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Abstract  

This paper presents a platform-independent framework for autonomous navigation of an intelligent   
vehicle. The framework consists of three integrated modules, namely; waypoint navigation, obstacle   
localization and path planning. Each module has been individually validated based on experiments   
with a real intelligent vehicle. For waypoint navigation, we propose the use of Google Earth for   
generation of reference waypoints and a simple bias subtraction method for GPS calibration. Based   
on the autonomous navigation experiments, this method yields a more stable navigation path   
compared to the use of GPS-generated waypoints and translational error can be efficiently   
eliminated. For obstacle localization, we develop a feature-based approach for obstacle detection   
and map generation based on the use of compactness measure and perspective projections. With an   
integrated use of a camera, digital compass, and GPS, static obstacles of a known dimension, along   
with their positions and orientations on the road can be calculated in real-time while the vehicle is   
travelling. Based on the derived information, an overhead-view obstacle map is generated to provide   
an internal representation of the road. The experiment on an unmarked road shows that the estimation   
of an obstacle can be achieved with maximum errors of 1.4 degree, 15 cm and 12 cm in angle, depth  
and lateral positions, respectively. Based on the obstacle map and the Google Earth waypoints,   
artificial potential field is adopted for collision-free path generation.  


Keywords: Intelligent vehicle, waypoint navigation, google earth, GPS, obstacle detection, obstacle   
 map generation, path planning 

Introduction 
Nowadays,
 there
 exist
 over
 800
 million



vehicles
 on
 the
 road
 worldwide
 and
 the



number
 is
 projected
 to
 grow
 over
 1.2
 billion



by
 2020
 (Webber,
 2005).
 This
 increasingly


accumulated
number
has
raised
several
issues



concerning
safety
of
road
users
and
pedestrians.



To
improve
driving
safety
as
well
as
to
provide



a
more
convenient
and
efficient
support
to
the
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drivers,
the
concept
of
intelligent
vehicle
was



proposed
(Richard,
2005;
Siciliano
and
Khatib,



2008).
 Intelligent
 vehicle
 is
 an
 autonomous



robot
 that
 can
 move
 according
 to
 predefined



waypoints
without
a
driver
or
remote
control.



To
 further
 facilitate
 its
 user,
 some
 tasks
 that



humans
 perform
 while
 driving
 a
 vehicle
 can



also
be
automated.



 Navigation
 system
 is
 a
 fundamental



building
 block
 of
 an
 unmanned
 intelligent



vehicle
 system.
 Recently,
 most
 advanced



systems
 are
 navigated
 based
 on
 a
 predefined



set
 of
 reference
 waypoints
 and
 a
 Global



Positioning
 System
 (GPS).
 Waypoints
 are



basically
locations
in
a
physical
space
that
are



pre-stored
 in
 memory
 so
 that
 the
 same
 path



can
be
traced
at
a
later
time.
GPS,
on
the
other



hand,
 is
 a
 satellite-based
 system
 that
 can



provide
the
latitude
and
longitude
information



of
the
receiver
by
calculating
the
time
difference



of
signals
traveling
from
different
satellites
to



the
 receiver
 (Hofmann-Wellenhof
 et al.,



1993).
 It
 is
 a
 popular
 technique
 for
 locating



the
current
position
of
the
vehicle.
By
iterative



comparison
of
the
current
coordinates
obtained



from
 a
 GPS
 while
 traveling
 with
 reference



waypoints,
 the
position
of
 the
vehicle
 can
be



adjusted
 to
 move
 along
 the
 pre-defined
 path.



Since
 the
 accuracy
 of
 GPS
 can
 significantly



affect
 the
 reliability
 of
 a
 navigation
 system,



many
approaches
for
improving
GPS
accuracy



have
 been
 implemented
 (Sukkarieh et al.,



1999;
 Xiangdong
 et al.,
 2001;
 Cui
 and
 Ge,



2003;
 Naranjo,
 2004;
 Hayashi
 et al.,
 2008;



Limsoonthrakul
et al.,
2009).



 Several
 prototypes
 of
 an
 intelligent




vehicle
 have
 been
 developed
 by
 the
 research



community.
 Stanley
 (Thrun
 et al.,
 2006),
 for



example,
 is
 a
 famous
 intelligent
 vehicle



developed
by
the
Stanford
racing
team.
It
is
a



high-speed
 desert
 driving
 vehicle
 which
 can



perform
 localization
 through
 a
 probabilistic



reasoning
 based
 on
 the
 information
 from



heterogeneous
sensors,
such
as
LIDAR
(Light



Detection
 and
 Ranging),
 GPS
 and
 a
 camera.



Another
 famous
 example
 is
 Skynet
 (Miller



et al.,
2008),
developed
by
Cornell.
Its
reasoning



engine
consists
of
many
subsystems
such
as
a



vision-based
 obstacle
 detection
 module,
 an


optimization-based
 path
 planner,
 and
 a
 state-


based
reasoning
agent
which
adaptively
adjust



the
 path
 according
 to
 traffic
 laws.
 Sukkarieh



et al.
 (1999)
 developed
 a
 navigation
 system



for
 autonomous
 land
 vehicle
 applications



based
 on
 the
 integrated
 use
 of
 GPS
 and


an
 Inertial
 Measurement
 Unit
 (IMU).



