacity of vehicles and the time   
window is not considered in this case. This   
paper is organized as follows: the model is   
formulated in section 2; in section 3, the   
MMAS and solution improvement are presented;   
computational experiments are discussed in   
section 4; and finally, conclusions are provided   
in section 5. 

Location-Routing Problem 
The location-routing problem was first   
defined by Perl and Daskin (1985). In this   
research, the formulation is closely related to   
Wu et al. (2002). The following information is   
known; number of candidate depots, number   
of customers, deterministic demand of each   
customer, vehicle capacity, dispatching cost   
for vehicles, and depot establishment cost.   
Each customer is served by exactly 1 vehicle.   
The total demand on each route is less than or   
equal to the capacity of the vehicle assigned   
to that route, and each route begins and ends   
at the same depot. Each vehicle is identical.   
The following indices, parameters, and decision   
variables are used in the mathematical model: 

Notations and Decision Variables 

I set of all potential depot sites 

J set of all customers 

K set of all vehicles 

N number of customers 

Cij distance between points i and j,  

 i, j ∈ I ∪ J   

Gi fixed costs of establishing depot i  

Fk fixed costs of using vehicle k  

Vi maximum throughput at depot i  

dj demand of customer j 

Qk capacity of vehicle (or route) k 

Xijk = 1 if point immediately precedes point j  
 on route k (i, j ∈ I ∪ J); 0 = Otherwise 

yi= 1  if depot i is established; 0 otherwise 

Zij= 1  if customer j is allocated to depot i;   
 0 = Otherwise 

Ulk auxiliary variable for sub-tour   
 elimination constraints in route k 

Mathematical Model 

 (1) 

Subject to 

 (2) 
  

 (3) 

 (4) 

 (5)  

  (6)  

 (7) 

 (8)   

 (9)  

 (10) 

 (11) 

  (13) 
  
 The objective function minimizes the   
sum of the fixed depot-establishing cost,   
delivery cost, and dispatching cost for the   
vehicles assigned, respectively. Constraints   
Equation (2) require that each customer be   
assigned to a single route. Constraints Equation   
(3) are the capacity constraint set for vehicles.   
Constraints Equation (4) are the new sub-tour   
elimination constraint set. Flow conservation   
constraints are expressed in Equation (5).  



Max-Min Ant System for Location-Routing Problems 324

Constraints Equation (6) assure that each route   
can be served at most once. Capacity constraints   
for the depots are given in Equation (7). A   
constraint (8) specifies that a customer can be   
assigned to a depot only if there is a route   
from that depot going through that customer.   
Constraint sets Equations (9), (10), and (11)   
are the binary requirements on the decision  
variables. The Ulk, auxiliary variables taking  
positive values are declared in Equation (12). 

Heuristic for LRP 

 Let a set of customers and potential depots   
be presented by points on the plane. Each   
customer has a certain demand. The location   
has an installation cost of each site and the   
unitary cost of distribution. The vehicles   
routes and the potential depots have a certain   
capacity. The purpose of LRP is, then, to   
choose the depots that must be opened and to   
draw the routes from these depots to the   
customers, having an objective of minimizing   
the total location and distribution costs. The   
summarized algorithm is shown in Figure 1. 

 Grouping Phase 

 At this stage, finding a heuristic algorithm   
giving rapid approximations to the optimum   
seems to be more appropriate than well-  
developed methods which typically consume   
too much time. Hence, the grouping procedure   
assumes that all the potential depots are opened   
and each customer is assigned its nearest   
depot. The total demands of each group of   
customers do not exceed the depot capacity.   
We are dealing with the signal ratio which is   
the measurement of connection between   
customers and depot locations. The sector   
grouping algorithm is illustrated as follows: 
 1) Assume that all the candidate depots   
are opened 
 2) Assign customers to the nearest   
depots. The total demands of each group of   
customers for each depot must not be greater   
than the depot capacity.  
 3) Compute the signal ratio of each   
group. The signal ratio is the sum of the ratio   
between the demand load of a customer and   
the distance from that customer to a depot  

location according to Equations (2) and (3) 
 4) Sort the signal ratio (R

1
, R2,.....RM)  

of all the depots in descending order for   
generating initial vehicle routes by MMAS 
 5) An ant constructs the routes 
 For this grouping algorithm, we rank the   
depot locations for opening while maintaining   
sufficient coverage to the customer area and   
each customer can be satisfied. The first   
location in the list is the best one to open first.   
Based on the concept of proximity between 2   
elements, some measures of proximity among   
groups and the depot locations have been   
proposed: single linkage (nearest-neighbor).   
The distances (Cij) between customers and   
depot locations are simply computed as   
Euclidean distances by Equation (14) 
 

