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Abstract  

This paper presents a platform-independent framework for autonomous navigation of an intelligent   
vehicle. The framework consists of three integrated modules, namely; waypoint navigation, obstacle   
localization and path planning. Each module has been individually validated based on experiments   
with a real intelligent vehicle. For waypoint navigation, we propose the use of Google Earth for   
generation of reference waypoints and a simple bias subtraction method for GPS calibration. Based   
on the autonomous navigation experiments, this method yields a more stable navigation path   
compared to the use of GPS-generated waypoints and translational error can be efficiently   
eliminated. For obstacle localization, we develop a feature-based approach for obstacle detection   
and map generation based on the use of compactness measure and perspective projections. With an   
integrated use of a camera, digital compass, and GPS, static obstacles of a known dimension, along   
with their positions and orientations on the road can be calculated in real-time while the vehicle is   
travelling. Based on the derived information, an overhead-view obstacle map is generated to provide   
an internal representation of the road. The experiment on an unmarked road shows that the estimation   
of an obstacle can be achieved with maximum errors of 1.4 degree, 15 cm and 12 cm in angle, depth  
and lateral positions, respectively. Based on the obstacle map and the Google Earth waypoints,   
artificial potential field is adopted for collision-free path generation.  

Keywords: Intelligent vehicle, waypoint navigation, google earth, GPS, obstacle detection, obstacle   
 map generation, path planning 

Introduction 
Nowadays, there exist over 800 million
vehicles on the road worldwide and the
number is projected to grow over 1.2 billion
by 2020 (Webber, 2005). This increasingly

accumulatednumberhasraisedseveralissues
concerningsafetyofroadusersandpedestrians.
Toimprovedrivingsafetyaswellastoprovide
amoreconvenientandefficientsupporttothe
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drivers,theconceptofintelligentvehiclewas
proposed(Richard,2005;SicilianoandKhatib,
2008). Intelligent vehicle is an autonomous
robot that can move according to predefined
waypointswithoutadriverorremotecontrol.
To further facilitate its user, some tasks that
humans perform while driving a vehicle can
alsobeautomated.
 Navigation system is a fundamental
building block of an unmanned intelligent
vehicle system. Recently, most advanced
systems are navigated based on a predefined
set of reference waypoints and a Global
Positioning System (GPS). Waypoints are
basicallylocationsinaphysicalspacethatare
pre-stored in memory so that the same path
canbetracedatalatertime.GPS,ontheother
hand, is a satellite-based system that can
providethelatitudeandlongitudeinformation
ofthereceiverbycalculatingthetimedifference
ofsignalstravelingfromdifferentsatellitesto
the receiver (Hofmann-Wellenhof et al.,
1993). It is a popular technique for locating
thecurrentpositionofthevehicle.Byiterative
comparisonofthecurrentcoordinatesobtained
from a GPS while traveling with reference
waypoints, thepositionof thevehicle canbe
adjusted to move along the pre-defined path.
Since the accuracy of GPS can significantly
affect the reliability of a navigation system,
manyapproachesforimprovingGPSaccuracy
have been implemented (Sukkarieh et al.,
1999; Xiangdong et al., 2001; Cui and Ge,
2003; Naranjo, 2004; Hayashi et al., 2008;
Limsoonthrakulet al.,2009).
 Several prototypes of an intelligent