Limsoonthrakul
 et al.
 (2009)
 performed



localization
 by
 fusing
 data
 from
 a
 GPS,
 a



digital
 compass,
 a
 camera
 and
 an
 encoder.



Particle
filtering
was
used
for
sequential
state



estimation.



 The
 intelligent
 vehicles
 used
 in
 this



study
were
first
developed
for
participation
in



the
 Thailand
 Intelligent
 Vehicle
 Challenge



(2007).
 Based
 on
 pre-defined
 waypoints,
 the



intelligent
 vehicles
 are
 programmed
 to
 travel



along
 the
 test
 track,
 on
 which
 obstacles
 with



predefined
 shapes
 and
 colors
 are
 located.



After
 the
 competition,
 we
 aim
 towards



developing
 an
 intelligent
 vehicle
 that
 can
 be



used
 in
 real-world
 applications.
 Figure
 1



shows
the
two
intelligent
vehicles
used
in
this




Figure 1. The SIIT and AIT intelligent vehicles 
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study.
The
 SIIT
 intelligent
 vehicle
 (left)
 was



built
 based
 on
 a
 Sanyo
 3-wheel
 electric
 car,



and
 the
AIT
 intelligent
 vehicle
 (right)
 was



built
 based
 on
 a
 golf
 car.
 Table
 1
 provides



summarized
specifications
of
the
two
vehicles.



 Both
vehicles
make
use
of
the
integrated


information
 from
 a
 GPS,
 a
 digital
 compass,



and
 a
 camera.
 The
 GPS
 is
 used
 for
 latitude



and
 longitude
 data
 acquisition.
The
 magnetic



compass
measures
 the
average
heading
angle



of
 the
vehicle
with
respect
 to
 the
North
Pole.



The
web
camera,
 installed
 at
 the
 front
of
 the



steering
wheel,
is
used
for
obstacle
detection.



The
 controlling
 module
 consists
 of
 a
 driving



motor
and
a
steering
motor,
powered
by
lead-


acid
batteries.
A
 laptop
 is
 used
 as
 the
 central



processing
unit.


 This
 paper
 presents
 a
 framework
 for



collision-free
 navigation
 along
 a
 predefined



path
 with
 relatively
 constrained
 obstacle



positions.
 The
 framework
 consists
 of
 three



modules,
i.e.,
1)
Google
Earth-based
waypoint



navigation,
2)
feature-based
obstacle
localization



and
 3)
 collision-free
 path
 planning
 with



potential
 field
 (Passino,
 2004).
The
 obstacle



map
provides
an
internal
representation
of
the



world
 and
 is
 used
 for
 offline
 path
 planning.



This
 can
 be
 combined
 with
 reactive
 obstacle



avoidance
basing
on
local
information
and
the



current
 state
 of
 the
 perceptual
 input
 for



handling
 unexpected
 events.
 The
 schematic



diagram
 of
 the
 proposed
 sensor
 fusion



architecture
is
illustrated
in
Figure
2.


Google Earth-Based Waypoint 
Navigation 

Navigation System 


 A
predefined
path
and
the
position
of
the



vehicle
are
two
important
pieces
of
information



required
by
an
autonomous
navigation
system.



Both
waypoint
and
current
vehicle’s
coordinates



consist
 of
 latitude,
 e ,
 and
 longitude,
 n
 ,



components.
 In
 a
 navigation
 system,
 ith
 the


waypoint,
w
(i),
is
defined
as:





 
 (1)




 The
 position
 of
 the
 vehicle
 at
 time
 t,



V
(t),
is
defined
as:





 
 (2)




 Assuming
 the
 vehicle
 is
 travelling
 at
 a



constant
 speed,
 moving
 the
 vehicle
 to
 a

specified
position
can
be
achieved
via
controlling



of
 the
 steering
 motor
 (i.e.
 local
 heading



direction
 of
 the
 vehicle).
The
 steering
 angle,





γ,
is
derived
based
on
the
current
global
position



of
the
vehicle
and
the
two
consecutive
waypoints



using
 (3)
 to
 (5).
The
 graphical
 illustration
 of



parameters
 involved
 the
 calculation
 is



depicted
in
Figure
3.


 The
 angle
between
 the
 two
consecutive



waypoints
with
respect
to
the
East
axis,
θw
,
is



calculated
using:





Figure 2. Overall system architecture of the proposed navigation framework 
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(3)




where
 KEW
 =
 106,080
 meters/degree
 and



KNS
 =
 109,369.2
 meters/degree
 are
 constant



parameters
 for
 converting
 the
 geographic



coordinates
 (latitude/longitude)
 into
 the
metric



coordinates.



 The
angle
of
the
vehicle
with
respect
to



the
next
waypoint,
θv ,
is
calculated
by




 
 




(4)





 Finally,
 the
 steering
 ,
γ
 ,
which
 is
 used



to
control
the
steering
wheel
of
the
vehicle,
is



defined
as:




 
 
 




(5)




where
0
<
K
<
1
is
the
tracking
constant
and
β



is
the
current
heading
direction
of
the
vehicle



obtained
from
the
digital
compass.
The
value



of
K
depends
on
the
size
of
the
car
and
is
set



to
 0.5
 for
AIT
 and
 0.8
 for
 SIIT
 intelligent



vehicles
to
ensure
the
smoothness
of
the
path.