  
(14) 

 
where, xi, yi are coordinates of node i and j,  
respectively. In Equation (15), the signal  

Figure 1. MMAS implemented 
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ratio at customer j and location i is assigned to  
the customer demand (dj) divided by distances   
(Cij): 
 Ratio : (R1, R2,....., RM) 

  (15) 

 subject to:   (16) 
 
where, n is number of customers assigned to   
depot i , Vi is the maximum throughput at the 
depot i, and dj is the demand of the customer   
j. The total demand of each group of customers   
must be less than or equal to the maximum   
throughput at the depot i. 

 Route Construction Phase 
 The MMAS algorithm is based on an   
Ant System (AS) algorithm developed by   
Dorigo and Gambardella (1997). In AS, m   
ants are initially positioned on n vertices   
according to an a priori assignment procedure.   
Each ant builds a tour by repeatedly applying   
a probabilistic nearest-neighbor heuristic. The   
MMAS introduced by Stützle and Hoos,   
(2000) is an improvement of the AS algorithm.   
In the MMAS, the pheromone trail is updated  
only on the global best and/or local best   
solution, instead of on solutions created by   
every ant, thus promoting a better exploitation   
of the search space. Another peculiarity is the   
inclusion of upper and lower bounds to the   
pheromone level τmin and τmax to help avoid   
stagnation. Initially the pheromone level of all   
trails is set to the upper bound in order to   
favor exploration. Therefore, the upper bound   
is initially chosen to construct a tour. Then, an   
ant modifies the pheromone level on the   
visited edges by applying a local updating   
rule. 

Pheromone Trails Initialization 
 The pheromone level of each edge has   
lower and upper limits τmin and τmax. The initial   
pheromone, τ0 , the upper limit, τmax, and the   
lower limit, τmin , are set as in Equation (17) 
 
 τ0 

  = τmax  

 τmax 
=   M  

 τmin 
=   τmax/(2*(N+M)) (17) 

 
where, M is the number of depots and is the   
number of nodes in the graph, respectively. 

Tour Construction 

 In this research, we adopt the concept   
similar to the elitist ant or ranked ant of   
Bullnheimer et al. (1999) and Dang (2003) of   
ant colonies constructing vehicle routes by   
alternating the motion of each ant from each   
depot. An ant selects the next customer to be   
served, compatible with capacity constraints.   
We used the number of ant colonies equal to   
the number of depots to construct routes. Each   
ant is put at a depot and each ant will choose   
the next nodes to move from the present node   
i to the next node j according to the state   
transition rule given by Equation (18). 

 
 (18) 

 
where, Uk is the set of nodes that remain to be   
visited by an ant positioned on node i,τij is   
pheromone level on edges (i,j), and ηij is the   
inverse of the length of edges (i,j). Thus,   
ηij = 1/dij where dij denoted the distance between  
nodes i and j, and β is the parameter that   
determines the relative influence of the   
pheromone. We used 2 < β < 5 in the MMAS  
algorithm. 

Local Pheromone Trail Update 

 Additionally to the global updating rule,   
in MMAS the ants use a local update rule that   
they apply immediately after having crossed   
an arc during the tour construction: 
 
  (19) 
 
where, ξ; 0 < ξ < 1 and τ0 are 2 parameters  
to the MMAS algorithm. In this way the   
exploration of not yet visited arcs is increased.   
The value of τ0 is set to be the same as   
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the initial value for the pheromone trails.   
Experimentally, a good value for ξ was found  
to be 0.1, while a good value for τ0 was found  
to be 1/n.Lm, where n is the number of cities  
in the LRP instance and Lm is the length of the   
nearest-neighbor tour. 

Update of Pheromone Trails 

 The MMAS to update pheromone the   
trails includes iteration-best and global-best   
solutions to avoid search stagnation. The   
allowed range of the pheromone trails strength   
is limited to the interval [τmax, τmin] and τij is   
τmin < τ ij  <  τmin. The pheromone trails are  
initialized to the upper trail limits. After all   
ants have constructed solutions, the pheromone   
trails are updated according to Equation (20). 