vehicle have been developed by the research
community. Stanley (Thrun et al., 2006), for
example, is a famous intelligent vehicle
developedbytheStanfordracingteam.Itisa
high-speed desert driving vehicle which can
perform localization through a probabilistic
reasoning based on the information from
heterogeneoussensors,suchasLIDAR(Light
Detection and Ranging), GPS and a camera.
Another famous example is Skynet (Miller
et al.,2008),developedbyCornell.Itsreasoning
engineconsistsofmanysubsystemssuchasa
vision-based obstacle detection module, an
optimization-based path planner, and a state-
basedreasoningagentwhichadaptivelyadjust
the path according to traffic laws. Sukkarieh
et al. (1999) developed a navigation system
for autonomous land vehicle applications
based on the integrated use of GPS and
an Inertial Measurement Unit (IMU).
Limsoonthrakul et al. (2009) performed
localization by fusing data from a GPS, a
digital compass, a camera and an encoder.
Particlefilteringwasusedforsequentialstate
estimation.
 The intelligent vehicles used in this
studywerefirstdevelopedforparticipationin
the Thailand Intelligent Vehicle Challenge
(2007). Based on pre-defined waypoints, the
intelligent vehicles are programmed to travel
along the test track, on which obstacles with
predefined shapes and colors are located.
After the competition, we aim towards
developing an intelligent vehicle that can be
used in real-world applications. Figure 1
showsthetwointelligentvehiclesusedinthis

Figure 1. The SIIT and AIT intelligent vehicles 
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study.The SIIT intelligent vehicle (left) was
built based on a Sanyo 3-wheel electric car,
and theAIT intelligent vehicle (right) was
built based on a golf car. Table 1 provides
summarizedspecificationsofthetwovehicles.
 Bothvehiclesmakeuseoftheintegrated
information from a GPS, a digital compass,
and a camera. The GPS is used for latitude
and longitude data acquisition.The magnetic
compassmeasures theaverageheadingangle
of thevehiclewithrespect to theNorthPole.
Thewebcamera, installed at the frontof the
steeringwheel,isusedforobstacledetection.
The controlling module consists of a driving
motorandasteeringmotor,poweredbylead-
acidbatteries.A laptop is used as the central
processingunit.
 This paper presents a framework for
collision-free navigation along a predefined
path with relatively constrained obstacle
positions. The framework consists of three
modules,i.e.,1)GoogleEarth-basedwaypoint
navigation,2)feature-basedobstaclelocalization
and 3) collision-free path planning with
potential field (Passino, 2004).The obstacle
mapprovidesaninternalrepresentationofthe
world and is used for offline path planning.
This can be combined with reactive obstacle
avoidancebasingonlocalinformationandthe
current state of the perceptual input for
handling unexpected events. The schematic
diagram of the proposed sensor fusion
architectureisillustratedinFigure2.

Google Earth-Based Waypoint 
Navigation 

Navigation System 

 Apredefinedpathandthepositionofthe
vehiclearetwoimportantpiecesofinformation
requiredbyanautonomousnavigationsystem.
Bothwaypointandcurrentvehicle’scoordinates
consist of latitude, e , and longitude, n ,
components. In a navigation system, ith the
waypoint,w(i),isdefinedas:

  (1)

 The position of the vehicle at time t,
V(t),isdefinedas:

  (2)

 Assuming the vehicle is travelling at a
constant speed, moving the vehicle to a
specifiedpositioncanbeachievedviacontrolling
of the steering motor (i.e. local heading
direction of the vehicle).The steering angle,
γ,isderivedbasedonthecurrentglobalposition
ofthevehicleandthetwoconsecutivewaypoints
using (3) to (5).The graphical illustration of
parameters involved the calculation is
depictedinFigure3.
 The anglebetween the twoconsecutive
waypointswithrespecttotheEastaxis,θw,is
calculatedusing:


Figure 2. Overall system architecture of the proposed navigation framework 
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(3)


where KEW = 106,080 meters/degree and
KNS = 109,369.2 meters/degree are constant
parameters for converting the geographic
coordinates (latitude/longitude) into themetric
coordinates.
 Theangleofthevehiclewithrespectto
thenextwaypoint,θv ,iscalculatedby
  


(4)


 Finally, the steering ,γ ,which is used
tocontrolthesteeringwheelofthevehicle,is
definedas:
   


(5)


where0<K<1isthetrackingconstantandβ
isthecurrentheadingdirectionofthevehicle
obtainedfromthedigitalcompass.Thevalue
ofKdependsonthesizeofthecarandisset
to 0.5 forAIT and 0.8 for SIIT intelligent
vehiclestoensurethesmoothnessofthepath.
More detailed derivation of these equations
canbefoundin(Ratsameeet al.,2010).