More
 detailed
 derivation
 of
 these
 equations



can
be
found
in
(Ratsamee
et al.,
2010).


Waypoint Generation and Calibration 


 A
popular
technique
for
determining
the



current
 vehicle’s
 position
 is
 by
 using
 a
 GPS.




Pre-collecting
 GPS
 data
 is
 also
 a
 common



method
 for
 waypoint
 construction.
The
 path



can
be
created
by
driving
the
vehicle
to
collect



GPS
 waypoints
 along
 the
 test
 track.
 An



alternative
 method
 is
 to
 extract
 the
 waypoint



coordinates
 from
 a
 pre-defined
 map
 or
 a



satellite
 image.
 In
 this
 study,
 Google
 Earth



(Google
 Inc,
 2009)
 is
 used
 for
 waypoint



generation.
A
 set
 of
 waypoints
 is
 generated



simply
 by
 carefully
 drawing
 the
 path
 on
 the



satellite
image
(Deelertpaiboon
and
Parnichkun,



2008).



 Assume
 the
 GPS
 value
 at
 the
 starting



point,
 ,
 is
 reasonably
 reliable,
 simple
bias


subtraction
 can
 be
 used
 to
 eliminate
 the

translational
 errors.
 Let
 
 be
 the
 2D



coordinate
 of
 the
 starting
 position
 obtained



from
 Google
 Earth
 (GE).
An
 offset
 vector,



ΔW, is defined as:  



 
 (6)




 The
vehicle’s
position
along
 the
path
 is



then
 translated
 onto
 the
 GE
 coordinate
 as


follows:




 
 


 


(7)



Feature-Based Obstacle Localization 


 This
 section
 presents
 a
 method
 for



obstacle
 detection
 and
 the
 obstacle
 map



generation
 based
 on
 a
 passive
 monocular



color
 camera,
 digital
 compass
 and
 GPS.
The



proposed
method
 consists
 of
 two
main
 steps,



i.e.,
1)
obstacle
detection
and
2)
estimation
of



the
locations
and
orientations.



Figure 3. Parameters involved in the steering angle computation 
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Figure 4. An obstacle in the 3D perpective model 

Obstacle Detection 


 To
 differentiate
 an
 obstacle
 from
 the



background
 scene,
 information
 regarding



objects’
 properties
 such
 as
 color,
 shape
 and



geometrical
 parts
 can
 be
 exploited.
We
 first



use
 color
 to
 segment
 obstacles
 from
 the



background
scene.
Thresholding
is
applied
on



the
hue
and
saturation
components
in
the
HSV



color
 space
 to
 determine
 whether
 each
 pixel



belongs
 to
 an
 obstacle.
 Unlike
 RGB,
 HSV



represents
intensity
or
brightness
in
a
dimension



orthogonal
to
color
and
thus
is
more
robust
in



low
 light
 intensity
 conditions
 (Gonzalez
 and



Richard,
 1992).
 To
 smoothen
 the
 resulting



image,
 morphological
 opening
 (Vincent,



1992)
 is
 applied
 for
 noise
 removal.
 Detected



pixels
are
represented
as
white
regions,
known


as
 blobs,
 from
 which
 properties
 such
 as



perimeter,
 area
 and
 centroid
 can
be
 extracted



for
further
analysis.


 Obstacle’s
shape
is
another
useful
piece



of
 information
 that
 can
 be
 used
 to
 enhance



segmentation
accuracy.
As
an
indicator
of
the



object’s
 shape,
 the
 classical
 compactness



measure
(Ballard
and
Brown,
1982),
i.e.,






 

(8)



 


which
is
 independent
of
geometrical
transfor-


mations
 such
 as
 translation,
 rotation
 and



scaling
(Bribiesca,
1997),
 is
used
to
filter
out



regions
 that
 are
 unlikely
 to
 be
 the
 object
 of



interest.



 For
more
accurate
blob
extraction,
further



analysis
 can
 be
 made
 using
 the
 geometrical



information
of
 the
obstacle.
 In
 this
 study,
 the


obstacles
 are
 square-shaped.
Their
 edges
 are



extracted
using
Hough
 transform
and
corners



are
detected
from
the
intersection
of
the
Hough



lines.


Estimation of Obstacles’ Locations and 
Orientations 


 The
next
step
of
obstacle
map
generation



is
to
estimate
the
(top
view)
position,
0
=
(xO
, zO),



and
orientation
with
respect
to
the
North
Pole,




θN,
 of
 each
 obstacle.
 Based
 on
 these
 two



parameters,
 the
obstacles
can
be
 located
on
a



pre-defined
map.
In
this
study,
a
method
based



on
 perspective
 projection
 (Carlbom
 and



Paciorek,
1978)
is
adopted.
The
3D
perspective



model
 illustrated
 in
 Figure
 4
 describes
 the



relationship
 between
 the
 camera
 image
 and



the
actual
object.



 The
 camera
 location
 is
 defined
 as
 the



vehicle
location,
V
=
(xv , yv , zv ).
The
obstacle,
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represented
as
a
plane
in
3D
space,
consists
of



four
corners,
i.e.
(xO1
, yO1
, zO1 ),
(xO2
, yO2
, zO2 ),


(xO3
 , yO3
 , zO3 ),
 and
 (xO4
 , yO4
 , zO4 ),
 which


correspond
 to
 the
 projected
 feature
 points



(xc1
, yc1
, zc ),
 (xc2
, yc2
, zc ),
 (xc3
, yc3
, zc ),
 and


(xc4
, yc4
, zc )
on
the
image
plane,
respectively.