                   (20) 
 
where ρ is a parameter called the evaporation  
coefficient, 0 < ρ < 1 and    
where t is scheduled for the fre quency and  
Cbest is the best so far tour. The ant which is  
allowed to add pheromone trails may construct   
an iteration-best tour and global-best tour.   
All edges (i,j) belonging to the so far best  
solution (objective value) are considered to   
increase the intensity of pheromone trails by   
an amount . If edges (i,j) do not belong  
to the so far best solution, the intensity of the   
pheromone will be reduced. Heuristic approaches   
to the tour obtained by ants can be classified   
as tour constructive heuristics. Tour constructive   
heuristics usually start by selecting randomly   
a customer point and building the feasible   
solution piece by piece by adding new   
customers’ points chosen according to the   
selected heuristic rule. Thus, the complete   
algorithm together with the flow for the method   
of study is summarized as shown in Figure 2. 

Route Construction 

 In the stage of initialization, there are   
steps to generate a feasible initial solution. In   
order to apply MMAS to solve LRP, a modified   
MMAS is proposed. Each ant builds the solution   
by the state transition rule. An ant selects the   
next customer to be served, compatible with   

capacity constraints and limited route length   
constraints. This heuristic assigns customers   
to each depot and constructs vehicle routes   
simultaneously. If the accumulative loading of   
the ant exceeds the capacity constraints, it will   
return to the depot. This is called a complete   
vehicle route. Thus, we will focus on our   
heuristic to improve the original algorithm   
according to Equation (5). The section of route   
constructing is illustrated in Figures 3 and 4. 

Initialize 
Loop //Each loop called an iteration 

 Each ant is placed on a starting customer’s   

 point 

 Loop //Each loop called a step 

  Each ant constructs a solution by   

  applying a state transition rule and a   

  local pheromone updating 

 until all ants have constructed a complete   

 solution. 

 Each ant is brought to a local minimum by a   

 tour 

 improvement heuristic 

 A global pheromone updating rule is applied. 

until stopping criteria are met 

Figure 2. Pseudocode of MMAS 

Figure 3. An ant constructing routes 

Source Node 
Fi = fixedcost to 

estabi shing depot 

Depds it is 

Cand date list 

Pseudo 
Depots list 

Pseudo 
Source Node 
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Improvement Solutions 

 After an ant has constructed its solution,   
we apply a local search algorithm to improve   
the solution quality, called the solutions   
improvement procedure. In particular, we apply   
Swap, Move operator, and 2-Opt to the solution.   
To understand the Local Search algorithm   
clearly, an example with 2 depots and 12   
customers is considered, which is illustrated   
in Figures 5, 6, 7, and 8. The Local Search   
aims to improve the solution by exchanging a   
customer i of 1 route with a customer of j  
another route. The Swap operator aims to   
improve the solution by exchanging a   
customer i of 1 route with a customer j of  
another route. The Move-Operators may  
interchange a customer within the same route   
and intra-route improvement or within the   
same depot and intra-depot improvement.   
Additionally, we also swap a customer from 1   
route to another route, that is, inter route   
improvement or from 1 depot to another depot   
improvement. Given a solution S to an instance   
of the optimization problem, if there is no   
better solution the algorithm terminates with   
the current solution as the local optimum.  

Numerical Analysis 

 In this section, we present the development   
of the MMAS program for solving LRP by   

using Microsoft Visual C++ 6.0 and executed   
on a PC with a 3.07 GHz Intel Pentium[R] 4   
CPU and 224 MB of RAM. The customers’   
locations are in the form of a Cartesian coordinate   
where each point appears uniquely in a plane   
through 2 numbers, called the x-coordinate   
and y-coordinate while demands of customers   
which are known are recorded in a range form.   
Since there is no open source data for LRP,   
the data is adopted from a set of data modified   
from the well known problem in Wu et al.   
(2002) and Wang (2005) as in Table 1.  
 The numerical analysis was performed   
on set of benchmark problems that consists of   
3 instances containing between 12 and 85   
customers and 2 -15 depots. All instances   
have data of constrained capacity of the depot   
(unit), capacity of vehicle (unit), fixed cost for   
establishing the depot ($), transportation cost   
($/mile), and fixed cost for using vehicles ($/  
unit). Table 1 contains the data for the 3   
problem instances. 

Parameter Testing 

 To see the effect of the parameters of the   
MMAS on the distance traveled, an experimental   
design was carried out in the case studies. To   
reach reliable fixed conclusions, an ANOVA   
statistical test was applied and used to study   
the relationship that exists between a dependent   

Figure 4. MMAS constructing routes 
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variable (variables response) and 1 or more   
independent variables (called factors) and   
thus, to learn whether the difference in the   
response depending on the variation of 1 of   
the factors was a random result. The theoretic  
F distribution value was calculated for a   

significance level of 95%. In these case problems,   
the LRP have a very limited capacity; we   
used, β = 3.5, ρ = 0.99 and n=300 as shown   
in Figure 9. We have used those values of β   
and  to run the experiments. The results of a  
good solution in P03 are shown in Figure 10. 