Waypoint Generation and Calibration 

 Apopulartechniquefordeterminingthe
current vehicle’s position is by using a GPS.

Pre-collecting GPS data is also a common
method for waypoint construction.The path
canbecreatedbydrivingthevehicletocollect
GPS waypoints along the test track. An
alternative method is to extract the waypoint
coordinates from a pre-defined map or a
satellite image. In this study, Google Earth
(Google Inc, 2009) is used for waypoint
generation.A set of waypoints is generated
simply by carefully drawing the path on the
satelliteimage(DeelertpaiboonandParnichkun,
2008).
 Assume the GPS value at the starting
point, , is reasonably reliable, simplebias
subtraction can be used to eliminate the
translational errors. Let  be the 2D
coordinate of the starting position obtained
from Google Earth (GE).An offset vector,
ΔW, is defined as:  

  (6)

 Thevehicle’spositionalong thepath is
then translated onto the GE coordinate as
follows:
  
 

(7)

Feature-Based Obstacle Localization 

 This section presents a method for
obstacle detection and the obstacle map
generation based on a passive monocular
color camera, digital compass and GPS.The
proposedmethod consists of twomain steps,
i.e.,1)obstacledetectionand2)estimationof
thelocationsandorientations.

Figure 3. Parameters involved in the steering angle computation 
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Figure 4. An obstacle in the 3D perpective model 

Obstacle Detection 

 To differentiate an obstacle from the
background scene, information regarding
objects’ properties such as color, shape and
geometrical parts can be exploited.We first
use color to segment obstacles from the
backgroundscene.Thresholdingisappliedon
thehueandsaturationcomponentsintheHSV
color space to determine whether each pixel
belongs to an obstacle. Unlike RGB, HSV
representsintensityorbrightnessinadimension
orthogonaltocolorandthusismorerobustin
low light intensity conditions (Gonzalez and
Richard, 1992). To smoothen the resulting
image, morphological opening (Vincent,
1992) is applied for noise removal. Detected
pixelsarerepresentedaswhiteregions,known
as blobs, from which properties such as
perimeter, area and centroid canbe extracted
forfurtheranalysis.
 Obstacle’sshapeisanotherusefulpiece
of information that can be used to enhance
segmentationaccuracy.Asanindicatorofthe
object’s shape, the classical compactness
measure(BallardandBrown,1982),i.e.,


 
(8)

 

whichis independentofgeometricaltransfor-
mations such as translation, rotation and
scaling(Bribiesca,1997), isusedtofilterout
regions that are unlikely to be the object of
interest.
 Formoreaccurateblobextraction,further
analysis can be made using the geometrical
informationof theobstacle. In this study, the
obstacles are square-shaped.Their edges are
extractedusingHough transformandcorners
aredetectedfromtheintersectionoftheHough
lines.

Estimation of Obstacles’ Locations and 
Orientations 

 Thenextstepofobstaclemapgeneration
istoestimatethe(topview)position,0=(xO, zO),
andorientationwithrespecttotheNorthPole,
θN, of each obstacle. Based on these two
parameters, theobstaclescanbe locatedona
pre-definedmap.Inthisstudy,amethodbased
on perspective projection (Carlbom and
Paciorek,1978)isadopted.The3Dperspective
model illustrated in Figure 4 describes the
relationship between the camera image and
theactualobject.
 The camera location is defined as the
vehiclelocation,V=(xv , yv , zv ).Theobstacle,
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representedasaplanein3Dspace,consistsof
fourcorners,i.e.(xO1, yO1, zO1 ),(xO2, yO2, zO2 ),
(xO3 , yO3 , zO3 ), and (xO4 , yO4 , zO4 ), which
correspond to the projected feature points
(xc1, yc1, zc ), (xc2, yc2, zc ), (xc3, yc3, zc ), and
(xc4, yc4, zc )ontheimageplane,respectively.
Thefocallengthofthecamera(scaledtopixel
unit), f , is first determined based on the
relationship between the measured real
obstacle’s dimension and location and the
projected image pixels as described by the
followingequation:


 
(9)



whereD⊥ is thedistanceof theobstaclefrom
the vehicle along the heading direction, and
Harehtheverticalheightsoftherealobstacle
(in meters) and the obstacle in the image
(in pixels), respectively. Since f and H are
known, the above equation can be used to
estimateD⊥ at run-time based on h observed
fromtheimage.
 Theperspectiveprojectionoftheobstacle
on the image plane depends on the deviated
angle or the feature point from the heading
direction,∅ ,describedas:



 
(10)

wherenisthelateraldistance(inpixels)from
the center to the edgesof theobstacle in the
imageandzC=f.Assumingthattheobstacleis
orthogonaltothexz-plane,thetopviewofthe
described 3D perspective model is shown in
Figure5.O1andO2denotetheobstacleedges
after2Dprojectionontothexz-plane.D1⊥and
D2⊥ are distances of the points O1 and O2
fromthevehicle,respectively.Theperpendicular
distances, i.e. D1⊥ and D2⊥, and the deviated
anglesoftwoobstacleedgesfromtheheading
direction of the vehicle, i.e. ∅1 and ∅2, can
be estimated using (9) and (10). From the
deviatedanglefromtheheadingdirectionand
the position of vertical edge, O1 = (xO1, zO1) is
calculatedusing:


  (11)
  
  (12)

 Similarly,thepositionoftheothervertical
edgeO2=(xO2, zO2)isdescribedas:
  

  (13)
  
  (14)
  
 Thewidthoftheobstaclecanbeestimated
asfollows:

  (15)


 Thisvaluecanbecomparedtotheactual
width of the obstacle in order to verify the
distanceestimationalgorithm.
 The heading direction of the vehicle
obtainedfromthedigitalcompass,β,isused
tocreatethereferenceline:


  (16)

 With the known obstacle’s width, W ,
the turning angle,θ , between the vehicle
reference line, Lv, and the obstacle reference
line,L0,isdeterminedas:


Figure 5. Top view of the vehicle and the   
 obstacle 
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(17)


 To generate obstacle on the map, the
turning angle compared to the North Pole,
θN ,andthepositionoftheobstacle,O=(xo,
zo),arecalculatedasfollows:
  

  (18)
  

 
(19)


 Fromtheestimatedpositionofobstacle,
theanglebetweenthevehicleandtheobstacle
plane,  ,isderivedasfollows:
  

 
(20)


 Thefeature-basedobstacledetectioncan
beactivatedwhenaspecificcondition ismet
or iteratively computed at a regular time
interval.The estimated parameters are stored
forfurtheruseinpathplanning.

Collision Free Waypoint Generation  
In the proposed navigation framework,
referencewaypointsofapredefinedpathand
the dimension of the road are first extracted
fromGoogleEarthmap.Toavoidtheobstacles,
the vehicle has to modify the trajectory with
the obstacle information obtained from the
camerasystemusingthemethoddescribedin
Section3.Forreal-timecollision-freenavigation,
theartificialpotentialfieldmethodisused.To
avoid the obstacles while remaining within
the road boundary, an intelligent vehicle
travels from an initial position to the target
position(goal)basedontheconceptofattractive
andrepulsiveforces.
 Theattractiveinternalforce,Fg(P),from
the goal position, Pg , to an arbitrary point ,
P=(x , z),isdefinedas