The
focal
length
of
the
camera
(scaled
to
pixel



unit),
 f ,
 is
 first
 determined
 based
 on
 the



relationship
 between
 the
 measured
 real



obstacle’s
 dimension
 and
 location
 and
 the



projected
 image
 pixels
 as
 described
 by
 the



following
equation:






 

(9)





where
D⊥
 is
 the
distance
of
 the
obstacle
from



the
 vehicle
 along
 the
 heading
 direction,
 and



H
are
h
the
vertical
heights
of
the
real
obstacle


(in
 meters)
 and
 the
 obstacle
 in
 the
 image



(in
 pixels),
 respectively.
 Since
 f
 and
 H are



known,
 the
 above
 equation
 can
 be
 used
 to



estimate
D⊥ at
 run-time
 based
 on
 h
 observed



from
the
image.


 The
perspective
projection
of
the
obstacle



on
 the
 image
 plane
 depends
 on
 the
 deviated



angle
 or
 the
 feature
 point
 from
 the
 heading



direction,
∅ ,
described
as:







 

(10)


where
n
is
the
lateral
distance
(in
pixels)
from



the
 center
 to
 the
 edges
of
 the
obstacle
 in
 the



image
and
zC
=
f.
Assuming
that
the
obstacle
is



orthogonal
to
the
xz-plane,
the
top
view
of
the



described
 3D
 perspective
 model
 is
 shown
 in



Figure
5.
O1
and
O2
denote
the
obstacle
edges



after
2D
projection
onto
the
xz-plane.
D1⊥
and



D2⊥
 are
 distances
 of
 the
 points
 O1
 and
 O2



from
the
vehicle,
respectively.
The
perpendicular



distances,
 i.e.
 D1⊥
 and
 D2⊥,
 and
 the
 deviated



angles
of
two
obstacle
edges
from
the
heading



direction
 of
 the
 vehicle,
 i.e.
 ∅1
 and
 ∅2,
 can


be
 estimated
 using
 (9)
 and
 (10).
 From
 the



deviated
angle
from
the
heading
direction
and



the
 position
 of
 vertical
 edge,
 O1
 =
 (xO1, zO1)
 is



calculated
using:








 
 (11)


 
 



 
 (12)




 Similarly,
the
position
of
the
other
vertical



edge
O2
=
(xO2
, zO2)

is
described
as:


 
 




 
 (13)


 
 




 
 (14)


 
 



 The
width
of
the
obstacle
can
be
estimated



as
follows:





 
 (15)





 This
value
can
be
compared
to
the
actual



width
 of
 the
 obstacle
 in
 order
 to
 verify
 the



distance
estimation
algorithm.


 The
 heading
 direction
 of
 the
 vehicle



obtained
from
the
digital
compass,
β
,
is
used



to
create
the
reference
line:






 
 (16)




 With
 the
 known
 obstacle’s
 width,
 W ,


the
 turning
 angle,
θ
 ,
 between
 the
 vehicle



reference
 line,
 Lv,
 and
 the
 obstacle
 reference


line,
L0,
is
determined
as:





Figure 5. Top view of the vehicle and the   
 obstacle 
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(17)





 To
 generate
 obstacle
 on
 the
 map,
 the



turning
 angle
 compared
 to
 the
 North
 Pole,


θN ,
and
the
position
of
the
obstacle,
O
=
(xo
,



zo),
are
calculated
as
follows:



 
 



 
 (18)


 
 



 

(19)





 From
the
estimated
position
of
obstacle,



the
angle
between
the
vehicle
and
the
obstacle



plane,
  ,
is
derived
as
follows:



 
 



 

(20)





 The
feature-based
obstacle
detection
can



be
activated
when
a
specific
condition
 is
met



or
 iteratively
 computed
 at
 a
 regular
 time



interval.
The
 estimated
 parameters
 are
 stored



for
further
use
in
path
planning.


Collision Free Waypoint Generation  
In
 the
 proposed
 navigation
 framework,



reference
waypoints
of
a
predefined
path
and



the
 dimension
 of
 the
 road
 are
 first
 extracted



from
Google
Earth
map.
To
avoid
the
obstacles,



the
 vehicle
 has
 to
 modify
 the
 trajectory
 with



the
 obstacle
 information
 obtained
 from
 the



camera
system
using
the
method
described
in



Section
3.
For
real-time
collision-free
navigation,



the
artificial
potential
field
method
is
used.
To



avoid
 the
 obstacles
 while
 remaining
 within



the
 road
 boundary,
 an
 intelligent
 vehicle



travels
 from
 an
 initial
 position
 to
 the
 target



position
(goal)
based
on
the
concept
of
attractive



and
repulsive
forces.


 The
attractive
internal
force,

Fg
(P),
from



the
 goal
 position,
 Pg
 ,
 to
 an
 arbitrary
 point
 ,



P
=
(x , z),
is
defined
as






 
 (21)





where
ωg
 is
 the
weight
of
 the
attractive
 force


from
 the
 goal
 position,
 Pg .
This
 force
 keeps



the
vehicle’s
 trajectory
 towards
 the
 target.
At



every
 position
 of
 the
 vehicle,
 the
 internal



force
 vector
 usually
 directs
 towards
 the
 goal



position.