 Figure 5. Swap operators 

Figure 6. Move operators 

Figure 7. 2-opt algorithm 

Figrue 8. Best solutions 
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Table 1. Location-routing problem instances 
 

Name 
instances 

References 
Number 

of 
depot 

Number 
of 

customer 
Vehicle 
capacity 

Depot 
capacity 

Fixed 
cost to 
open 
depot 

($) 

Transpor
tation 
cost 

($/per 
miles) 

Fixed 
cost for 
using 

vehicle 
($/Unit) 

P01:12x2 Perl and Daskin 
(1985) 

02 12 140 280.0 100.0 0.75 0.74 

P02:55x15 Perl and Daskin 
(1985) 

15 55 120 550.0 240.0 1.00 0.74 

P03:85x7 Perl and Daskin 
(1985) 

07 85 160 850.0 372.0 1.00 0.74 

Figure 9. Effect of the parameters of MMAS 
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Table 2. Best solution results for the test P01 
 

103.97: Total distances                                            

                                                                                                                        355.58: Total cost 

Depots Distances of 
route 

Load of 
route Sequence of customers Customers 

served 
Run Time 
CPU (sec): 

1 
44.344 140 13 7 3 2 1 6 8 9 13 

12 0.063s 
59.6327 100 13 10 12 11 5 4 13 

Problem: P01, customer=12, Depot=2, Capacity Depot= 280, Vehicle capacity=140 

Table 3. Best solution results for the test P02  

4,100.05: Total distances                                         

5,634.05: Total cost 

Depots 
Distances of 
route x 10 

Load of 
route 

Sequence of customers 
Customers 

served 
Run Time 
CPU (sec): 

2 
56.3764 120 57 14 27 54 39 38 16 57   

44.4048 120 57 12 28 23 19 17 22 57 12  

      

      

     51.656s 

10 

06.0645 040 65 13 11 65   

51.2828 120 65 44 46 40 55 43 8 65   

69.4971 120 65 52 50 53 47 37 10 65 26  

16.3891 120 65 5 1 2 42 4 9 65   

40.434 120 65 34 45 32 33 30 3 65    

12 

30.7321 100 67 15 7 31 29 18 67   

39.4966 120 67 36 26 24 35 48 25 67 17  

55.3281 120 67 49 51 21 20 41 6 67   

Problem: P02, customer=55, Depot=15, Capacity Depot= 550.0, Vehicle capacity=120 

Computational Tested  

 From the parameters testing section, we 
choose  β = 5, and  = 0.98 to test the MMAS  
with a Local Search to solve the LRP. We test   
our heuristic with 3 problems from literature   
and to investigate the effectiveness of this   
heuristic the number of iterations is n*2 for  

each problem and is solved 5 times. The results   
are provided in Tables 2-4 in terms of the  
distance of route, and load of route value after   
the solution improvement phases. It can be   
observed from Table 5 that the proposed   
method is able to find the optimal solution for   
test problem P01 in only 0.063s. For problem   
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Table 4. Best solution results for the test P03 
 

5,266.4: Total distances                                            

7,640.4: Total cost 

Depots Distances of 
route x 10 

Load of 
route 

Sequence of customers Customers 
served 

Run Time 
CPU (sec): 

2 
46.8265 160 87 63 14 70 71 73 74 12 72 87   

6.32456 020 87 33 87 33  

 43.9812 160 87 30 19 29 23 75 28 17 22 87   

 44.9048 160 87 16 27 69 68 66 65 61 62 87   

 57.6393 160 87 54 59 58 39 38 2 45 32 87   

     156.52s 

4 

48.6981 160 89 47 53 50 81 80 52 64 11 89   

59.6847 160 89 44 46 40 57 56 55 43 1 89 23  

29.7136 140 89 9 4 42 3 34 8 5 89   

 34.2665 160 91 24 20 21 78 37 77 10 60 91   

6 69.1820 160 91 13 82 83 67 79 51 76 49 91 29  

 27.9814 160 91 25 36 85 15 41 91   

 057.4370 160 91 48 35 26 84 18 31 7 6 91   

Problem: P03, customer=85, Depot=7, Capacity Depot= 850.0, Vehicle capacity=160 

P02 in Table 6, the proposed method   
outperformed both Perl and Daskin’s (1985)   
and Wang et al’s (2005) results in terms of   
total costs. Notice that Hansen et al’s (1994)   
method results in less distance because 1 more   
distribution center (DC) is established than in   
the proposed method. The proposed method   

still provides a better solution than Perl and   
Daskin’s (1985) and Wu et al’s (2002) studies   
in test problem P03 as shown in Table 7;   
however, Hansen et al’s (1994) method gives   
even fewer costs and distances than the proposed   
method. We summarize the computational   
results that include the best known solutions,   