  (21)



whereωg is theweightof theattractive force
from the goal position, Pg .This force keeps
thevehicle’s trajectory towards the target.At
every position of the vehicle, the internal
force vector usually directs towards the goal
position.
 The external force is a repulsive force
originated from the roadboundary,Pb , or an
obstacle,PO ,asfollows:


  (22)


  (23)

whereωbandωoaretheweightsoftherepulsive
forcefromPbandPO ,respectively.andk1are
k2 the influence constants which protect the
vehicle from collision. When an obstacle is
detected,a fixedwindowofdimension  l1× l2    

islocatedattheobstacle’scenter.Thiswindow
indicates an active region over which the
repulsive force field is generated from the
obstacle.
 Thenavigationpathtothetargetcanbe
obtained by tracing through waypoints with
locallyminimumresultantforcedefiningasa
combinationofthethreeforcefields:


 (24)


Ateachtimestep,apossiblewaypoint,Ps(i),
thatthevehiclecanmovetois



(25)


where0 < i < Ndenotethedirectionnumber,
r is the sensing radius and N is the total
number of possible directions around P.The
nextwaypoint, ,isdefinedas


 
(26)

Experiment and Results 
TheexperimentsinSections5.1and5.2were
conducted on an obstacle-free road in a car
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park inside SIIT Rangsit campus. The road
has smooth surface and a distance of ~500
meters. Figure 6 illustrates the experimental
venue, along with the path generated using
Google Earth. In Section 5.1, our initial
investigation on the characteristics of GPS
errorswillbefirstdiscussed.Section5.2will
thendemonstratetheresultsonself-navigation
of the SIIT intelligent vehicle using the GE-
basedwaypointcorrection.Section5.3illustrates
the experiment on feature-based obstacle
localizationwiththeuseofmonocularcamera.
Section5.4presentsthecollision-freewaypoints
generated using the potential field method
describedinSection4.Thelasttwoexperiments
were conducted on an unmarked road inside
AITusingtheAITintelligentvehicle

An Investigation of GPS Errors 

 Atasamplingrateof4Hz,GPSdatasets
were collected by manually driving the car

alongthetesttrackinthemorning,afternoon,
eveningandona cloudyday, respectively.A
plotof theGPSdata acquiredalong thepath
underdifferentweatherconditionsisshownin
Figure7.This indicates that the reliabilityof
theGPSdataishighlyweather-dependentand
if the GPS-based waypoint construction is
conducted on a cloudy day, the intelligent
vehiclewillrunoutoftheroad.
 Two sets of reference waypoints were
acquired, one from Google Earth and the
otherfromtheGPSwhiledrivingthevehicle
along the test track.As shown in Figure 8,
thereexistsareasonableamountofmisalignment
between the path generated using the GPS
data and the path generated using Google
Earth.Mostofwhichare translationalerrors.
Consequently, the waypoints generated by
Google Earth cannot be directly used by the
vehicle.

Figure 6. Plots of the GPS data acquired while driving the car on the test track at different   
 time and weather conditions 

Figure 7. Path generation using the GE-  
 Path program 

Figure 8. Plots of waypoints generated by   
 using Google Earth and the GPS   
 data 
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Google Earth Waypoint Correction 

 Toeliminatethetranslationalerrors,the
GPScorrectionalgorithmdescribedinSection
2.2wasapplied.Sixiterationsofself-navigation
wereperformedbytheSIITintelligentvehicle.
One of which is based on the pre-collected
waypoints using GPS and the rest are based
onthecorrectedreferencewaypointsobtained
from the proposed algorithm. Figure 9
demonstrates the plots of GPS data acquired
whilethevehiclewastravellingalongthetest
trackusingthetwowaypointgenerationschemes.
From the results, it is obvious that the GPS-
based navigation deviates significantly from
thereferencepathastheeffectofGPSerrors
canaccumulate through timeduring theGPS
waypoint navigation.With the GE-corrected
waypoints, the errors between each step are
moreorlessindependent.Table2summarizes
the total errors calculated for the six self-
navigation experiments. In average, the total
error between the self-navigated path using
GoogleEarthwaypointsandthecorrectedGE
referencepathis~1.3mWiththeGPS-based
waypoints,thetotalerrorincreasesupto7.4m