 The
 external
 force
 is
 a
 repulsive
 force



originated
 from
 the
 road
boundary,
Pb ,
 or
 an


obstacle,
PO ,
as
follows:





 
 (22)





 
 (23)



where
ωb
and
ωo
are
the
weights
of
the
repulsive



force
from
Pb
and
PO ,
respectively.
and
k1
are



k2
 the
 influence
 constants
 which
 protect
 the



vehicle
 from
 collision.
 When
 an
 obstacle
 is


detected,
a
 fixed
window
of
dimension
 
 l1
× l2    

is
located
at
the
obstacle’s
center.
This
window



indicates
 an
 active
 region
 over
 which
 the



repulsive
 force
 field
 is
 generated
 from
 the



obstacle.



 The
navigation
path
to
the
target
can
be

obtained
 by
 tracing
 through
 waypoints
 with

locally
minimum
resultant
force
defining
as
a

combination
of
the
three
force
fields:






 (24)




At
each
time
step,
a
possible
waypoint,
Ps
(i),

that
the
vehicle
can
move
to
is







(25)




where
0 < i < N
denote
the
direction
number,



r
 is
 the
 sensing
 radius
 and
 N
 is
 the
 total



number
 of
 possible
 directions
 around
 P.
The



next
waypoint,
 ,
is
defined
as





 

(26)


Experiment and Results 
The
experiments
in
Sections
5.1
and
5.2
were


conducted
 on
 an
 obstacle-free
 road
 in
 a
 car
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park
 inside
 SIIT
 Rangsit
 campus.
 The
 road



has
 smooth
 surface
 and
 a
 distance
 of
 ~500



meters.
 Figure
 6
 illustrates
 the
 experimental



venue,
 along
 with
 the
 path
 generated
 using



Google
 Earth.
 In
 Section
 5.1,
 our
 initial



investigation
 on
 the
 characteristics
 of
 GPS



errors
will
be
first
discussed.
Section
5.2
will



then
demonstrate
the
results
on
self-navigation



of
 the
 SIIT
 intelligent
 vehicle
 using
 the
 GE-


based
waypoint
correction.
Section
5.3
illustrates



the
 experiment
 on
 feature-based
 obstacle



localization
with
the
use
of
monocular
camera.



Section
5.4
presents
the
collision-free
waypoints



generated
 using
 the
 potential
 field
 method



described
in
Section
4.
The
last
two
experiments



were
 conducted
 on
 an
 unmarked
 road
 inside



AIT
using
the
AIT
intelligent
vehicle



An Investigation of GPS Errors 


 At
a
sampling
rate
of
4
Hz,
GPS
datasets



were
 collected
 by
 manually
 driving
 the
 car




along
the
test
track
in
the
morning,
afternoon,



evening
and
on
a
 cloudy
day,
 respectively.
A



plot
of
 the
GPS
data
 acquired
along
 the
path



under
different
weather
conditions
is
shown
in



Figure
7.
This
 indicates
 that
 the
 reliability
of



the
GPS
data
is
highly
weather-dependent
and



if
 the
 GPS-based
 waypoint
 construction
 is



conducted
 on
 a
 cloudy
 day,
 the
 intelligent



vehicle
will
run
out
of
the
road.



 Two
 sets
 of
 reference
 waypoints
 were



acquired,
 one
 from
 Google
 Earth
 and
 the



other
from
the
GPS
while
driving
the
vehicle



along
 the
 test
 track.
As
 shown
 in
 Figure
 8,



there
exists
a
reasonable
amount
of
misalignment



between
 the
 path
 generated
 using
 the
 GPS



data
 and
 the
 path
 generated
 using
 Google



Earth.
Most
of
which
are
 translational
errors.



Consequently,
 the
 waypoints
 generated
 by


Google
 Earth
 cannot
 be
 directly
 used
 by
 the



vehicle.



Figure 6. Plots of the GPS data acquired while driving the car on the test track at different   
 time and weather conditions 

Figure 7. Path generation using the GE-  
 Path program 

Figure 8. Plots of waypoints generated by   
 using Google Earth and the GPS   
 data 
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Google Earth Waypoint Correction 


 To
eliminate
the
translational
errors,
the



GPS
correction
algorithm
described
in
Section



2.2
was
applied.
Six
iterations
of
self-navigation



were
performed
by
the
SIIT
intelligent
vehicle.



One
 of
 which
 is
 based
 on
 the
 pre-collected



waypoints
 using
 GPS
 and
 the
 rest
 are
 based



on
the
corrected
reference
waypoints
obtained



from
 the
 proposed
 algorithm.
 Figure
 9



demonstrates
 the
 plots
 of
 GPS
 data
 acquired



while
the
vehicle
was
travelling
along
the
test



track
using
the
two
waypoint
generation
schemes.