Table 5. Results for comparison of test problem P01 
 

Methods 
Depot 

established 
Number of 

routes 
Sum total 
distances 

Total costs 
CPU  

run time 
(Sec) 

Optimum 1 2 103.97 355.58 N/A 

Perl and Daskin (1985) 1 2 103.97 355.58 N/A 

Hansen et al. (1994) 1 2 103.97 355.58 N/A 

Wu et al. (2002)  1 2 103.97 355.58 N/A 

Wang- et al. (2005)  1 2 103.97 355.58 N/A 

Proposed Method 1 2 103.97 355.58 0.063s 
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Table 7. Comparison of test problem P03  

Methods Depot 
established 

Number of 
routes 

Sum total 
distances Total costs 

CPU  
run time 

(Sec) 
Perl and Daskin (1985) 2, 4, 5 11 5415.96 7789.96 N/A 
Hansen et al. (1994) 2, 4, 6 11 5177.61 7551.61 N/A 
Wu et al. (2002) 2, 4, 6 12 5407.21 7781.21 N/A 
Wang- et al. (2005) 2, 4, 6 11 5265.69 7639.46 N/A 
Proposed Method 2, 4, 6 12 5266.40 7,640.40 156.52 

Table 6. Comparison of test problem P02  

Methods Depot 
established 

Number of 
routes 

Sum total 
distances Total costs 

CPU  
run time 

(Sec) 
Perl and Daskin (1985) 2, 10, 12 10 4261.32 5795.62 N/A 
Hansen et al. (1994) 2, 7, 12,13 10 3843.67 5617.67 N/A 
Wu et al. (2002)  5, 10, 12 10 3998.28 5532.28 N/A 
Wang- et al. (2005)  2, 10, 12 10 4198.72 5732.13 N/A 
Proposed Method 2,10,12 10 4100.05 5634.05 51.656s 

Table 8. Relative percentage deviation of total traveled distance and total cost  

Instances Researcher Total 
Distances (%)RPD Total Cost (%)RPD 

P01 Perl and Daskin (1985) 103.97* 00.00 355.58* 0.00 

 Hansen et al. (1994) 103.97* 00.00 355.58* 0.00 
 Wu et al. (2002) 103.97* 00.00 355.58* 0.00 
 Wang- et al. (2005) 103.97* 00.00 355.58* 0.00 
 Proposed Method 103.97* 00.00 355.58* 0.00 

P02 Perl and Daskin (1985) 4261.32* 10.87 5795.62* 4.76 
 Hansen et al. (1994)  3843.67* 00.00 5617.67* 1.54 
 Wu et al. (2002) 3998.28* 04.02 5532.28* 0.00 

 Wang- et al. (2005) 4198.72* 09.24 5732.13* 3.49 
 Proposed Method 4100.05* 06.67 5634.05* 1.84 

P03 Perl and Daskin (1985) 4261.32* 10.87 7789.96* 3.16 
 Hansen et al. (1994) 3843.67* 00.00 7551.61* 0.00 
 Wu et al. (2002) 3998.28* 04.02 7781.21* 3.04 
 Wang- et al. (2005) 4198.72* 09.24 7639.46* 1.16 
 Proposed Method 4100.05* 06.67 7713.54* 2.14 

In that table, the following notation is used:  
BT  = solution of  algorithm 
BKS = the best known solution from heuristic algorithm 
(%)RPD = ((BT- Obj.-BKS)/BKS)*100% 
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literature, solutions obtained by MMAS and   
the deviations of total traveled distance, and   
the total cost from the best known solutions   
(Relative Percentage Deviation (RPD) in   
Tables 8. 

Conclusions 

In this paper, we have proposed a MMAS   
with a Local Search for LRP. The proposed   
algorithm can obtain the solution of LRP   
within a reasonable time. It can be used for   
redesigning the logistics network as well as   
improving the planning of the distribution  
network. The proposed method was compared   
with other heuristic approaches on 3 test   
problems and the results indicate that this   
method performs well in terms of the solution   
quality and run time consumed. For further   
study, we may develop a hybrid metaheuristic   
scheme that combines the strength of trajectory   
methods like Very-Large Scale Neighborhood   
Search and Ant Colony Optimization in order   
to increase the effectiveness in getting the   
optimal solution 
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