Obstacle Localization and Map Generation 

 Toobtainacollision-freepath,accurate
estimationofobstacles’locationsandorientations
ontheroadisanimportantpartofbothoffline

and online path planning. As an initial
investigation, we simplified the problem by
using rigid rectangularobstacleswitha fixed
dimensionof1.5×1.5m.Theobstacleplates
represent a basic geometrical shape that
comprises several real-world objects, thus
facilitatetheextensionofthemethodtomore
genericobstaclepatterns.Greenandredobstacle
plateswererandomlyplacedonanunmarked
road insideAsian Institute of Technology
(AIT)invaryinglocationsandorientations.
 Usingthestartingpointofthevehicleas
thereferencepoint, theroaddimensionalong
withpositionandorientationofeachobstacle
were measured and used as the ground truth
for result validation. The width of the road
variesbetween3to5mandthetotaldistance
of the path is approximately 200 m. The
travelingspeedof thevehiclevariesbetween
1to2.5m/sec.Duringvehiclenavigationand
obstacle avoidance along the test track, the
GPS, compass and image data are collected
simultaneously.ForGPSanddigitalcompass,
the sampling rate of 10 Hz is used. Input
imagesarecollectedat20frames/secusinga
low-costwebcamera.Theimageresolutionis
set to 320 × 240 pixels with 8-bit intensity
levels forR,G, andB channels.The camera
hasa68degreehorizontalfieldofviewandis
placed on the console 0.75 m above the
ground.

Figure 9. Plots of GPS coordinated of the   
 vehicle the six trials of GPS-based   
 and GE-based self-navigation 

Figure 10. An illustration of the test track   
 obtained from Google Earth,   
 obstacle locations and navigation   
 path of the vehicle during one   
 iteration of data collection 
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 Tworoundsofdatacollectionweremade
with 5 obstacles placed in different positions
and orientations for each round. Figure 10
illustratesthelocationsoftheobstaclesduring
oneroundofdatacollection.
 Thedottedlineillustratesthenavigation
path of the vehicle based on GE-corrected
waypoints. Examples of different obstacle
images captured during vehicle navigation
along the path are shown in Figure 11.A
calibration experiment is first conducted to
estimatethefocallengthofthecamera,f,and
the threshold values for compactness, hue,
and saturation of the obstacles. The focal
lengthwasestimatedfromthefrontal images
of obstacles captured at varying distances.
The threshold values are experimentally
specified based on color and shape of the
obstacles.Theresultingcameraandthreshold
parametersaredescribedinTable3.Figure12
illustratesdifferentstepsinextractingobstacle’s
features from an image. The original RGB
image in Figure 12(a) is first converted into

the corresponding HSV color space, after
which thresholding on hue and saturation is
applied, resulting in the black and white
imageasshowninFigure12(b).Figure12(c)
shows the result image after morphological
opening (with a 4 × 4 squared mask) and
thresholding on compactness are applied.
Finally, edge detection and Hough transform
arethenappliedandtheobstaclefeatures, i.e.
edgesandcorners,canbeextractedfromline
intersections, as shown in Figure 12(d).The
extracted features are used to determine the
height, h , and the deviated angle, ∅ , of the
obstacleintheimageforfurtherestimationof
its location and orientation of the obstacle
usingthemethoddescribedinSection3.2.All
data processing is performed in real-time
usingMATLABSimulink.
 The proposed feature-based obstacle
detectionisperformediterativelyataconstant
timeinterval.Inthisstudy,theencoderassociated
to the steering motor is the module with the
slowest update rate of 4 Hz.The update rate