From
 the
 results,
 it
 is
 obvious
 that
 the
 GPS-


based
 navigation
 deviates
 significantly
 from



the
reference
path
as
the
effect
of
GPS
errors



can
accumulate
 through
 time
during
 the
GPS



waypoint
 navigation.
With
 the
 GE-corrected



waypoints,
 the
 errors
 between
 each
 step
 are



more
or
less
independent.
Table
2
summarizes



the
 total
 errors
 calculated
 for
 the
 six
 self-


navigation
 experiments.
 In
 average,
 the
 total



error
 between
 the
 self-navigated
 path
 using



Google
Earth
waypoints
and
the
corrected
GE



reference
path
is
~1.3
m
With
the
GPS-based



waypoints,
the
total
error
increases
up
to
7.4
m



Obstacle Localization and Map Generation 


 To
obtain
a
collision-free
path,
accurate



estimation
of
obstacles’
locations
and
orientations



on
the
road
is
an
important
part
of
both
offline




and
 online
 path
 planning.
 As
 an
 initial



investigation,
 we
 simplified
 the
 problem
 by



using
 rigid
 rectangular
obstacles
with
a
 fixed



dimension
of
1.5
×
1.5
m.
The
obstacle
plates


represent
 a
 basic
 geometrical
 shape
 that



comprises
 several
 real-world
 objects,
 thus



facilitate
the
extension
of
the
method
to
more



generic
obstacle
patterns.
Green
and
red
obstacle



plates
were
randomly
placed
on
an
unmarked



road
 inside
Asian
 Institute
 of
 Technology



(AIT)
in
varying
locations
and
orientations.


 Using
the
starting
point
of
the
vehicle
as



the
reference
point,
 the
road
dimension
along



with
position
and
orientation
of
each
obstacle



were
 measured
 and
 used
 as
 the
 ground
 truth



for
 result
 validation.
 The
 width
 of
 the
 road


varies
between
3
to
5
m
and
the
total
distance



of
 the
 path
 is
 approximately
 200
 m.
 The



traveling
speed
of
 the
vehicle
varies
between

1
to
2.5
m/sec.
During
vehicle
navigation
and



obstacle
 avoidance
 along
 the
 test
 track,
 the



GPS,
 compass
 and
 image
 data
 are
 collected



simultaneously.
For
GPS
and
digital
compass,



the
 sampling
 rate
 of
 10
 Hz
 is
 used.
 Input



images
are
collected
at
20
frames/sec
using
a



low-cost
web
camera.
The
image
resolution
is



set
 to
 320
 × 240
 pixels
 with
 8-bit
 intensity



levels
 for
R,
G,
 and
B
 channels.
The
 camera



has
a
68
degree
horizontal
field
of
view
and
is



placed
 on
 the
 console
 0.75
 m
 above
 the



ground.


Figure 9. Plots of GPS coordinated of the   
 vehicle the six trials of GPS-based   
 and GE-based self-navigation 

Figure 10. An illustration of the test track   
 obtained from Google Earth,   
 obstacle locations and navigation   
 path of the vehicle during one   
 iteration of data collection 
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 Two
rounds
of
data
collection
were
made



with
 5
 obstacles
 placed
 in
 different
 positions



and
 orientations
 for
 each
 round.
 Figure
 10



illustrates
the
locations
of
the
obstacles
during



one
round
of
data
collection.



 The
dotted
line
illustrates
the
navigation



path
 of
 the
 vehicle
 based
 on
 GE-corrected



waypoints.
 Examples
 of
 different
 obstacle



images
 captured
 during
 vehicle
 navigation



along
 the
 path
 are
 shown
 in
 Figure
 11.
A



calibration
 experiment
 is
 first
 conducted
 to



estimate
the
focal
length
of
the
camera,
f
,
and


the
 threshold
 values
 for
 compactness,
 hue,



and
 saturation
 of
 the
 obstacles.
 The
 focal



length
was
estimated
from
the
frontal
 images



of
 obstacles
 captured
 at
 varying
 distances.



The
 threshold
 values
 are
 experimentally



specified
 based
 on
 color
 and
 shape
 of
 the



obstacles.
The
resulting
camera
and
threshold



parameters
are
described
in
Table
3.
Figure
12



illustrates
different
steps
in
extracting
obstacle’s



features
 from
 an
 image.
 The
 original
 RGB



image
 in
 Figure
 12(a)
 is
 first
 converted
 into




the
 corresponding
 HSV
 color
 space,
 after



which
 thresholding
 on
 hue
 and
 saturation
 is



applied,
 resulting
 in
 the
 black
 and
 white



image
as
shown
in
Figure
12(b).
Figure
12(c)



shows
 the
 result
 image
 after
 morphological



opening
 (with
 a
 4 ×
 4
 squared
 mask)
 and



thresholding
 on
 compactness
 are
 applied.



Finally,
 edge
 detection
 and
 Hough
 transform



are
then
applied
and
the
obstacle
features, i.e.



edges
and
corners,
can
be
extracted
from
line



intersections,
 as
 shown
 in
 Figure
 12(d).
The


extracted
 features
 are
 used
 to
 determine
 the



height,
 h
 ,
 and
 the
 deviated
 angle,
 ∅ ,
 of
 the



obstacle
in
the
image
for
further
estimation
of



its
 location
 and
 orientation
 of
 the
 obstacle



using
the
method
described
in
Section
3.2.
All



data
 processing
 is
 performed
 in
 real-time



using
MATLAB
Simulink.


 The
 proposed
 feature-based
 obstacle



detection
is
performed
iteratively
at
a
constant



time
interval.
In
this
study,
the
encoder
associated



to
 the
 steering
 motor
 is
 the
 module
 with
 the



slowest
 update
 rate
 of
 4
 Hz.
The
 update
 rate




Figure 12. Resultd of different steps during feature-based obstacle detection: (a) original   
 image, (b) blob image after thresholding is applied on hue and saturation,   
 (c) blob image after applying morphological opening and thresholding on  
 compactness, and (d) original obstacle image with edges and corners extracted  
 using Hough transform. Each red square in the blob images indicates the  
 detection of an obstacle 

Figure 11. Example images of obstacles labeled in Figure 10 : (a) 1st obstacle; (b) 2st   
 obstacle; 3st obstacle; and 4st obstacle 

(a)
 (b)
 (c)
 (d)


(a)
 (b)
 (c)
 (d)
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Figure 13. An interpolated surface of the   
 lateral error for varying angles   
 P and distances D⊥ 

Figure 14. The magnified version of the ten estimated obstacles in the best frame   
 compared with the actual measurement 

of
the
obstacle
detection
module,
therefore,
is



also
set
to
this
frequency.


 To
 validate
 the
 performance
 of
 the



proposed
method,
generated
obstacles’
locations,






O
=
(xo , zo),
and
orientations,
θN
,
are
compared



against
the
actual
measured
values.
The
average



and
 standard
 deviation
 of
 angle
 error,
 ΔθN
 ,


depth
 error,
 Δzo
 ,
 and
 lateral
 error,
 Δxo
 ,
 of



each
obstacle
calculated
over
frames
with
detected



obstacles
are
summarized
 in
 the
second
main



column
 of
Table
 4.
 From
 the
 average
 frame

results,
the
average
error
is
approximately
1.44



degree
in
angle,
15.6
and
14.95
centimeters
in



x-
and
z-directions,
respectively.
The
values
of



standard
deviation
indicate
significant
amount



of
 variation
 in
 inaccuracy
 across
 different



image
frames.
The
depth
error,
Δzo ,
is
caused


by
 an
 inaccurate
 estimation
 of
 the
 vertical



height,
h
 ,
 of
 the
obstacle
 in
 the
 image.
This



error
occurs
when
the
vehicle
is
not
exactly
at



the
 same
 level
 as
 the
 obstacle.
 One
 of
 the



obvious
 causes
 of
 angle
 error,
 ΔqN
 ,
 is
 the


depth
 error,
 since
 qN is
 consequently
 derived



from
 (15).
Another
 possible
 source
 of
 angle



error
is
the
inaccurate
angle
of
vehicle
heading



direction,
b
,
obtained
from
the
digital
compass.




 For
 autonomous
 navigation,
 lateral



error,
 Δxo ,
 should
 be
 seriously
 concerned



because
it
may
cause
the
vehicle
to
run
out
of



the
 road
 lanes.
Based
on
a
close
observation,



the
 lateral
 error,
 Δxo ,
 relies
 significantly
 on



the
 distance,
 D⊥
 and
 the
 angle
 between
 the


vehicle
 and
 the
 obstacle
 plane,
  ,
 derived



using
 (20).
The
 relationship
 among
 ΔxO,
 D⊥,


and
 
in
the
collected
dataset
is
observed
and



illustrated
 as
 an
 interpolated
 error
 surface
 in



Figure
 13.
 It
 is
 shown
 on
 the
 3D
 plot
 that


higher
 values
 of
 D⊥
 and
 
 can
 amplify
 the



lateral
 error.
This
 is
 due
 to
 the
 fact
 that
 the



deviated
distance,
n
,
is
a
result
of
mapping
an



obstacle
from
real
world
onto
the
image
plane



relative
to
the
curvature
of
the
lens.
Therefore,



there
exists
some
distortion
due
to
lower
pixel



resolution
as
the
value
of
n
increases.
Quantization



error
is
another
source
of
the
inaccuracy
in
the



estimated
 lateral
 distance.
 From
 (10),
 higher



image
 resolution
 will
 increase
 the
 resolution



of
 the
 deviated
 angle,
 ∅
 ,
 and
 therefore
 shall



decrease
the
lateral
error.
From
Figure
13,
the



minimal
lateral
error
occurs
at
distances
around



4
 meters
 and
 angle
 less
 than
 25
 degrees.



This
 is
 used
 as
 the
 condition
 for
 best
 frame


selection.
From
the
selected
frame,
the
locations,
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Figure 15. (a) is an attractive forces field generation from start to goal position, repulsive   
 force field generation from (b) considered obstacle and (c) road boundary   
 waypoints and (d) is the resultant force field which is used for obstacle   
 avoidance 

O
 =
 (xo
 ,
 zo),
 and
 orientations,
 θN ,
 are



estimated
 for
 each
 obstacle.
The
 angle
 error,


ΔθN,
 depth
 error,
 Δzo ,
 and
 lateral
 error,
 Δxo,


of
 each
obstacle
 calculated
 from
 the
 selected



best
frame
along
with
the
values
of
D⊥
and
 



that
pass
the
best
frame
condition
are
summarized



in
 the
 right
 most
 main
 column
 of
 Table
 4.



From
the
best
frame
results,
the
average
error


is
approximately
0.67
degree
in
angle,
6.8
and



10.3
 cen
 in
 x-
 and
 z-directions,
 respectively.