Figure 12. Resultd of different steps during feature-based obstacle detection: (a) original   
 image, (b) blob image after thresholding is applied on hue and saturation,   
 (c) blob image after applying morphological opening and thresholding on  
 compactness, and (d) original obstacle image with edges and corners extracted  
 using Hough transform. Each red square in the blob images indicates the  
 detection of an obstacle 

Figure 11. Example images of obstacles labeled in Figure 10 : (a) 1st obstacle; (b) 2st   
 obstacle; 3st obstacle; and 4st obstacle 

(a) (b) (c) (d)

(a) (b) (c) (d)
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Figure 13. An interpolated surface of the   
 lateral error for varying angles   
 P and distances D⊥ 

Figure 14. The magnified version of the ten estimated obstacles in the best frame   
 compared with the actual measurement 

oftheobstacledetectionmodule,therefore,is
alsosettothisfrequency.
 To validate the performance of the
proposedmethod,generatedobstacles’locations,
O=(xo , zo),andorientations,θN,arecompared
againsttheactualmeasuredvalues.Theaverage
and standard deviation of angle error, ΔθN ,
depth error, Δzo , and lateral error, Δxo , of
eachobstaclecalculatedoverframeswithdetected
obstaclesaresummarized in thesecondmain
column ofTable 4. From the average frame
results,theaverageerrorisapproximately1.44
degreeinangle,15.6and14.95centimetersin
x-andz-directions,respectively.Thevaluesof
standarddeviationindicatesignificantamount
of variation in inaccuracy across different
imageframes.Thedeptherror,Δzo ,iscaused
by an inaccurate estimation of the vertical
height,h , of theobstacle in the image.This

erroroccurswhenthevehicleisnotexactlyat
the same level as the obstacle. One of the
obvious causes of angle error, ΔqN , is the
depth error, since qN is consequently derived
from (15).Another possible source of angle
erroristheinaccurateangleofvehicleheading
direction,b,obtainedfromthedigitalcompass.
 For autonomous navigation, lateral
error, Δxo , should be seriously concerned
becauseitmaycausethevehicletorunoutof
the road lanes.Basedonacloseobservation,
the lateral error, Δxo , relies significantly on
the distance, D⊥ and the angle between the
vehicle and the obstacle plane,  , derived
using (20).The relationship among ΔxO, D⊥,
and inthecollecteddatasetisobservedand
illustrated as an interpolated error surface in
Figure 13. It is shown on the 3D plot that
higher values of D⊥ and  can amplify the
lateral error.This is due to the fact that the
deviateddistance,n,isaresultofmappingan
obstaclefromrealworldontotheimageplane
relativetothecurvatureofthelens.Therefore,
thereexistssomedistortionduetolowerpixel
resolutionasthevalueofnincreases.Quantization
errorisanothersourceoftheinaccuracyinthe
estimated lateral distance. From (10), higher
image resolution will increase the resolution
of the deviated angle, ∅ , and therefore shall
decreasethelateralerror.FromFigure13,the
minimallateralerroroccursatdistancesaround
4 meters and angle less than 25 degrees.
This is used as the condition for best frame
selection.Fromtheselectedframe,thelocations,
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Figure 15. (a) is an attractive forces field generation from start to goal position, repulsive   
 force field generation from (b) considered obstacle and (c) road boundary   
 waypoints and (d) is the resultant force field which is used for obstacle   
 avoidance 

O = (xo , zo), and orientations, θN , are
estimated for each obstacle.The angle error,
ΔθN, depth error, Δzo , and lateral error, Δxo,
of eachobstacle calculated from the selected
bestframealongwiththevaluesofD⊥and 
thatpassthebestframeconditionaresummarized
in the right most main column of Table 4.
Fromthebestframeresults,theaverageerror
isapproximately0.67degreeinangle,6.8and
10.3 cen in x- and z-directions, respectively.
The estimated and actual locations and
orientations of ten obstacles are shown in
Figure 14. The blue lines indicate the road
boundary generated using Google Earth.The
green dotted line is the vehicle path, from
whichvideoimagesarecaptured.Theredand
blue line segments are the estimated and the
actuallocationsandorientationsoftheobstacles,
respectively.