The
 estimated
 and
 actual
 locations
 and



orientations
 of
 ten
 obstacles
 are
 shown
 in



Figure
 14.
 The
 blue
 lines
 indicate
 the
 road


boundary
 generated
 using
 Google
 Earth.
The



green
 dotted
 line
 is
 the
 vehicle
 path,
 from



which
video
images
are
captured.
The
red
and



blue
 line
 segments
 are
 the
 estimated
 and
 the



actual
locations
and
orientations
of
the
obstacles,



respectively.


Collision-Free Waypoints Generation 


 To
 obtain
 collision-free
 waypoints,
 the



potential
field
algorithm
described
in
Section
4



was
applied
on
each
detected
obstacle.
In
this



study,
an
active
region
of
size
10 ×
15
m
was




used.
 Figure
 15
 illustrates
 the
 potential
 field



generation
 process.
 Figure
 15(a)
 shows
 the



attractive
 force
 field
 from
 the
 target
 position



(the
farthest
waypoint
from
the
vehicle
in
the



active
region).
Figures
15(b-c)
show
the
repulsive



force
fields
generated
by
the
boundary
and
the



obstacle,
respectively.
Figure
15(d)
shows
the


resultant
of
the
three
force
fields.
The
collision-


free
 waypoints
 are
 obtained
 by
 iteratively



searching
 for
 new
 minimum
 points
 until
 the



final
target
is
reached.
The
parameters
adopted



for
potential
field
generation
is
summarized
in



Table
 5.
 Figure
 16
 illustrates
 the
 waypoints



along
 the
 path
 used
 for
 the
 experiment



conducted
 in
 Section
 5.3,
 before
 and
 after



applying
 the
 potential
 field
 algorithm.
 The



original
and
the
updated
waypoints
are
denoted



as
blue
dots
and
red
crosses,
respectively.



 The
 experimental
 results
 show
 that
 the



vehicle
always
tracks
to
the
final
position
along



a
smooth
path
that
passes
the
wider
area
of
the



road
 due
 to
 the
 low
 probability
 of
 collision.



The
force
field
from
the
road
boundary
always



protects
 the
 vehicle
 from
 going
 off
 the
 road.



This
 new
 set
 of
 waypoints
 can
 be
 provided
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directly
to
an
intelligent
vehicle
for
collision-


free
 autonomous
 navigation.
 Furthermore,



when
an
unexpected
obstacle
is
detected
on
the



road,
 this
 algorithm
 is
 capable
 of
 generating



new
 waypoints
 for
 avoiding
 the
 obstacle
 in



real-time.


Conclusions 
This
study
proposed
a
framework
for
collision-


free
 waypoint
 navigation
 for
 an
 intelligent



vehicle.
A
detailed
study
on
GPS
errors
and
a



waypoint
correction
algorithm
have
been
first



introduced.
It
has
been
demonstrated
by
several



self-navigation
 experiments
 that
 simple
 bias



subtraction
can
effectively
correct
and
compensate



the
 translational
 error
 during
 travelling.
The



corrected
 waypoints
 obtained
 from
 Google



Earth
provide
a
high
sampling
rate
and
a
stable



path
 for
 waypoint
 navigation.
The
 technique



is
 simple,
 practical,
 and
 efficient
 in
 terms
 of



computational
 cost
 and
 time.
A
 consequence



study
 on
 feature-based
 obstacle
 localization



based
 on
 the
 use
 of
 a
 monocular
 camera
 has



been
discussed.
Based
on
the
use
of
compactness



and
 perspective
 projection,
 the
 turning
 angle



and
position
of
a
known
shape
obstacle
can
be



estimated
 in
 real-time
 while
 the
 vehicle
 is



travelling.
 From
 the
 experimental
 results,
we



found
 that
 the
 effective
 range
 that
 provides



the
 best
 frame
 condition
 of
 the
 obstacle
 for


the
 geometrical
 computation
 is
 ~4
 meters,



with
 the
 angle
 less
 than
 25
 degrees
 from
 the



heading
 direction.
 This
 is
 also
 a
 suitable



condition
in
which
the
obstacle
avoidance
routine



is
required
to
be
activated
during
autonomous



navigation.
The
obstacle
localization
algorithm



yields
an
average
error
of
0.67
degree
in
angle,



and
 6.8
 and
 10.3
 centimeters
 in
 x-
 and
 z-


directions,
 respectively.
The
 accuracy
 of
 the



algorithm
can
be
further
improved
by
increasing



the
image
resolution.



 The
 estimated
 obstacle
 locations
 and



orientations
 are
 processed
 online
 while



travelling
and
superimposed
with
the
existing



map
 information.
 Based
 on
 the
 artificial



potential
field
method,
a
new
set
of
collision-


free
waypoints
can
be
obtained.
This
generated



path
leads
the
vehicle
to
the
low
probability
of




collision
 region.
The
 framework
 can
 be
 also



applied
in
real-time
for
detecting
and
avoiding



an
unexpected
obstacle
along
the
path.


 For
further
study,
the
framework
can
be



further
expanded
to
handle
with
more
generic



and
complex
obstacles.
This
will
improve
the



practicality
and
potential
usage
of
the
framework



towards
real-world
application
scenarios.
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