Collision-Free Waypoints Generation 

 To obtain collision-free waypoints, the
potentialfieldalgorithmdescribedinSection4
wasappliedoneachdetectedobstacle.Inthis
study,anactiveregionofsize10 ×15mwas

used. Figure 15 illustrates the potential field
generation process. Figure 15(a) shows the
attractive force field from the target position
(thefarthestwaypointfromthevehicleinthe
activeregion).Figures15(b-c)showtherepulsive
forcefieldsgeneratedbytheboundaryandthe
obstacle,respectively.Figure15(d)showsthe
resultantofthethreeforcefields.Thecollision-
free waypoints are obtained by iteratively
searching for new minimum points until the
finaltargetisreached.Theparametersadopted
forpotentialfieldgenerationissummarizedin
Table 5. Figure 16 illustrates the waypoints
along the path used for the experiment
conducted in Section 5.3, before and after
applying the potential field algorithm. The
originalandtheupdatedwaypointsaredenoted
asbluedotsandredcrosses,respectively.
 The experimental results show that the
vehiclealwaystrackstothefinalpositionalong
asmoothpaththatpassesthewiderareaofthe
road due to the low probability of collision.
Theforcefieldfromtheroadboundaryalways
protects the vehicle from going off the road.
This new set of waypoints can be provided
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directlytoanintelligentvehicleforcollision-
free autonomous navigation. Furthermore,
whenanunexpectedobstacleisdetectedonthe
road, this algorithm is capable of generating
new waypoints for avoiding the obstacle in
real-time.

Conclusions 
Thisstudyproposedaframeworkforcollision-
free waypoint navigation for an intelligent
vehicle.AdetailedstudyonGPSerrorsanda
waypointcorrectionalgorithmhavebeenfirst
introduced.Ithasbeendemonstratedbyseveral
self-navigation experiments that simple bias
subtractioncaneffectivelycorrectandcompensate
the translational error during travelling.The
corrected waypoints obtained from Google
Earthprovideahighsamplingrateandastable
path for waypoint navigation.The technique
is simple, practical, and efficient in terms of
computational cost and time.A consequence
study on feature-based obstacle localization
based on the use of a monocular camera has
beendiscussed.Basedontheuseofcompactness
and perspective projection, the turning angle
andpositionofaknownshapeobstaclecanbe
estimated in real-time while the vehicle is
travelling. From the experimental results,we
found that the effective range that provides
the best frame condition of the obstacle for
the geometrical computation is ~4 meters,
with the angle less than 25 degrees from the
heading direction. This is also a suitable
conditioninwhichtheobstacleavoidanceroutine
isrequiredtobeactivatedduringautonomous
navigation.Theobstaclelocalizationalgorithm
yieldsanaverageerrorof0.67degreeinangle,
and 6.8 and 10.3 centimeters in x- and z-
directions, respectively.The accuracy of the
algorithmcanbefurtherimprovedbyincreasing
theimageresolution.
 The estimated obstacle locations and
orientations are processed online while
travellingandsuperimposedwiththeexisting
map information. Based on the artificial
potentialfieldmethod,anewsetofcollision-
freewaypointscanbeobtained.Thisgenerated
pathleadsthevehicletothelowprobabilityof

collision region.The framework can be also
appliedinreal-timefordetectingandavoiding
anunexpectedobstaclealongthepath.
 Forfurtherstudy,theframeworkcanbe
furtherexpandedtohandlewithmoregeneric
andcomplexobstacles.Thiswillimprovethe
practicalityandpotentialusageoftheframework
towardsreal-worldapplicationscenarios.
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